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Excitonic density wave and spin-valley superfluid
in bilayer transition metal dichalcogenide
Zhen Bi 1,2✉ & Liang Fu1✉

Artificial moiré superlattices in 2d van der Waals heterostructures are a new venue for

realizing and controlling correlated electronic phenomena. Recently, twisted bilayer WSe2
emerged as a new robust moiré system hosting a correlated insulator at moiré half-filling over

a range of twist angle. In this work, we present a theory of this insulating state as an excitonic

density wave due to intervalley electron–hole pairing. We show that exciton condensation is

strongly enhanced by a van Hove singularity near the Fermi level. Our theory explains the

remarkable sensitivity of the insulating gap to the vertical electric field. In contrast, the gap is

weakly reduced by a perpendicular magnetic field, with quadratic dependence at low field.

The different responses to electric and magnetic field can be understood in terms of pair-

breaking versus non-pair-breaking effects in a BCS analog of the system. We further predict

superfluid spin transport in this electrical insulator, which can be detected by optical spin

injection and spatial-temporal imaging.
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A new era of band engineering and novel electronic phase
design is promised by the discovery of moiré superlattices
in 2d van der Waals heterostructures. Recent experiments

on graphene-based moiré systems1–13 unfolded a brand new
world of strongly interacting electron phases, including correlated
insulating states, unconventional superconductivity as well as
quantum anomalous hall states. Moiré superlattices based on
transition metal dichalcogenides (TMD)14–19 lately emerge as a
new host of novel electronic phases of matter. Unlike graphene,
the semiconducting TMDs possess a large bandgap and large
effective electron mass, as well as strong spin–orbit coupling. Due
to these features, narrow moiré bands appear generically in het-
erobilayer15 or twisted homobilayer TMDs14 without fine-tuning,
which provides a fertile ground for correlation physics. In addi-
tion, the spin-valley locking in TMDs20–22 offers unique oppor-
tunities to probe and manipulate electron spins with optical
methods17,23.

In a very recent experiment on WSe2 homobilayers18 with twist
angles θ∈ [4°, 5.1°], a striking correlated insulating dome was
found at low temperature within a narrow range of the vertical
electric field, when the relevant moiré band is half-filled. The
activation energy gap of the insulating state is ~3 meV, which is
remarkably large among most moiré systems1–3,8–12. However,
the insulating gap is smaller by an order of magnitude than either
the miniband width (about 60−100 meV for θ= 4–5°) or the
characteristic Coulomb interaction energy e2/ϵL (~30 meV for a
dielectric constant ϵ= 10 at 4°). The smallness of the insulating
gap compared to the interaction energy and bandwidth and its
sensitivity to the displacement field speak against the scenario of a
Mott insulator and call for a new theoretical understanding.

In this work, we predict that the insulator in twisted TMD at
half-filling is an excitonic density wave formed by the pairing of
electrons and holes in minibands at different valleys. This
electron–hole pairing is strongly enhanced by a van Hove sin-
gularity24–31 (VHS) near the Fermi level. We show that the
detuning of the displacement field has a pair-breaking effect on
the excitonic insulator, while the Zeeman coupling to an out-of-
plane magnetic field is non-pair-breaking at leading order. We
introduce a low-energy theory for twisted TMD and calculate the
phase diagram as a function of the displacement field, tempera-
ture, and magnetic field, finding good agreement with the
experiment18.

Remarkably, owning to spin-valley locking in TMD32,33, our
excitonic insulator is also a spin superfluid and thus enables
coherent spin transportation over long distances. The possibility of
spin supercurrent was initially theorized in magnetic insulators
with easy-plane anistropy34–38. Its signatures have been reported
in recent electrical measurements on quantum Hall state in gra-
phene and antiferromagnetic insulator Cr2O3

39–41, where spin
Hall effect is used to generate and detect a nonequilibrium spin
accumulation. A key advantage of 2d TMDs is that the spin
polarization can be easily generated and detected by purely optical
means. It has been shown that a circularly polarized light can
efficiently generate spin polarizations in TMDs due to the spin-
valley locking and valley-selective coupling to chiral photons20–22.
The local spin polarization can be read out by measuring the
difference in reflectance of right- and left-circularly polarized
lights, i.e., the circular dichroism spectroscopy17,23. Therefore,
twisted TMDs provide an ideal platform for studying spin trans-
port with a fully optical setup. We propose an all-optical setup for
spin injection and spatial–temporal imaging of spin transport.

Results
Moiré band structure. We consider the electronic band structure
of twisted homobilayer WSe2. At a small twist angle, the two sets

of moiré bands in bilayer TMD originating from K and K 0 valleys
are decoupled at the single-particle level and treated separately
hereafter. From the outset, it is important to distinguish moiré
systems generated by slightly twisting AA and AB stacking bilayer
TMDs—which differ by a 180° rotation of the top layer. The two
cases have very different moiré band structures due to spin-valley
locking in TMD. For the AA case, the K valleys on two layers with
the same spin polarization are nearly aligned, so that interlayer
tunneling is allowed and creates layer-hybridized moiré bands, as
shown in Fig. 1a. In contrast, for AB, the K valley on one layer is
nearly aligned with the K 0 valley on the other layer with the
opposite spin polarization, so that interlayer tunneling is for-
bidden and the resulting moiré bands have additional spin/layer
degeneracy14,42. Throughout this work, we consider the moiré
system from twisting AA stacking bilayer TMD, where the full
filling for the topmost moiré bands corresponds to two electrons
per supercell.

