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Creating Majorana modes from segmented Fermi
surface
Michał Papaj 1✉ & Liang Fu1✉

Majorana bound states provide a fertile ground for both investigation of fundamental phe-

nomena as well as for applications in quantum computation. However, despite enormous

experimental and theoretical efforts, the currently available Majorana platforms suffer from a

multitude of issues that prevent full realization of their potential. Therefore, improved

Majorana systems are still highly sought after. Here we present a platform for creating

Majorana bound states from 2D gapless superconducting state in spin-helical systems under

the in-plane magnetic or Zeeman field. Topological 1D channels are formed by quantum

confinement of quasiparticles via Andreev reflection from the surrounding fully gapped

superconducting region. Our proposal can be realized using narrow strips of magnetic

insulators on top of proximitized 3D topological insulators. This setup has key advantages

that include: small required fields, no necessity of fine-tuning of chemical potential, removal

of the low-energy detrimental states, and large attainable topological gap.
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Majorana bound states1,2 have engrossed the condensed
matter physics community for much of the last decade,
offering promises of fascinating phenomena of funda-

mental interest and potential applications in topologically pro-
tected quantum computing3,4. Over the years, multiple platforms
of very diverse variety have been proposed as hosts of Majorana
bound states and intensively studied, including proximitized
topological insulators5, heavy metal surfaces6, semiconductor
nanowires7–9, magnetic atom chains10,11, planar Josephson
junctions in 2D electron gas12 and iron superconductors13–15.
Signatures of Majorana bound states in all these platforms have
been observed in multiple experiments16–29.

Despite the remarkable progress on many frontiers, most of the
existing material platforms have some disadvantages that hamper
their further investigation and prompt the continued search30–32

for new systems that would resolve these issues. The multitude of
issues plaguing current Majorana platforms are related to the
material quality, the device fabrication process and the required
experimental conditions. For example, in iron superconductor
FeTe0.55Se0.45 the topological band inversion necessary for
creating Majorana bound states requires alloying, which results in
disorder and inhomogeneity20. In the fabrication of semi-
conductor nanowires band bending near the crystal-vacuum
interface may result in quasi-Majorana bound states that com-
plicate the interpretation of the zero bias peak33,34. Moreover, in
many platforms the appearance of Majorana bound states relies
on strong external magnetic fields above 1T (which is detrimental
to superconductivity) or fine-tuning the chemical potential into
the Zeeman gap.

In this work we propose a new approach to creating Majorana
bound states in 2D systems that may help to resolve some of these
issues. Our proposal is based on a gapless superconducting state
of spin-helical electrons placed under either external magnetic
field or influence of a magnetic insulator. Examples of such sys-
tems are presented in Fig. 1 and include 3D topological insulators
(TI) in proximity to conventional superconductors35–42 or
superconductors with Rashba spin-orbit coupling. In such sys-
tems the interplay of superconductivity and magnetic field leads
to a “segmented Fermi surface”: while a large part of the normal
state Fermi surface is still gapped, its remainder is reconstructed
into contours consisting of electron- and hole-dominated arcs43.
A topological gap can be opened in a quantum confined quasi-1D
channel of such a gapless superconducting state surrounded by
regions with a full superconducting gap. Majorana bound states
will emerge at the boundaries of thus formed 1D channel.

As a concrete example, we focus on the setup of Fig. 1a, where
we propose to use narrow strips of magnetic insulator such as EuS
on top of a proximitized thin film of 3D TI such as Bi2Se344.
Crucially, since the narrow strip region is surrounded by a
superconducting (and not just insulating) gap, the number of
low-energy modes depends on the strip width W and the
superconducting coherence length ξ, independent of the chemical

potential. As the Zeeman field is induced by exchange interaction
with a magnetic insulator strip, it does not impact the parent
superconductor or destroy the proximity effect in the rest of the
surface. Since our proposal relies on segmented (rather than full)
Fermi surface, it results in the removal of the low-energy states.
This translates to large topological gaps that are crucial for
topological quantum computing applications. Combination of all
these features makes our proposal an attractive alternative to the
existing systems.

