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Graphical analysis for phenome-wide causal
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Causal inference via Mendelian randomization requires making strong assumptions about

horizontal pleiotropy, where genetic instruments are connected to the outcome not only

through the exposure. Here, we present causal Graphical Analysis Using Genetics (cGAUGE),

a pipeline that overcomes these limitations using instrument filters with provable properties.

This is achievable by identifying conditional independencies while examining multiple traits.

cGAUGE also uses ExSep (Exposure-based Separation), a novel test for the existence of

causal pathways that does not require selecting instruments. In simulated data we illustrate

how cGAUGE can reduce the empirical false discovery rate by up to 30%, while retaining the

majority of true discoveries. On 96 complex traits from 337,198 subjects from the UK Bio-

bank, our results cover expected causal links and many new ones that were previously

suggested by correlation-based observational studies. Notably, we identify multiple risk

factors for cardiovascular disease, including red blood cell distribution width.
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Causal inference from observational data is a fundamental
objective that has been receiving increasing attention in
multiple domains including biology, epidemiology, and

economics. Graphical models are a cornerstone of causal infer-
ence as they explicitly describe the generating process of the
observed data. These models contain functions that describe how
values are assigned to each variable, possibly depending on the
values of other observed or unobserved variables. These depen-
dencies can be summarized in a directed graph, where an edge
X→ Y means that the function that determines the value of Y
depends on X’s value. If the graph is acyclic, the joint distribution
of the data can be represented as a Bayesian network (BN) that
specifies the conditional probabilities of nodes given their
parents1.

Causal discovery is a subfield of causal inference that focuses on
finding evidence in data for the existence of a causal path between
two or more variables1,2. This is an essential preliminary step as it
can be used to justify the assumptions made by statistical ana-
lyses. Algorithms for causal discovery identify patterns of con-
ditional independencies (CI) with theoretical justification for
refuting candidate models that are unlikely to have generated the
observed data. This process requires two assumptions (1) gra-
phical d-separation and the Causal Markov Condition (CMC),
and (2) Causal Faithfulness Condition (CFC)2,3 (see Supple-
mentary Note 1 for formal definitions). CMC states that when-
ever a pair of variables X and Y are separated in the graph given a
set Z, then X and Y are conditionally independent given Z in
every compatible distribution. CMC has been proven to hold in
acyclic models and in linear models with cycles (also called
feedback loops)4. Some results support CMC in other cyclic
cases4,5. CFC deals with the opposite direction: it assumes that a
conditional independence (CI) in the observed distribution
entails separation in the graph. CFC has theoretical justification
in that the set of models that do not satisfy it are extremely
unlikely (i.e., have a zero Lebesgue measure2,6).

In genetics, modern population-based cohorts often aggregate
large datasets with extensive phenotypic and genotypic data of the
same subjects. Due to their size and depth, these datasets offer
new opportunities for discovery and inference of causal rela-
tionships between traits. Consequently, a plethora of methods
have been suggested for causal inference using genetic data as
instruments7–12. Most methods employ a graphical model called
Mendelian Randomization (MR) in which for a given pair of
phenotypes (X,Y) the effect sizes of the variants of X with both
phenotypes are analyzed to estimate the causal effect of X on Y.
When the effect sizes are estimated in the same dataset, we denote
the analysis as a single-sample MR. When a different dataset is
used to estimate the effect sizes of the exposures, we called it two-
sample MR, which assumes that the two populations are com-
patible13. Standard MR methods assume linear effects and report
a summary of a linear fit. IVW regression14, for example, uses
inverse variance weights to average the causal estimates of the
instruments9. MR assumes that the genetic variants are inde-
pendent of confounders that affect both phenotypes, and that
there is no horizontal pleiotropy: the instruments affect Y only
through X11,15. These are strong assumptions that cannot be
justified from the data when analyzing X and Y alone, especially if
the genetic variant directly affects both phenotypes (which we call
direct horizontal pleiotropy)15. This is exacerbated when ana-
lyzing multiple phenotypes because the assumptions are made for
each X,Y pair. Implicitly, MR also assumes that the graph is
acyclic. However, this problem can be mitigated in case-control
situations, where the effects of the instruments on X are
measured using the controls only9. Nevertheless, detecting cycles
is particularly salient in the context of population biobanks,
where medications, lifestyle changes, and variable temporal

dynamics often confound the causal directions between
measurements16.