We calculate the moiré band structures using the continuum
model from ref. 14 with parameters extracted from first principle
calculations (see the section “Moiré band structure” in “Meth-
ods”). Remarkably, we find that the moiré band dispersion is
highly tunable by the displacement field, D. For a certain range of
displacement field, our calculation (Fig. 1b, c) shows that the
Fermi level at half-filling is close to a van Hove singularity (VHS)
in the density of states, resulting from saddle points near the
corners of the mini-Brillouin zone, KM and K0

M. The proximity to
VHS is supported by the observed sign change of Hall coefficient
near half-filling18. In the relevant parameter regime, the moiré
band has a nontrivial Chern number. Details of the topological
properties of the moiré band are discussed in the section “Band
topology and Berry curvature”. While playing an important role
in the flat-band scenario in graphene-based moiré systesms43–45,
the topological property does not appear to play a significant role
in the weak coupling scenario considered here.

Since a diverging DOS near the Fermi level enhances
correlation effects, the detuning of VHS by the displacement
field is expected to affect the metal–insulator transition.
Motivated by this consideration, we now develop a low-energy
theory by expanding the moiré band from valley K (K 0) around
KM (K0

M). Based on the lattice symmetries, the Taylor expansion
up to the third order in momentum takes the general form

ε± ðkÞ ¼ αk2 ± ξðkÞ; ξðkÞ ¼ k3y � 3kyk
2
x ð1Þ

where ± is the valley index related by time-reversal symmetry
T : ck;þ ! c�k;�; ck;� ! �c�k;þ.

The coefficient α depends on the displacement field D (see
“Methods” for more details). It is useful to first consider a critical
displacement field Dc where α= 0. Then, k= 0 becomes a
monkey saddle point where three energy contour lines
interact29,46, resulting in a high-order van Hove singularities
(hVHS) with a power-law-divergent density of states27–29,46

ρα¼0ðEÞ � 1=jEj1=3; ð2Þ

as shown in Fig. 1c.

Intervalley exciton order. At low carrier density, the dominant
interaction is Coulomb repulsion within the same valley and
between two valleys: Hint ¼

P
i;j

R
drdr0Vi;jðr� r0Þni;rnj;r0 ; where

i, j= ± is valley index and ni;r ¼ cyi;rci;r is density operator of a
given valley. The interacting Hamiltonian is reminiscent of
bilayer quantum Hall system47, where the layer degree of freedom
plays the role of the valley. At half-filling of each layer, Coulomb
repulsion leads to interlayer exciton condensation. However,
unlike Landau levels, here the moiré band in twisted bilayer
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TMDs has a sizable bandwidth comparable to or larger than the
interaction energy, which is far from the flat-band limit.

At α= 0, the low-energy dispersion has a perfect nesting
condition: ε+(k)=− ε−(k), so that within the topmost moiré
band occupied states of one valley map onto unoccupied states of
the other valley under a shift of momentum by a nesting
wavevector Q ¼ KM � K0

M. As a result of this perfect nesting,
Coulomb interaction—attractive between electrons and holes—
immediately leads to an excitonic instability which pairs electron
from one valley and holes from the other, namely an intervalley
exciton condensate with an order parameter

Δ � �
X
k

cyk;þck;�

* +
: ð3Þ

The ordered state is fully gapped and electrically insulating. It
spontaneously breaks the spin-valley U(1)v symmetry, time-
reversal symmetry, and translational symmetry. Therefore, our
excitonic insulator is both an electron–hole superfluid at finite
commensurate momentum48 and a spin density wave. Related

intervalley density wave states have also been considered in other
moiré systems49–51.

We can draw an analogy between the intervalley exciton
condensate and the BCS superconductivity. After a particle-hole
transformation on one of the valleys, the intervalley exciton order
parameter becomes precisely an s-wave superconductivity with
the valleys playing the roles of spins. We can derive a similar self-
consistent equation for the exciton order parameter (see
“Methods”). Despite the similarities with the BCS problem, the
proximity of hVHS introduces interesting new features for the
exciton condensate.