Results
Model. While our proposal based on segmented Fermi surfaces is
rather versatile, for concreteness we start our analysis with a thin
film of a 3D topological insulator (TI) in proximity to an ordinary
s-wave superconductor5, with a narrow strip of magnetic insu-
lator deposited on top as shown in Fig. 1a. The TI surface states
acquire the superconducting gap Δ everywhere on the surface and
are subject to an exchange field only in the region beneath the
magnetic insulator. This system is described by the following
Bogoliubov-de Gennes Hamiltonian:

H ¼ vðkxτzsy � kyτzsxÞ � μτz þ Bxðx; yÞsx þ Δτx; ð1Þ
where τi and si are Pauli matrices describing the particle-hole and
spin degrees of freedom, respectively, v is the Fermi velocity of the
surface state and μ is the chemical potential. In our discussion we
focus on the case of exchange field parallel to the strip, which
results in the Zeeman energy Bx.

We first want to analyze the eigenstates of this Hamiltonian for
translationally invariant cases and then construct the solutions
that are quantum confined within the finite width strip. To
simplify the analysis of the problem we note that in the
experimentally relevant scenarios μ is the largest energy scale of
the problem (μ≫ Bx, Δ) and so we can concentrate only on the
upper Dirac cone near the Fermi level and disregard the other
band (assuming μ > 0). After the projection (as discussed in
Supplementary Note 1) we obtain the following low-energy
Hamiltonian:

Hp ¼
kv � μ� Bxky=k Δ

Δ �kv þ μ� Bxky=k

 !
ð2Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and we have neglected the off-diagonal

momentum dependent terms as they are suppressed by the
factors of Δ/μ, Bx/μ.

This effective Hamiltonian clearly demonstrates that due to the
spin-momentum locking of Dirac surface states the Zeeman field
Bx causes a Fermi surface shift in the ky direction. This results in a
direction-dependent depairing effect on the superconducting
state, which is maximum at ky= ± kF and zero for kx= ± kF, with
Fermi momentum kF= μ/v. The eigenvalues of Hamiltonian (2)
at kx= 0 are presented in Fig. 2a for two values of magnetic field,
Bx= 0 and Bx= 1.5Δ. While in the absence of Zeeman energy
there are no states inside of the gap, when Bx > Δ the gap closes
and zero energy states of Bogoliubov quasiparticles are located in
two closed contours near ky= ± kF. Each contour is composed of
electron- and hole-dominated arcs, while the remainder of the
initial normal state Fermi surface is still gapped around kx= ±
kF43. Such a segmented Fermi surface is presented in Fig. 2(b).
The contour at E= 0 can be described by the ky wavevector
components parametrized by kx, which are approximately given
by:

ke=h;± ¼ ± k0 þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x=v

2 � Δ2

v2
k2F
k20

s
ð3Þ

a b

Fig. 1 Platforms for creating Majorana bound states from segmented
Fermi surface. Here the examples are based on proximitized 3D topological
insulator (TI), such as Bi2Se3, with superconducting gap Δ. Quasi-1D
channel is formed due to: a narrow strip of magnetic insulator (such as EuS)
with magnetization parallel to the strip axis, b narrow region (yellow) with a
smaller superconducting gap Δ0 under external in-plane magnetic field B.
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with k0 ¼ kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2x=k

2
F

q
and s= ± 1 for electron- and hole-

dominated states.
Before proceeding, we discuss the experimental feasibility of

our proposal. As shown by ARPES measurements, proximitized
thin films of Bi2Se344 display a single Fermi surface due to the
Dirac surface state, without any bulk bands at the Fermi level. The
superconducting gap at zero magnetic field is hard with Δ ≈ 0.5
meV and spatially uniform, which demonstrates the high quality
of the proximitized TI thin films. In a latest quasiparticle
interference (QPI) experiment on proximitized Bi2Te3, the
gapless superconducting state with segmented Fermi surface has
been achieved under in-plane magnetic field above 20 mT45.
Closing of the proximity gap at such a low field is enabled by the
Doppler effect in Bogoliubov quasiparticle dispersion induced by
the screening supercurrent in the parent superconductor46. The
vector potential corresponding to this Doppler effect is equivalent
to a giant Zeeman field on the order of ~ BλL, where λL is London
penetration depth. Most importantly, the QPI patterns display
distinct features due to scattering between the hotspots of the
segmented Fermi surface, unimpeded by disorder and any bulk
bands. However, due to the strong hexagonal warping of the
surface state in Bi2Te3 that can introduce additional complica-
tions to the quasiparticle spectrum, using Bi2Se3 with negligible
warping may be preferable. Nonetheless, all of these observations
suggest that the experimental realization of our proposal is
feasible.

