Arising from Wang et al. Nature Communications https://doi.org/10.1038/s41467-017-01698-8 (2017)
Excursions in the carbon-14 (14C) record measured in tree rings are attributed to various high energy but short-lived cosmic effects1,2,3,4,5,6,7. Wang et al.8 proposed a new event at 3372–3371 BCE based on a single set of annual 14C data measured on a floating tree rings from a buried specimen of Chinese wingnut (Pterocarya stenoptera). Here we attempt to reproduce this event in tree rings of an absolutely dated bristlecone pine specimen (Pinus longaeva) from the White Mountains, USA and a subfossil oak (Quercus sp.) from the Moselle River Valley, France. We cannot confirm the presence of a cosmic-ray event as suggested at 3372–3371 BCE and we discuss potential implications to earlier results.
Carbon-14 (half-life 5730 years) is produced by the reaction of secondary thermal neutrons derived from the primary cosmic-ray flux on nitrogen9. This 14C is incorporated into the terrestrial carbon cycle within 1–2 years as is most convincingly demonstrated through the14C signal of anthropogenic nuclear testing10. Miyake et al.2,3,4 were the first to study the annual signal of 14C in tree rings to reveal annual excursions, which were much larger than those observable in the decadally resolved international radiocarbon calibration curve (IntCal20)11. Specifically, they observed spikes in 14C activity at 774–775 CE and 993–994 CE2,4. The 774 CE event was first confirmed in a bristlecone pine record4, and indeed, this work encouraged many subsequent studies looking for both these events and searches for other events. Büntgen et al.5 summarizes 14C series of trees for 774–775 CE from 34 locations and another set of trees for 993–994 CE from 10 locations around the globe. Another rapid event at 660 BCE has been reproduced in different records and is therefore widely accepted7,12,13. Separately, other rapid changes that may show more complex solar dynamo phenomena or combinations of solar and galactic events at 5480 BCE and 813 BCE have been observed14,15.
An important task in demonstrating a convincing global signature of a 14C excursion is to reproduce the event with tree rings from different geographic locations. We endeavored to reproduce the 14C sequence of Wang et al.8 using two independent tree-ring records. First, we measured 14C on tree rings of bristlecone pine from the White Mountains in California. This tree species is well known for a remarkably long lifespan often exceeding several thousand years. The SH146-2003 remnant specimen was collected at the Sheep Mountain high-elevation site and rigorously cross-dated with the site master chronology spanning 4408 BCE–2014 CE16. Second, we developed 14C tree-ring series from subfossil oak collected from a gravel pit near Champey-sur-Moselle. The CHEY1-17 oak specimen is absolutely cross-dated with the South German oak chronology covering 8240 BCE–2017 CE17.
We obtained 14C measurements on tree rings from a bristlecone pine for the interval 3351–3392 BCE (42 years) and from an oak for 3350–3390 BCE (41 years). These 14C series are developed from a 328-year specimen of bristlecone pine (3598–3271 BCE) and a 93-year oak tree (3402–3310 BCE), where the rings are absolutely dated via cross-dating with original site (master) chronologies. The Pearson18 correlation (R) between the tree-ring width series of samples SH146-2003 and CHEY1-17 and their master chronologies is 0.57 (probability, p < 0.01) and 0.52 (p < 0.01), respectively. This experiment allows us to observe if the Wang et al.8 event occurred during the same sampling period of 3358–3388 BCE.
Figure 1 and Supplementary Table 1 present our results in a Δ14C plot19 against known age of the tree rings. A 11-year periodicity with an amplitude of ~5 per mil on a declining trend of Δ14C18 has clearly appeared. We note that our new two 14C series (pine and oak) are well correlated (R = 0.89). Student’s t test18 of these two data sets shows good agreement with t = -0.69 (p = 0.49, critical value Tc = 1.99). We compared our series to those of Wang et al.8. Intriguingly, the Chinese wingnut 14C measurements agree with the general trend of our results, except for the 2 years of 3370–3371 BCE, where Wang et al.8 reported the new 14C excursion, and the year 3388 BCE. The excursion proposed by Wang et al.8 cannot be confirmed in the other two 14C sets. To confirm that the records are statistically different, we performed t test on each set of data. Convincingly, the hypothesis fails t test with t = −2.15 (p = 0.038, Tc = 2.02). Because the Chinese wingnut specimen was dated with 14C wiggle-matching, we developed longer 14C series covering two decades prior to 3371 BCE where the calendar dates might shift due to wiggle-matching. Nevertheless, we do not observe any excursion consistent with Wang et al.8.