Consider the case with α= 0. In the weak coupling regime, we
can analytically solve the analogous gap equation as follows,

1
V

ffi
Z 1

�1
dEρðEÞ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Δ2

p

�
Z 1

0
dE

1

jEj
1
3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Δ2

p � 1=Δ1=3
ð4Þ

Fig. 1 Moiré band structures. a The moiré band structure for one valley of twisted bilayer WSe2. At a critical displacement field Dc≅ 35meV, the KM

becomes a saddle point of the dispersion. b The density of states (with various D near Dc) at twist angle θ= 4°. c Evolution of energy contours of the
topmost moiré band as a function of the displacement field (the dark line corresponds to half-filling). At Dc, the system hosts a higher-order van Hove
singularity at KM.
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where we have used the power-law density of the state near the
hVHS. We find the intervalley exciton order parameter scales as
Δ ~V3. In mean-field theory, TMF

c is proportional to the gap,
therefore TMF

c � V3. This power-law scaling of the critical
temperature is distinct from the BCS formula where
Tc � expð� 1

VNð0ÞÞ.
Next, we consider the intermediate to strong-coupling regime

where the electron and hole form tightly bound pairs, analogous
to the BEC limit of Fermi gas. Denoting the UV cutoff in
reciprocal space Λ and the corresponding bandwidth 2Λ3=W,
we solve the gap equation for interaction strength V ~O(W) and
find the order parameter scales as Δ ~V. However, instead of
being determined by the pairing gap, the transition temperature is
set by the BEC temperature of the exciton gas, which scales as Tc

~W2/V, proportional to the inverse mass of the excitons52,53. An
interesting feature is that the crossover scale between weak and
strong-coupling behaviors is relatively small in this model due to
the presence of the hVHS.

We note that in the strong-coupling flat-band limit, recent
works44,45 have proposed a valley-polarized state that is
competitive in energy and distinct from the intervalley exciton
condensate proposed here. Experimentally, these two states can
be very easily distinguished by their response to an out-of-plane
magnetic field. The valley-polarized state features spontaneous
magnetization, hysteretic behavior, and (quantized) anomalous
hall effect, and it is stabilized by the field. On the contrary, the
intervalley exciton insulator is weakened under the field and
eventually transitions into the valley-polarized insulator above a
critical field.

Role of various perturbations. The energy of van Hove singu-
larities relative to the Fermi level at half-filling μ and the quad-
ratic term in energy dispersion α can be viewed as perturbations
to the ideal limit of perfect nesting. Experimentally, the dis-
placement field D tunes both α and μ. Both perturbations have
pair-breaking effects on exciton condensation as they lift the
degeneracy between electrons in one valley and holes in the other.
In particular, under the aforementioned particle-hole transfor-
mation, μ precisely maps to the Zeeman field in a super-
conductor. We also consider an out-of-plane magnetic field that
splits the spin/valley degeneracy by Zeeman energy54,55,

HB ¼ ±B?

Z
k
cyk;± ck;± : ð5Þ

Due to the orbital angular momentum in TMD systems, the holes
in the valence band have large renormalized g-factor55. Therefore,
the primary effect of a weak magnetic field is Zeeman spin/valley
splitting. In contrast to α and μ, the Zeeman coupling maps to the
chemical potential in a superconductor and its effect is non-pair-
breaking. The correspondence between exciton condensate and
the superconductor is summarized in Table 1.

In the following, we consider a mean-field theory for the
intervalley exciton condensate that includes these perturbations.

The mean-field hamiltonian reads

HMF ¼
X
k;ν¼±

ðενðkÞ þ νB? � μÞcyνcν þ Δcy�cþ þ h:c:þ jΔj2

V
;

ð6Þ
where Δ is the order parameter for the exciton condensate and V
is the effective interaction strength in the s-wave channel. The
quasi-particle spectrum is given by

E ± ðkÞ ¼ αk2 � μ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξðkÞ þ B?Þ

2 þ jΔj2
q

: ð7Þ

The quasi-particle gap between the two bands is given by Δg=
2Δ− αΛ2, which is an indirect gap for α ≠ 0.

We calculate the mean-field free energy and vary it with respect
to Δ to arrive the gap equation (see “Methods”),

1
V

¼
X
k

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξðkÞ þ B?Þ

2 þ jΔj2
q ðnFðE�ðkÞÞ � nFðEþðkÞÞÞ;

ð8Þ
where nF(E) is the Fermi–Dirac distribution. Figure 2c–e shows
the quasi-particle gap Δg as a function of α, T, and B⊥ at coupling
V= 0.1W (see “Methods” for results with V= 0.5W). Notice the
gap equation is invariant under α→− α, μ→− μ. Thus, we only
plot for α > 0.

First, Fig. 2c shows the quasi-particle gap Δg as a function of α
at half-filling at T= 0 and B⊥= 0 for V = 0.1 W. With the
realistic bandwidth W≅ 100 meV, the maximal mean-field quasi-
particle gap is Δg ≅ 3.5 meV, which is close to the activation gap
fitted from transport experiments18. We note that the intervalley
exciton order parameter could survive away from half-filling. We
call such state as the excitonic metal (see “Methods” for mean-
field phase diagram as a function of α and μ).

Remarkably, the excitonic insulator only exists when the van
Hove singularity is tuned close to the Fermi level by the
displacement field. For V= 0.1W, a small detuning in μ of about
0.01W (see Fig. 2d) is sufficient to drive the excitonic insulator to
a normal metal through a first-order phase transition, which
precisely corresponds to the pair-breaking transition of an s-wave
superconductor driven by the Zeeman field.