To open up the topological gap in a region with a segmented
Fermi surface, we use the quantum confinement effects by
limiting the transverse size of the region with the non-zero
Zeeman energy. In such a case, by surrounding the magnetic strip
by a fully gapped superconducting region with zero Zeeman
energy we effectively form a 1D channel with the number of
quasiparticle modes determined by the width of the strip. The use
of the superconducting gap to confine Bogoliubiov quasiparticles
distinguishes our proposal from the previous schemes based on
nanowires, which use vacuum to confine electrons7,8. The idea of
creating 1D topological channels by confinement using super-
conducting gap has been explored in other setups5,12,31.

Topological phase diagram from scattering approach. To
investigate the topological properties of this system, we first focus
on the quasiparticle spectrum in a strip of finite width W in y
direction and infinite length in x direction with no disorder inside
of the wire. In such a case, kx remains a good quantum number
and we can obtain the in-gap states spectrum by solving a scat-
tering problem (as discussed in Supplementary Note 2) along y

axis with states under the magnetic strip normalized to carry a
unit quasiparticle current. For energies ∣ϵ∣ < Δ there are no pro-
pagating states outside of the magnetic strip region and so at the
interfaces at y= ±W/2 normal and Andreev reflection can occur
with no transmission into the surrounding superconductor.
Andreev reflection in proximitized surface states of 3D TI has
been intensively studied experimentally47–49. At zero energy,
under the magnetic insulator strip, we have electron- and hole-
dominated states moving in positive and negative y direction with
ky given by Eq. (3).

As the gap in the continuum model first closes at kx= 0 as
Zeeman energy is increased, to determine the condition for gap
inversion and thus establish the boundaries of the topological
phases in the Bx−W parameter space it is enough to consider the
states with no longitudinal momentum. Since kx is conserved in
the scattering processes, this means that for such states normal
reflection at the strip boundaries is forbidden due to the spin-
momentum locking of Dirac surface states (states on the opposite
sides of the Fermi surface are orthogonal). Together with the
unitarity condition for the scattering matrix this means that
Andreev reflection at kx= 0 and ϵ= 0 can be characterized by a
single phase ϕA acquired by the particles during the reflection.
Therefore, the scattering matrix S±W/2 at the two interfaces is
given by:

SW=2 ¼
0 eiϕA

e�iϕA 0

� �
; S�W=2 ¼ S�W=2 ð4Þ

Since the particles propagate freely between Andreev reflections
at opposite interfaces, they acquire the phase determined by their
wavevectors. This translates to transmission matrices for move-
ment along the positive and negative y directions
T ± ¼ diagðexpðike;±WÞ; expðikh;�WÞÞ. To find the bound state
spectrum we use the condition50:

det 1� T�SW=2TþS�W=2

� �
¼ 0 ð5Þ

Since we evaluate this condition for ϵ= 0 and kx= 0, it greatly
simplifies to the form:

1� cosð2ΔkW � 2ϕAÞ ¼ 0 ð6Þ

where Δk ¼ ðke;þ � kh;þÞ=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x � Δ2

q
=v is the wavevector y

component difference between the electron and hole-like states.
This allows us to derive the topological phase boundaries in the
Bx−W space to be:

W=ξ ¼ ϕA þ πnffiffiffiffiffiffiffiffiffiffiffiffiffi
~B
2
x � 1

q ; n 2 N ð7Þ

with superconducting coherence length ξ= v/Δ, ~Bx ¼ Bx=Δ and
Andreev reflection phase determined from the microscopic
considerations:

ϕA ¼ Arg
i� expð�arcosh~BxÞ
�iþ expðarcosh~BxÞ

� �
ð8Þ

We can also determine the quasiparticle spectrum at kx= 0 in the
vicinity of the phase boundaries. To do this, we solve Eq. (5) for ϵ.
We expand the solution close to ~Bc;n, which is the Zeeman energy
at which the gap at kx= 0 closes at the nth boundary. In doing so
we get:

ϵ± ¼ ±Δ
~B
2
c;nW þ ξ

~B
2
c;nðW þ ξÞ

ð~Bx � ~Bc;nÞ ð9Þ

where ± gives the two particle-hole symmetric eigenvalues.

a b

Fig. 2 Segmented Fermi surface. a Bands of the projected Hamiltonian (2)
at wavevector component kx= 0 for Zeeman field Bx= 0 (dashed line) and
Bx= 1.5Δ (solid line). b Segmented Fermi surface at E= 0 for Bx= 2Δ with
electron (solid line) and hole (dashed line) arcs. The arrow indicates the
Andreev reflection process at kx= 0.
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As pointed out by Kitaev1, the topological phase of a 1D
superconductor is determined by the gap closing at kx= 0. This is
exactly described by Eq. (7), as it determines the conditions for
the subsequent quasiparticle branches to cross ϵ= 0 and become
inverted. Therefore, crossing the boundaries with even n marks
the transition from the trivial to the topological regime, and
crossing odd n curves marks the opposite transition. We will be
focusing on the first topological region between the n= 0 and n
= 1 boundaries.

It is worth highlighting the two key advantages of our proposed
setup. First, the phase boundaries and the number of subgap
quasiparticle modes are independent of the chemical potential
and instead rely only on the W/ξ and Bx/Δ ratios. Remarkably,
this remains true even in the presence of Fermi wavelength
mismatch inside and outside of the strip. This is a result of the
spin-helical nature of the TI surface state that forbids normal
reflection at kx= 0, leaving Andreev reflection as the only
confinement mechanism at kx= 0. As a consequence, even for a
large chemical potential there is only one subgap mode as long as
W ~ ξ. This is in contrast to the semiconductor nanowires, which
can have many low-energy subbands that greatly complicate the
phase diagram, introducing numerous topological phase transi-
tions. Secondly, since a large portion of the original Fermi surface
remains gapped, there will be no detrimental low-energy electrons
moving parallel to the channel. These states, unaffected by the
normal and Andreev reflection processes, would be present if the
narrow strip region was in normal state. With such states out of
the picture, the maximum topological gap at given Bx will be
determined by the energy of states at kx= 0. Therefore, the upper
bound on the topological gap is given by the crossing points of
the subsequent branches of Eq. (9). This constitutes a strong
enhancement of the achievable topological gap when compared to
the platforms based on Josephson junctions with normal state
weak link. Both of the described features result from confining the
quasiparticles with segmented Fermi surface by Andreev reflec-
tion, rather than electrons with full Fermi surface by normal
reflection, to a 1D channel.

Comparison with numerical simulation. We can now compare
the approximate analytical solutions to the numerical calculations
based on a tight-binding model (see Methods section) with
translational invariance in x direction and periodic boundary
conditions in y direction. The simulations were performed using
the Kwant code51. First, we illustrate the difference between our
proposal and a scenario in which there is no superconducting
pairing under the magnetic strip. In Fig. 3a we present the
numerical spectrum of 1D subbands without and with super-
conductivity, with the same potential barrier placed along the
strip at its center to introduce normal reflection. In both cases we
observe inverted quasiparticle branches inside of the super-
conducting gap. However, when superconductivity is absent in
the weak link, there are low energy states with large kx (moving
parallel to the strip) that will interfere with the observation of
Majorana modes. On the contrary, with superconductivity pre-
sent under the magnetic strip, there are no low energy states at
large kx and the topological gap is several times larger with the
same barrier strength. We can thus further investigate the kx= 0
eigenvalues numerically to characterize the upper bound on the
topological gap. We present these eigenvalues in Fig. 3b, which
shows the subsequent branch crossings. We note that the formula
of Eq. (9) provides a very good approximation of the energies for
given n up until it crosses with the n+ 1 branch. We therefore
highlight that the maximum upper bound is given by such
crossing energies and this value can be larger than 60% of the
original superconducting gap, which constitutes a significant