Our results raise some important points regarding radiocarbon and dendrochronological dating. Wang et al.8 state that they used traditional cross-dating and correlated the wingnut rings with a master chronology of tree-ring widths from California downloaded from the International Tree-Ring Data Bank. We assume that it was a 7091-year record (5142 BCE–1962 CE) of bristlecone pine. However, the dating approach applied by Wang et al.8 is far from conventional dendrochronology. The annual ring variations of bristlecone pine from the alpine environments are limited by the cold and extremely dry climate20. The pine growth is not comparable to Chinese wingnut, which has a completely different ecological amplitude, different climatic controls, and grows ~10,000 km away. Application of cross-dating to wingnut species is very limited due to interannual density fluctuations and/or missing rings. Besides, the wingnut specimen contained only ~60 rings. Further, Wang et al.8 used Dendrochronology Program Library, a software package not used to measure rings. We believe that it is important for cross-dating to be carried out according to well-established methods and practices21.
The wingnut specimen was 14C dated prior to the spike study of high-resolution 14C measurements. As described8, the wingnut rings were counted, and four 5-year groups sampled for a wiggle-matching test. Wiggle-matching technique ties knowingly spaced-age differences (e.g., ring groups) via a Monte Carlo simulation of a chi-squared fit between 14C data and the IntCal curve13,22. The 4-point sequence of 5-year groups fitted to IntCal mean8 is not reliable. The 14C variation observed by8 could deviate from their assigned age by several decades or more. We re-simulated the wingnut fit8 using the D-Sequence function of OxCal22 that placed the older end of the wingnut sequence to 3496-3458 BCE rather than the 3388 BCE. We observe an apparent 11-year solar cycle in our data as shown in a wavelet analysis of Fig. 2 and Supplementary Fig. 1. This cycle shows a 14C variation up to ~5 per mil over one solar cycle. This is somewhat larger than that observed in recent trees9, although similar to the solar-cycle effects observed by Jull et al.15.
Our two independently derived records do not confirm the 14C event at 3372–3371 BCE described by Wang et al.8. Therefore, unless this can be independently confirmed in other trees or other proxy records for cosmogenic isotopes12,13, we recommend excluding this result from any list of Solar Proton Events. We also conclude that the wingnut rings are not from the interval 3350–3390 BCE. The result of Wang et al.8. may either be at a different time period or may be due to unaccounted effects that have not been fully evaluated. Since our results are generally consistent with the trend of Wang et al.’s8 data with the exception of the 2 years (3370 and 3371 BCE) and 1 other year (3388 BCE), we may also conclude that the result is actually in general agreement, but that errors in Wang et al.8, who used two different laboratories, have been underestimated.
Methods
The bristlecone wood specimen used in this study (Supplementary Fig. 2) was collected by M. Salzer in July 2003 at the elevation of 3575 m asl on the Sheep Mountain ridge (37.53475N and 118.20045W). The ring widths of this specimen were measured on a Lintab system. The 328-year ring series is correlated with the 6422-year master chronology from Sheep Mountain spanning from 4408 BCE to 2014 CE, which is composed of tree rings from remnant wood and overlaps with rings from living trees16. The Sheep Mountain chronology also correlates well with two other long bristlecone tree-ring chronologies from the same mountain range confirming the dating accuracy of the chronology. Dating SH146-2003 was assigned using correlation of ring widths between 50-year segments and the master SHP mountain chronology lagged successively by 25 years with statistical verification using COFECHA12K version 6.06P, which uses multiple parametric statistics to examine the quality of various fits20. Second checks on dating were confirmed through the presence/absence of sub-annual ring features, such as frost rings. Further details of master chronology construction are published in refs. 16,20. The cross-dating and the master chronology development were performed at the Laboratory of Tree-Ring Research, University of Arizona. The SH146-2003 remnant specimen has no locally absent rings and includes a very prominent frost ring formed in 3458 BCE that is also present in the same year in one other sample of the master chronology. The annual growth layers were separated through cutting with a razor blade and grounded to 20-μm mesh. Each powdered sample was converted to α-cellulose using standard procedures23,24.
The oak sample (CHEY1-17) originated from an accumulation of 17 subfossil oak trunks found during gravel extraction in the Moselle River valley (48.9405N, 6.0586E) in 2011 (Supplementary Fig. 3). Tree-ring widths were measured to an accuracy of 1/100 mm using a stereo microscope and a measuring system. The annually resolved tree-ring width series of 14 tree trunks are synchronized into a 247-year mean chronology. This site chronology is overlapped with the master oak chronology for South Germany17. After 10-year smoothing spline transformation, these two chronologies correlate at R = 0.53 for the common period from 3405 BCE to 3159 BCE. The cross-dating was performed at University of Freiburg.