Next, we plot the quasi-particle gap as a function of
temperature T at half-filling in Fig. 2e. The finite temperature
metal–insulator transitions are continuous. For W= 100 meV,
the maximal critical temperature is Tc≅ 10 K, consistent with the
onset temperature of insulating behavior18. Moreover, the
electronic compressibility at half-filling will generically show
interesting temperature dependence—as the temperature
decreases it first increases due to the divergent DOS and then
drop to zero after the critical temperature due to the onset of the
insulating gap (see Fig. 2b and “Methods”).

Finally, we plot the gap as a function of the out-of-plane
magnetic field B⊥ at T= 0 and μ= 0 shown in Fig. 2f. We notice
the critical field for small α (i.e., good nesting) is much larger than
the critical chemical potential. In addition, for all α, the quasi-
particle gap decreases slowly with B⊥ in the weak field regime,
which indicates the effect of the out-of-plane magnetic field is

Table 1 The correspondence between intervalley exciton condensation and the BCS superconductivity.

Superconductivity Intervalley exciton order

Order parameter ΔBCS � cy"c
y
# ΔIVE � cyþc�

Broken symmetries Charge conservation U(1)C Spin-Sz or valley conservation U(1)V
Pair-breaking Magnetic field B Chemical potential μ and displacement field α
Non-pair-breaking Chemical potential μ Perpendicular magnetic field B⊥
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non-pair-breaking to the leading order. For larger B⊥, the quasi-
particle gap is reduced in an approximately linear way.
Furthermore, the orbital effect becomes important in the high-
field regime, which is beyond the scope of this work. For a nearly
high-order van Hove singularity (i.e., small α), the upper critical
magnetic field is significantly larger than the critical displacement
field, when measured in terms of the Zeeman energy and
detuning energy, respectively.

In summary, our theory based on a van Hove singularity near
the Fermi level gives an insulating gap and critical temperature
comparable to the experimental values and explains the
remarkable sensitivity of the gap to the displacement field as
well as the lack thereof to the Zeeman field in terms of pair-
breaking versus non-pair-breaking perturbation to exciton
condensation. In the following, we propose an experiment to
directly probe the macroscopic intervalley coherence in the
insulating state.

Discussion
In our theory, the half-filling insulator in TMD homobilayer
spontaneously breaks the spin/valley Sz conservation in a similar
way that a superconductor spontaneously breaks charge con-
servation. Therefore, it can be regarded as a spin superfluid that
can enable coherent spin transportation over long distances.
Moreover, spin polarizations have been shown to be easily

generated and probed via circularly polarized light in TMDs due
to the spin-valley locking and valley-selective coupling to chiral
photons17,20–23. In particular, ref. 23 and ref. 17 demonstrate
that in TMD heterostructure there is a nearly perfect conversion
from optically generated chiral excitons to spin/valley-polarized
holes, as well as a spin diffusion length on the order of 10–20 μm,
much longer than the wavelength of the pump/probe light.
Therefore, we anticipate that twisted TMDs can provide an ideal
platform for studying spin superfluid transport with a fully
optical setup.

We propose the following experiments (see Fig. 3a) to detect
spin superfluidity in the insulating state of bilayer TMDs. We first
create a local spin polarization by circularly polarized light and
then use the spatial–temporal resolved circular dichroism
spectroscopy17,23 to monitor its propagation as a function of time
(In the experiment, one can add an additional layer of WS2
intentionally misaligned with the twisted bilayer WSe2 in order to
enhance the conversion rate of spin/valley polarization from
optical pumping17,23.). In the spin superfluid state, the local spin
polarization will propagate ballistically and coherently via col-
lective modes (in the absence of dissipation, see below)34. Such
ballistic spin transport is a key feature of our intervalley excitonic
insulator. In contrast, spins should have diffusive dynamics34 if
the half-filling insulator is valley polarized.

In a spin superfluid, the spin transport equation involves the
superfluid phase φ that specifies the angle of the in-plane

Fig. 2 The intervalley exciton order. a The mean-field exciton order parameter (blue) and the schematic plot of Tc (black) as a function of interaction
strength for the case of α= 0. b The mean-field electronic compressibility dN/dμ as a function of temperature at α= 0 and μ= 0. c The quasi-particle gap
as a function of α with T= 0 and B⊥= 0 at half-filling. d The quasi-particle gap as a function of μ with T= 0 and B⊥= 0. e The quasi-particle gap as a
function of T with B⊥= 0 at half-filling. f The quasi-particle gap as a function of B⊥ with T= 0 and μ= 0. Taking the valley Zeeman g-factor to be ~1055, the
range of magnetic field in (f) is 0 ~ 12 T, which is comparable to the experimental available range. All data in (b–f) are obtained with V= 0.1W.
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magnetic order parameter34,

dMz

dt
¼ �∇ � Jz �

Mz

τ
; ð9Þ

dφ
dt

¼ � 1
K
Mz þ :::; ð10Þ

where Mz is the magnetization along z direction and a conjugate
variable to φ. The spin current Jz is given by Jz= ρ∇φ, where ρ is
the superfluid stiffness. The parameters ρ and K can be obtained
by considering the effective low energy of the Goldstone mode;
see the section “Low energy effective theory for the spin super-
fluid state” under “Methods”. τ is the spin relaxation time, which
is expected to be long in TMDs since a spin–flip requires inter-
valley scattering due to spin-valley locking. In a spin superfluid,
the spin-valley wavepacket shows ballistic propagation at the
spin-wave velocity v ¼

ffiffiffiffiffiffiffiffiffi
ρ=K

p
. In contrast, in the absence of spin

superfluidity, the spin dynamics is diffusive. The two cases yield
completely different transport behaviors as shown in Fig. 3b.