Several methods have been proposed to address some of the
limitations above. MR-Egger can model horizontal pleiotropy
under the assumption that the effects of the instruments on the
exposure and the outcome are independent17. MR-PRESSO
accounts for horizontal pleiotropy by correcting for variants with
outlier effects8. However, the assumption that outliers are not
proper instruments and should be adjusted for may not hold in
practice. Latent-causal variable analysis (LCV)7, assumes that
there is a latent variable that mediates the genetic correlation
between X and Y and then compares the genome wide effect sizes
of association with both traits against each other to assess if one
phenotype is fully or partially genetically causal for the other.
LCV assumes acyclicity and does not estimate the causal effects.
Regardless of recent progress, extant methods focus on inference
for a single trait pair from the marginal summary statistics and
are limited for causal discovery by their unidentifiable
assumptions.

Other causal inference methods in genomics have been pro-
posed to either mitigate the limitations of MR or to model larger
graphical structures. For example, network MR analyzes an
exposure and an outcome together with a mediator18. Multi-
variate MR can model multiple exposures jointly for the same
outcome19. While these methods can provide accurate results,
they require adding assumptions to the standard MR model.
CAUSE is a recent extension of MR that uses genome-wide
summary statistics to model causal effects while accounting for
pleiotropy20. Another type of algorithms address gene network
inference by joint analysis of genetic variants and gene expression
data in order to learn a large-scale graphical model with causal
links among genes21–23. Recently, Howey et al. explored similar
methodology as an alternative for MR24. They showed that
learning BNs among phenotypes while including genetic variants
as anchors can improve upon MR. However, this method does
not provide a clear way to select edges as it simply weighs all
phenotype pairs by the proportion of times they were connected
in bootstrap repeats.

In this work, we leverage the theoretical framework of causal
discovery to enhance and streamline MR-based analysis. Our
flow, Causal Graphical Analysis Using GEnetics (cGAUGE) first
identifies unique CI patterns in the data and then uses them for:
(1) filtering genetic instruments for downstream MR analysis, and
(2) Exposure-based Separation (ExSep): an algorithm for causal
discovery that does not require selecting genetic instruments in
advance. The theoretical justification of these algorithms holds
even in the presence of unobserved confounders and cycles. We
present extensive simulations to illustrate how cGAUGE
improves upon MR and BN methods by reducing their empirical
false discovery rate by up to 30%. We apply cGAUGE to 67
complex traits (including 41 biomarkers) and 29 diseases using
data from 337,198 subjects from the UK Biobank25,26. We find
many expected causal links and new ones that were previously
speculated in correlation-based observational studies. These new
discoveries include causes of behavioral phenotypes and multiple
risk factors for cardiovascular disease, including red blood cell
distribution width (RBW), which is discovered using our ExSep
(non-MR) test.

Results
cGAUGE: A novel pipeline for causal discovery using genetic
instruments. We present a new pipeline, cGAUGE: Causal
Graphical Analysis Using GEnetics. cGAUGE is a set of tools that
utilize CI tests for improving causal inference among traits using
genetic variables (see Fig. 1 for an overview, and Supplementary
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Note 1 for a formal explanation). cGAUGE takes as input the
individual level data of a population-based biobank, a CI test (e.g.,
using linear or logistic regression), and two p-value thresholds: p1
for rejecting the null of CI, and p2 for accepting it (p2 > p1, values
in between are considered unreliable). While standard statistical
tests are not designed to accept null hypotheses, this is a standard
assumption made by causal discovery algorithms for detecting
independence1,2. Alternatively, cGAUGE can take the summary
statistics of all marginal and conditional tests. These are assumed
to be adjusted for exogenous variables including sex, age, and
genetic principal components (we used the top five by default).

cGAUGE has two types of output. First, it provides a set of
filtered genetic variables that can be used as instruments for an
MR analysis for a given pair of phenotypes. While the theoretical
justification of these filters is pertinent to a subset of the trait
pairs, we illustrate using simulations that they work well in
practice for all pairs. Moreover, cGAUGE flags the trait pairs that
do not have these guarantees to help users in interpreting the
results. Second, it identifies phenotype pairs with evidence for
causal interactions based on a new statistical test that does not
require setting a significance cutoff for instruments. We now give
an overview of the different steps.

We first seek associations in the data that are robust to
conditioning. This is a standard preprocessing step as these

associations contain the correct (direct, non-mediated) causal
links as a subset1,2. The results are summarized in graphs called
skeletons: (1) GT for all phenotype pairs that are significantly
associated with p < p1 even when conditioned on pairs of other
phenotypes, and (2) GV,T for genetic variables vs. phenotypes,
created by excluding (G,X) associations for which there exists a
phenotype Y such that conditioning upon it (in addition to the
exogenous variables) results in p > p2.