advantage of our proposal. Finally, we investigate the full phase
diagram of the system with potential barrier in Fig. 3c. The phase
boundaries given by Eq. (7) are in very good agreement with the
tight-binding calculation and the first topological region between
curves n= 0 and n= 1 covers a wide area both in terms of the
Zeeman energy Bx and the strip width W, avoiding the necessity
of parameter fine-tuning. We also note that the topological gap is
a significant fraction of the original superconducting gap in the
majority of the first topological region. In each following region
the gap becomes smaller, but as we want to minimize the Zeeman
energy necessary to obtain the topological phase this is not a
concern. In general, the wider the strip, the smaller the Zeeman
energy required to invert the branches. However, at the same time
the possible size of the topological gap at the same normal
reflection barrier strength decreases. Therefore, for the purpose of
the experiment it will be necessary to find a sweet spot for a
particular realization that maximizes the gap, based on a more
precise modeling.

To further verify the topological character of the system, we
perform numerical simulations of a finite length strip to
demonstrate that it hosts Majorana bound states at its ends.
First, we perform diagonalization of the 2D tight-binding
Hamiltonian and plot the obtained eigenvalues in the form of
density of states of the system in Fig. 4a. We observe, in
accordance with the analysis of the phase diagram, that for
Zeeman energies below ~2.1Δ the system is gapped and there are
no zero energy states. However, at Bc,0 ≈ 2.1Δ the gap closes and
then reopens due to normal reflection processes with a pair of
zero energy states present in the system. The topological gap
increases to above 0.25Δ for this particular scattering strength

a b

c

Fig. 3 Spectrum of quasi-1D strip. a Subgap states in a narrow strip at
Zeeman field Bx= 2.6Δ and strip width W/ξ= 1.16 without (blue line) and
with (orange line) superconductivity under the magnetic strip. b Bound
state energies at kx= 0 for increasing Zeeman energy. Solid orange lines
indicate subsequent analytical solutions of Eq. (9). c The topological phase
diagram of the system. Dashed lines indicate the phase boundaries
described by Eq. (7).
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(not saturating the upper bound of kx= 0) and then closes again
at Bc,1 when the second pair of subbands is inverted. The gap
reopens again, but this time we enter the trivial regime with no
zero energy bound states as anticipated from the phase diagram.
Finally, we plot the pair of zero energy states at Bx= 2.6Δ, which
are strongly localized at the ends of the strip as expected for the
Majorana bound states.

Discussion
In the preceding sections we have shown that using a narrow strip
of a magnetic insulator, such as EuS, on top of a 3D topological
insulator in proximity to a conventional superconductor can yield
Majorana bound states with a large topological gap. However, our
approach is not limited to Zeeman field induced by an adjacent
magnetic insulator. Alternatively, if one applies external in-plane
magnetic field, the same type of gap inversion will occur due to
the effect of screening supercurrent in the parent superconductor.
If the proximity-induced superconducting gap is non-uniform,
e.g. with a narrow region of diminished magnitude Δ0<Δ, as
shown in Fig. 1b, then the gap inversion will occur in that area,
but not in the surrounding superconductor, effectively realizing
the scenario we discussed in our work. One possible way of
achieving this situation is to use the terraces of varying thickness
naturally present in thin films of 3D topological insulators. As the
strength of proximity effect that induces superconductivity in the
surface state is dependent on the distance between the parent
superconductor and the top surface52, areas with thicker film will
have reduced superconducting gap as compared to surrounding
region with thinner film and larger gap. Moreover, as the external
field scenario is based on the screening supercurrent modifying
the quasiparticle dispersion via the Doppler effect, using thick
(preferably bulk) superconductor is necessary for the super-
current to flow without restrictions. In combination with using a
material with long London penetration depth λL (as the Cooper
pair momentum q ~ BλL) this will lead to maximizing the effect.