Methods
Moiré band structure. In this section, we show more detailed results on the moiré
band structure. We follow the continuum model in ref. 14 to calculate the band
structure of twisted bilayer WSe2. The parameters used in this paper are extracted
from the first principle calculation. Our continuum model parameters are given as
the following: the interlayer tunneling w= 18 meV, the intralayer potential (V, ψ)
= (7.9 meV, 142°), and the effective mass given by m� ¼ Δg=ð2v2FÞ, where Δg= 1.6
eV and vF/a= 1.1 eV.

In Fig. 4a, we show some examples of moiré band structures for different values
of the displacement field. The whole dispersion of the moiré band is sensitively
dependent on the displacement field.

The band dispersion near KM point can be approximated by the form in Eq. (1)
in the main text. The coefficient α will be a function of the displacement field. Here,
we fit the dispersion near KM point to obtain the coefficient α as a function of the
displacement field shown in Fig. 4b.

Another important quantity we can extract is the energy distance between the
van Hove singularity and the half-filling fermi level. To obtain this quantity, we
have to take into account the dispersion in the whole moiré Brillouin zone. We plot
this quantity as a function of the displacement field in Fig. 4c. An interesting
feature is that, once the van Hove singularity approaches the Fermi level, the Fermi
level is more or less fixed near the van Hove energy due to the diverging density of
the state.

Band topology and Berry curvature. We can calculate the Chern number of the
moiré bands with the continuum model. We map the Chern number of the top-
most moiré band as a function of twist angle and displacement field. With our
model parameters, as shown in Fig. 5, the topmost moiré band has a nontrivial
Chern number in the physically relevant regime. Based on these observations, in
the strongly coupled regime at half-filling the system likely will enter a valley-
polarized phase with quantized anomalous hall response44,45. This state is distinct
from the intervalley exciton condensate found in the weak coupling limit. For such
state, the insulating gap should increase under a perpendicular magnetic field,
which is not consistent with the experimental observations.

We can also plot the distribution of the Berry curvature in the moiré Brillouin
zone. As shown in Fig. 6, the Berry curvature is mostly concentrated near the Γ
point in the Brillouin zone for weak displacement field and gradually shifts to KM

with increasing displacement field. This is expected because the smallest gap
between the topmost and second moiré bands is located near Γ as shown in Fig. 4a.
Near the half-filling fermi surfaces (shown in Fig. 1c), there is essentially zero Berry
curvature. Together with the large bandwidth compared to the interaction, we
expect the topological property of the band is not essential to the low-energy
physics and the weak coupling approach is a good approximation.

Fig. 3 Spin transport measurement. a Setup for all-optical spin transport measurement. (b) shows the dynamics of a spin-valley wavepacket in the case
with/without spin superfluid (colored curves represent different time instant). (b) is obtained by solving the Eqs. (9) and (10) in a 1d system with an initial
Gaussian distribution ofMz at the origin. The parameters we use in the superfluid case are v ¼

ffiffiffiffiffiffiffiffi
ρ=K

p
¼ 1, τ= 10. In the diffusive case, we use D= 1, τ= 10.
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Particle-hole transformation and mapping to BCS problem. Let us make the
connection with BCS problem explicit. To that end, we can do a particle-hole
transformation to the electron operators in one of the two valleys, for example, the
− valley. We define new fermion variables

~ck;þ ¼ ck;þ; ~ck;� ¼ cyk;�: ð11Þ

In terms of these new fermionic operators, the dispersion in Eq. (1) now reads

~ε± ðkÞ ¼ ± ðαk2 þ μÞ þ ξðkÞ; ξðkÞ ¼ k3y � 3kyk
2
x ; ð12Þ

here we also put the chemical potential in the equation. In this new basis, ξ(k)
serves as the bare dispersion of the ~c fermions—it is the same for both the ± valleys.
On the contrary, the αk2+ μ acts like a Zeeman field between the two valleys. In
addition, the Coulomb interaction, being repulsive between the original electrons,
are now attractive between the ~c fermions from the two valleys. Therefore, it could
promote superconducting states of the ~c fermions.

After the particle-hole transformation, the intervalley exciton order parameter
maps to

X
k

cyk;þck;�

* +
!

X
k

~cyk;þ~c
y
k;�

* +
; ð13Þ

which is precisely a Cooper pair order parameter. Therefore, the intervalley exciton
state is equivalent to a BCS superconductor under the particle-hole transformation
to the electrons in one of the two valleys.