Bristlecone cellulose samples were combusted to CO2 and converted to graphite, and 14C dating was performed using the 200 kV MICADAS (Mini Carbon Dating System, Ion Plus AG, Dietikon, Switzerland) at the Institute for Nuclear Research in Debrecen, Hungary23. Sample calculation and data reduction were done using the standard BATS software25. Oak samples were converted to α-cellulose using the procedures described in ref. 24, and the accelerator mass spectrometer (AMS) samples were converted to graphite using the automated graphitization equipment (AGE-3) system at the Swiss Federal Institute of Technology, Zürich. Samples were measured on a MICADAS 200 kV AMS of the same design and software25 as the Debrecen machine.
Data availability
Tree-ring sample information can be found in the International Tree-Ring Databank https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring. The bristlecone pine information is given in https://www.ncdc.noaa.gov/paleo-search/study/3254. All data are public information accessible from the authors on request.
Code availability
Wiggle-matching can be undertaken using OxCal (https://c14.arch.ox.ac.uk/oxcal.html) using the international radiocarbon calibration curves. Dendrochronology Program Library is available at https://www.ltrr.arizona.edu/software.html. The COFECHA code can be downloaded from https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software.
Change history
25 February 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-21647-w
References
Büntgen, U. et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 9, 3605 (2018).
Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature 486, 240–242 (2012).
Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 record of tree rings. Nat. Commun. 4, 1748 (2013).
Miyake, F. et al. Verification of the cosmic ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56, 1189–1194 (2014).
Jull, A. J. T. et al. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophys. Res. Lett. 41, 3004–3010 (2014).
Güttler, D. et al. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth Planet. Sci. Lett. 411, 290–297 (2015).
Park, J., Southon, J., Fahrni, S., Creasman, P. P. & Mewaldt, R. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59, 1147–1156 (2017).
Wang, F. Y., Yu, H., Zou, Y. C., Dai, Z. G. & Cheng, K. S. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nat. Commun. 8, 1487 (2017).
Jull, A. J. T. & Burr, G. S. in Treatise of Geochemistry, Vol. 14 (eds Turekian, K. K. & Holland, H.) 45–53 (Elsevier, Amsterdam, 2013).
Hua, Q., Barbetti, M. & Rakowski, A. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55, 2059–2072 (2013).
Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55kBP). Radiocarbon 62, 725–757 (2020).
Mekhaldi, F. et al. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat. Commun. 6, 8611 (2015).
O’Hare, P. et al. Multiradionuclide evidence for an extreme solar proton event around 2,610 BP (~660BC). Proc. Nat. Acad. Sci. USA 116, 5961–5966 (2019).
Miyake, F. et al. A large 14C excursion at 5480BC indicates an abnormal sun. Proc. Natl Acad. Sci. USA 114, 881–884 (2017).
Jull, A. J. T. et al. More rapid carbon-14 excursions in the tree-ring record: a record of different kind of solar activity at about 800BC? Radiocarbon 60, 1237–1248 (2018).
Salzer, M. W., Hughes, M. K., Bunn, A. G. & Kipfmueller, K. F. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc. Natl Acad. Sci. USA 106, 20348–20353 (2009).
Becker, B. An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. Radiocarbon 35, 201–213 (1993).
Kirk, R. E. Statistics: An Introduction (Harcourt Brace College Publishing, Orlando, 1999).
Stuiver, M. & Polach, H. Discussion: reporting of 14C data. Radiocarbon 19, 355–363 (1977).
Salzer, M. W. et al. Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim. Dyn. 42, 1517–1526 (2014).
Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43, 69–78 (1983).
Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Molnár, M. et al. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55, 665–676 (2013).
Němec, M., Wacker, L., Hajdas, I. & Gäggeler, H. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52, 1358–1370 (2010).
Wacker, L., Christl, M. & Synal, H.-A. BATS: a new tool for AMS data reduction. Nucl. Instrum. Methods Phys. Res. 268, 976–979 (2010).
Acknowledgements
This work was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project GINOP-2.3.2.-15-2016-00009 “ICER” and the US National Science Foundation P2C2 program (EAR1203749). W.T. was supported by the German Research Foundation (DFG, TE 613/3-2).
Author information
Authors and Affiliations
Contributions
A.J.T.J., I.P.P., M.W.S., and W.T. wrote the paper and interpreted the results. N.B., M.M., T.V., and L.W. made the measurements and derived the results. T.V. and E.L. performed the time-series analyses; and T.V., E.L., W.T., and I.P.P. provided the figures. I.P.P., C.B., M.W.S., and W.T. provided the absolutely dated tree rings via methods of dendrochronology.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Communications thanks Adrian Melott, Chris Turney, and the other, anonymous, reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Timothy Jull, A.J., Panyushkina, I.P., Molnár, M. et al. Rapid 14C excursion at 3372-3371 BCE not observed at two different locations. Nat Commun 12, 712 (2021). https://doi.org/10.1038/s41467-020-20695-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-020-20695-y