Another possible system are the superconductors with Rashba
spin-orbit coupling that have two independent pockets of spin-
helical electrons (such as proximitized InAs 2D electron gas),
resulting in two superimposed topological phase diagrams.
However, due to the different velocities and superconducting gaps
in each of the pockets, the superconducting coherence lengths will
be different in each case, thus enabling the existence of a region
with a single Majorana at each end. Such a scenario may help to
understand the topological phase diagram of proximitized Rashba
states in gold nanowires found in a recent study28,31. This largely
expands the spectrum of material platforms for realization of our
proposal, which is a testimony to its great versatility.

To sum up, in this work we proposed a new platform for
creating Majorana bound states using proximitized Dirac surface
states with in-plane Zeeman energy. Among the advantages of
our proposal are: very small magnitude of required magnetic
fields, removal of the spurious low energy states and large possible
topological gaps. Together with the continuous progress in fab-
rication of thin 3D TI films coupled to superconductors this
makes our proposal an attractive platform for studying Majorana
bound states.

Methods
Tight-binding model for numerical calculations. The numerical calculations
were performed using a tight-binding approximation to the Hamiltonian (1), with
terms included to ensure the presence of only a single Dirac cone in the Brillouin
zone. The model is discretized on a square lattice with lattice constant a= 1, with
the final Hamiltonian of the form:

HTB ¼
X
j

cyj ð2tτzsz � μτz þ Bxðjx ; jyÞsx þ ΔτxÞcjþ

t
2

cyjþx̂ð�iτzsy � τzszÞcj þ cyjþŷðiτzsx � τzszÞcj þ H:c:
� � ð10Þ

where j= (jx, jy) is the index labeling each site of the tight-binding lattice, x̂ and ŷ
are unit vectors of the lattice, cj is the vector of annihilation operators in
Bogoliubov-de Gennes formalism at lattice site j, t is the hopping strength between
the neighboring sites, μ is the chemical potential, Δ is the superconducting gap
parameter and Bx(jx, jy) is the Zeeman energy, which is Bx underneath the magnetic
strip and 0 otherwise. In some of the calculations we also include a potential barrier
along the magnetic strip at its center to introduce normal reflection into the system.
The barrier Hamiltonian is given by:

Hbarrier ¼
X

j : jy¼0;

� LS
2 <jx<

LS
2

Vbc
y
j τzcj

ð11Þ

In the calculations we use the following values of the parameters: t= 1, Δ= 0.02.
For the quasi-1D geometry we use μ= 0.8 and Vb= 0.8, while for the finite length
strip μ= 0.4 and Vb= 0.4 to minimize the finite size effects. We change Bx and the
width of the strip W as indicated for each simulation results figure.

We perform the simulations in two different configurations: (a) infinite strip
with translational invariance in x direction and (b) a finite strip of length LS that is
fully surrounded by a gapped superconducting region of proximitized Dirac surface
state. In both situations we apply periodic boundary conditions in y direction. In
the first case we keep the total system width WT= 300 lattice sites. We can then
calculate the spectrum as a function of the longitudinal momentum kx and in this
way obtain the subgap quasiparticle modes as shown in Fig. 3a of the main text.
This approach is also used to determine the phase diagram numerically, where the
gap size plotted in Fig. 3c is obtained by finding the smallest positive eigenvalue
over all of kx. In the second case, we exactly diagonalize the full tight-binding
Hamiltonian matrix with the total system size of width WT= 250 and length LT=
500 lattice sites. We then plot its eigenvalues as a function of the Zeeman energy in
Fig. 4a. Figure 4b shows the local density of states at E= 0 obtained as ∣ψ1∣2+ ∣ψ2∣2,
where ψi are the two electron components of the wavefunctions obtained from the
diagonalization procedure.

Data availability
The data generated during the current study are available from authors upon reasonable
request.

Code availability
Code used to calculate the results presented in this work is available from the
corresponding author upon a reasonable request.

a

b

Fig. 4 Finite length strip characterization. a Density of states of the system
with strip width W/ξ= 1.16. After the first gap closing a pair of zero energy
states appears. b Local density of states at E= 0 for Zeeman field Bx= 2.6Δ.
The wave functions are strongly localized at the ends of the strip.
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