Mean-field gap equation and phase diagram. Now let us derive the mean-field
gap equation. We can obtain the mean-field hamiltonian by Hubbard–Stratonovich
transformation of the interacting hamiltonian. Starting from that, we calculate the
free energy of the system as the following,

FMF ¼
X
k;ν¼±

� 1
β
log ð1þ e�βEν ðkÞÞ þ jΔj2

V
; ð14Þ

where E± are given in the main text. We can take Δ to be real and vary the free
energy with respect to it,

∂FMF

∂Δ
¼ 2

Δ

V
þ

X
k;ν¼±

Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξk þ B?Þ

2 þ Δ2
q ν

1þ eβEν
: ð15Þ

Setting the variation to zero, we get precisely the gap equation in Eq. (8) of the
main text.

Now we plot the zero-temperature mean-field phase diagram as a function of μ
and α for V= 0.1W and V= 0.5W in Fig. 7. There are in general three phases in
the mean-field phase diagram. For small α and μ, we get the exciton insulator,
which has a nonzero exciton condensate and a fully gapped spectrum. For larger α,
the system develops fermi surfaces while maintaining the exciton order, which we
denote as the exciton metal phase. Further increasing α or μ destroys the exciton
order and leaves the system a normal metal. Notice the phase diagram has a strong
particle-hole asymmetry induced by finite α. We can focus our attention on the
half-filling state. In the weak coupling case, as we increase α, the system will go
from an excitonic insulator to a normal metal through an intermediate phase-
separation regime. In the strong-coupling limit, raising α can drive the system from
an excitonic insulator to a normal metal through an intermediate exciton metal
phase.

In Fig. 8, we plot the correlated insulating gap at half-filling as a function of
parameter α for various interaction strength. We also provide the experimental
value of the gap as a guide in the plot. We should bear in mind that simple mean-
field treatment usually exaggerates the size of the order parameter. At the same
time, the transport experiment usually gives a smaller gap due to disorder
averaging. In reality, the interaction V is probably closer to 0.3W. However, one
should also take into account the fact that the nesting condition is never perfect
which corresponds to finite α (and higher-order terms in the dispersion which
become important for large momentum away from the van Hove singularities). For
example, if we take V= 0.3W and α= 0.17, we find the mean-field gap is close to
the experimental value. A quantitative comparison between experiments and
theory would demand a more sophisticated study of the band structure using, for
example, large-scale DFT which is beyond the simple model of this paper. Our
model is aimed at understanding the nature of the correlated insulating state based
on the experimental observations.

Electron compressibility. We also study the compressibility of electrons as a
function of temperature at half-filling. We calculate the compressibility as the

Fig. 4 Details of the moiré band structure. a A few examples of the band structure as function at different displacement fields. b The phenomenological
parameter α as a function of the displacement field obtained by fitting the band structure near KM point. The critical displacement field Dc is≅ 35meV.
c The energy distance between the van Hove singularity and half-filing Fermi level as a function of the displacement field.

Fig. 5 Band topology. The plot shows the Chern number of the topmost
moiré band as a function of twist angle and displacement field. The relevant
regime in our considerations has nontrivial Chern number.
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following. The electron number is given by

Nðμ;TÞ ¼
Z

dEρðEÞnFðEÞ ¼
X
ν;k

1

1þ eðEν;k�μÞ=T : ð16Þ

The compressibility is then

dN
dμ

¼
X
ν;k

1
T

eðEν;k�μÞ=T

ð1þ eðEν;k�μÞ=T Þ2

� 1
T

eðEν;k�μÞ=T

ð1þ eðEν;k�μÞ=T Þ2
dEν;k

dΔ
dΔ
dμ

:

ð17Þ

We use the solution of the gap equation Δ(α, μ, T) to numerically calculate the
compressibility as a function of temperature. A particular case that is easy to handle
is at α= 0 and μ= 0 because dΔ/dμ vanishes due to the particle-hole symmetry.
The result for this simple case is shown in Fig. 2b.

Intuitively, there should be two regimes. At low temperature, the intervalley
exciton order leads to gapped spectrum—the compressibility should have
activation form. The compressibility will increase until the critical temperature of
the intervalley exciton order. Then the compressibility is expected to follow certain
characteristic power-law decay of the temperature due to the power-law-divergent
density of states of the underlying supermetallic state. The result of the numerical
calculation of electron compressibility indeed shows these features in Fig. 2b. Most
importantly, these features can be readily verified in capacitance measurements.

Low-energy effective theory for the spin superfluid state. We derive the
effective theory for the phase fluctuation of the exciton order parameter in the weak
coupling limit. The effective theory will give us the velocity of the spin-wave
excitations. After a Hubbard–Stratonovich transformation, the interacting fermion
theory can be brought into the following form (in imaginary time),

L ¼
X
ν¼±

ψy
νð�iωþ Hk;νÞψν þ Δψy

�ψþ þ h:c:þ jΔj2=V : ð18Þ

Let us assume the exciton order is fixed at Δ= ∣Δ∣eiφ with φ= 0. The fermion

Fig. 7 Mean-field phase diagram. The plot shows the zero-temperature mean-field phase diagram - the intervalley exciton order parameter Δ as function
of the μ and α for a V= 0.1W and b V= 0.5W. The yellow contour is the phase boundary of the exciton insulator as well as the contour for half-filling.

Fig. 8 Mean-field insulating gap. The plot shows the insulating gap at half-
filling as a function of parameter α for various interaction strength. The
dotted line is the observed insulating gap in the experiment (assuming the
bandwidth is ~ 100meV).

Fig. 6 Berry curvature. The plot shows the distribution of the Berry curvature of the topmost moiré band. The calculation is done with a twist angle 4°.
Comparing with Fig. 1c, one can see that the half-filling fermi surface is mostly in the regime of essentially zero Berry curvature.
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green’s function is given by

Gψ ¼ ð�iωτ0 þ Hk þ jΔjτ1Þ�1
: ð19Þ

where τ’s are the Pauli matrices in valley space. Consider the effective action for
phase fluctuations. The self-energy for φ is given by the standard bubble diagram,

ΠðiΩ; pÞ ¼
Z

ω;k
� jΔj2 Tr τ2Gψðiω; kÞτ2GψðiðωþΩÞ; k þ pÞ

h i
; ð20Þ

For the case of α= 0, expanding the self-energy to the second-order in frequency
and momentum, we find

ΠðiΩ; pÞ ¼ �c0jΔj
2 � c1jΔj

�1=3Ω2 � c2jΔjp2 þ ::: ð21Þ

where c0= 1/V precisely from the mean-field equation, c1 and c2 are constants
obtained from convergent integral. In a RPA approximation, the green’s function
for φ is given by

GbðiΩ; pÞ ¼ V=jΔj2

1þ V=jΔj2 ΠðiΩ; pÞ

¼ � 1

c1jΔj
�1=3Ω2 þ c2jΔjp2

:

ð22Þ

Therefore the effective action for φ is

Leff ¼
Z

x;τ
Kð∂τφÞ

2 þ ρð∂xφÞ
2; ð23Þ

where K= c1∣Δ∣−1/3 and ρ= c2∣Δ∣. The superfluid velocity is given by

v ¼
ffiffiffiffiffiffiffiffiffi
ρ=K

p
¼

ffiffiffiffiffiffiffiffiffiffi
c2=c1

p
jΔj2=3. The case of α ≠ 0 is more involved and we leave it to

future work. However, the form of effective action in Eq. (23) is generally
applicable in any superfluid state.

Data availability
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Code availability
The custom codes generated during this study are available on reasonable request.

Received: 9 June 2020; Accepted: 13 December 2020;

References
1. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle

graphene superlattices. Nature 556, 80–84 (2018).
2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene

superlattices. Nature 556, 43–50 (2018).
3. Chen, G. et al. Evidence of a gate-tunable mott insulator in a trilayer graphene

moiré superlattice. Nat. Phys. 15, 237–241 (2019).
4. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene.

Science 363, 1059–1064 (2019).
5. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-

angle bilayer graphene. Nature 574, 653–657 (2019).
6. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in

twisted bilayer graphene. Science 365, 605–608 (2019).
7. Serlin, M. et al. Intrinsic quantized anomalous hall effect in a moiré

heterostructure. Science 367, 900–903 (2020).
8. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene

moiré superlattice. Nature 572, 215–219 (2019).
9. Chen, G. et al. Tunable correlated chern insulator and ferromagnetism in a

moiré superlattice. Nature 579, 56–61 (2020).
10. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer

graphene. Nature 583, 221–225 (2020).
11. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted

bilayer–bilayer graphene. Nature 583, 215–220 (2020).
12. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys.

16, 520–525 (2020).
13. Polshyn, H. et al. Electrical switching of magnetic order in an orbital chern

insulator. Nature 588, 66–70 (2020).
14. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological

insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev.
Lett. 122, 086402 (2019).

15. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in
transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402
(2018).

16. Tang, Y. et al. Simulation of hubbard model physics in WSe2/WS2 moiré
superlattices. Nature 579, 353–358 (2020).

17. Regan, E. C. et al. Mott and generalized wigner crystal states in WSe2/WS2
moiré superlattices. Nature 579, 359–363 (2020).

18. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal
dichalcogenides. Nat. Mater. 19, 861–866 (2020).

19. Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: charge transfer
in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115
(2020).

20. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum
disulphide. Nat. Commun. 3, 887 (2012).

21. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2
monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

22. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in
monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

23. Jin, C. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2
heterostructures. Science 360, 893–896 (2018).

24. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity
from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012).

25. Markiewicz, R. The van Hove singularity in the cuprate superconductors: a
reassessment. Phys. C: Superconductivity 217, 381–404 (1993).

26. Cea, T., Walet, N. R. & Guinea, F. Electronic band structure and pinning of
fermi energy to van Hove singularities in twisted bilayer graphene: a self-
consistent approach. Phys. Rev. B 100, 205113 (2019).

27. Yuan, N. F. Q., Isobe, H. & Fu, L. Magic of high-order van Hove singularity.
Nat. Commun. 10, 5769 (2019).

28. Isobe, H. & Fu, L. Supermetal. Phys. Rev. Res. 1, 033206 (2019).
29. Shtyk, A., Goldstein, G. & Chamon, C. Electrons at the monkey saddle: a

multicritical Lifshitz point. Phys. Rev. B 95, 035137 (2017).
30. Yuan, N. F. Q. & Fu, L. Classification of critical points in energy bands based

on topology, scaling, and symmetry. Phys. Rev. B 101, 125120 (2020).
31. Chandrasekaran, A., Shtyk, A., Betouras, J. J. & Chamon, C. Catastrophe

theory classification of fermi surface topological transitions in two
dimensions. Phys. Rev. Res. 2, 013355 (2020).

32. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley
physics in monolayers of MoS2 and other group-vi dichalcogenides. Phys. Rev.
Lett. 108, 196802 (2012).

33. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered
transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

34. Sonin, E. B. Superfluid spin transport in ferro- and antiferromagnets. Phys.
Rev. B 99, 104423 (2019).

35. Takei, S. & Tserkovnyak, Y. Superfluid spin transport through easy-plane
ferromagnetic insulators. Phys. Rev. Lett. 112, 227201 (2014).

36. Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin
transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408
(2014).

37. Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer
torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

38. Takei, S., Yacoby, A., Halperin, B. I. & Tserkovnyak, Y. Spin superfluidity in
the ν= 0 quantum hall state of graphene. Phys. Rev. Lett. 116, 216801 (2016).

39. Wei, D. S. et al. Electrical generation and detection of spin waves in a quantum
hall ferromagnet. Science 362, 229–233 (2018).

40. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-
distance transport of magnon spin information in a magnetic insulator at
room temperature. Nat. Phys. 11, 1022–1026 (2015).

41. Yuan, W. et al. Experimental signatures of spin superfluid ground state in
canted antiferromagnet Cr2O3 via nonlocal spin transport. Sci. Adv. 4,
eaat1098 (2018).

42. Schrade, C. & Fu, L. Spin-valley density wave in moiré materials. Phys. Rev. B
100, 035413 (2019).

43. Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat
chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

44. Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous hall
ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601
(2020).

45. Bultinck, N. et al. Ground state and hidden symmetry of magic-angle
graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).

46. Biswas, R. R., Fu, L., Laumann, C. R. & Sachdev, S. SU(2)-invariant spin
liquids on the triangular lattice with spinful majorana excitations. Phys. Rev. B
83, 245131 (2011).

47. Eisenstein, J. Exciton condensation in bilayer quantum hall systems. Ann. Rev.
Conden. Matter Phys. 5, 159–181 (2014).

48. Chen, X. M. & Quinn, J. J. Excitonic charge-density-wave instability of
spatially separated electron-hole layers in strong magnetic fields. Phys. Rev.
Lett. 67, 895–898 (1991).

49. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of mott insulating
behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8,
031089 (2018).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20802-z ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:642 | https://doi.org/10.1038/s41467-020-20802-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


50. You, Y.-Z. & Vishwanath, A. Superconductivity from valley fluctuations and
approximate SO(4) symmetry in a weak coupling theory of twisted bilayer
graphene. npj Quant. Mater. 4, 16 (2019).

51. Isobe, H., Yuan, N. F. Q. & Fu, L. Unconventional superconductivity and
density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018).

52. Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive fermion
gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59,
195–211 (1985).

53. Randeria, M. & Taylor, E. Crossover from Bardeen-Cooper-Schrieffer to Bose-
Einstein condensation and the unitary fermi gas. Ann. Rev. Conden. Matter
Phys. 5, 209–232 (2014).

54. Srivastava, A. et al. Valley zeeman effect in elementary optical excitations of
monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

55. Gustafsson, M. V. et al. Ambipolar landau levels and strong band-selective
carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

Acknowledgements
We thank Augusto Ghiotto, En-Min Shih, Abhay Pasupathy, and Cory Dean for sharing
their experimental results prior to publication, and Yang Zhang for sharing the first
principle data and collaboration on related work. We thank Ran Cheng, Feng Wang,
Noah F. Q. Yuan, Yi-Zhuang You, and Shu Zhang for useful discussion. This work is
supported by DOE Office of Basic Energy Sciences under Award DE-SC0018945. Z.B. is
supported by the Pappalardo fellowship at MIT, partially by KITP program on the
topological quantum matter under Grant No. NSF PHY-1748958, and by the startup
funding from the Pennsylvania State University. L.F. is partly supported by Simons
Investigator Award from the Simons Foundation.

Author contributions
Z.B. and L.F. both contributed essentially to the original idea, model calculation, theo-
retical analysis, and paper preparation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-20802-z.

Correspondence and requests for materials should be addressed to Z.B. or L.F.

Peer review informationNature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20802-z

10 NATURE COMMUNICATIONS |          (2021) 12:642 | https://doi.org/10.1038/s41467-020-20802-z | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-20802-z
https://doi.org/10.1038/s41467-020-20802-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Excitonic density wave and spin-valley superfluid in�bilayer transition metal dichalcogenide
	Results
	Moiré band structure
	Intervalley exciton order
	Role of various perturbations

	Discussion
	Methods
	Moiré band structure
	Band topology and Berry curvature
	Particle-hole transformation and mapping to BCS problem
	Mean-field gap equation and phase diagram
	Electron compressibility
	Low-energy effective theory for the spin superfluid state

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