GT separates the phenotype pairs into edges and non-edges. For
non-edges we present two practical algorithms to filter the
instruments of an exposure X when analyzing an outcome Y. The
first is based on the observation that given the phenotypes that
separate X and Y while learning GT, their adjacent genetic
variants in GV,T are not valid instruments when analyzing X and
Y (see Theorem 2.1 in Supplementary Note 1). We call this filter
ImpIV as it removes improper instruments. However, note that
(1) there is no guarantee that the remaining instruments are valid
and (2) by definition, for GT edges, ImpIV does not change the set
of instruments.

The second filter is based on the observation that genetic
variants that are linked only to X in GV,T are valid instruments for
analyzing X and Y (see Theorem 2.2 in Supplementary Note 1).
We call this filter UniqueIV, as it finds unique skeleton-based
instruments. As this set of instruments is identified for an

Fig. 1 The cGAUGE workflow for causal discovery. We analyze genetic and phenotypic data collected from independent subjects. a We first preprocess
the data to infer skeleton graphs: graphs that represent associations that are robust to conditioning. Based on causal inference theory1,2, surviving
associations contain the subset of true causal links. We learn two skeletons: GT among the phenotypes (ignoring the genetic data in the process), and GV,T

between the variants and the phenotypes. bWe then analyze the edges and the non-edges of GT separately. We present methods that use GV,T to filter out
improper instruments (ImpIV) or identify unique proper instruments (UniqueIV). While their theoretical justification is pertinent to GT non-edges, we
illustrate using simulations how they reduce the empirical FDR when applied to all phenotype pairs. For GT edges we present an analysis based on ExSep
events: associations between genetic variables and a trait Y that “disappear” once conditioned on a new phenotype X (i.e., p > p2). Under our local
faithfulness assumption these patterns are evidence for a causal link from X to Y. The ExSep model selection test is a method to analyze all genetic variables
under the null hypothesis of no ExSep events. c Finally, we utilize our results for improved inference using Mendelian Randomization (MR) and also utilize
the π1 estimate for each exposure–outcome pair. This score quantifies the consistency of the associations between the exposure’s instruments and the
outcome, which can be used to flag potential false positive causal links.
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exposure regardless of the outcome, this set can be used for all
MR analyses (i.e., including for GT edges). However, note that
UniqueIV may remove most if not all of X’s instruments,
potentially limiting the statistical power of the downstream MR
analysis.

Given a set of instruments discovered by taking all GWAS
results of X, or after applying one of our filters above, the causal
discovery process now relies on an MR analysis. However, we also
compute π1: the proportion of non-null p-values (i.e., when
examining the p-values of the association of X’s instruments with
Y) under the assumption that the p-values follow the two-groups
mixture model27: p-values or their inverse normal z-score follow a
mixture distribution of nulls and non-nulls (see Supplementary
Note 1). π1 can be estimated using empirical Bayes approaches28

and it directly measures the association significance consistency
while avoiding some parametric assumptions made by MR (e.g.,
that all instruments are pertinent to the same linear effect). Our
simulations below illustrate how the π1 estimates can be used to
filter out false positives.

For an edge (X,Y) in GT we show that if there are cases of
genetic variants that are marginally associated with Y but are
independent of Y given X, then this serves as evidence for X being
a cause of Y. We denote this pattern as ExSep. The proof holds
under the faithfulness assumption. However, we show that it is
still valid even under a weaker and more realistic assumption that
we call local faithfulness: the assumption that an emerging CI
reflects having at least one pathway that is blocked in the true
causal diagram (Supplementary Note 1, Theorem 2.1). We
examined two approaches to test for ExSep events for a given
(X,Y) pair: (1) Naive: using a simple threshold for the number of
events with CI(G,Y) with p < p1 and CI(G,Y,X) producing p > p2,
and (2) Model selection (MS) test: an approach that tests the null
hypothesis of no class of ExSep variants.

Denote the z-scores of the associations of all genetic variables
with Y as z1 and all the z-scores with Y given X as z2. Note that
these are the inverse normal scores of p-values and not effects
sizes. Each z-score can represent a null case of no association or a
non-null case of a true association. Thus, this fits the two-groups
model discussed above, which we assume for simplicity is a
mixture of two Gaussians29,30. We can therefore model the joint
distribution of z1 and z2 as a mixture of four bivariate normal
distributions corresponding to all four combinations of null and
non-null cases. However, under the null hypothesis that there are
no non-null z1 cases whose z2 statistic is null, we can model the
data using a mixture of three Gaussians only. Assuming that the
marginal two-groups models are known and fixed, the unknown
parameters of the null and non-null models are the correlations
between z1 and z2 within each bivariate normal distribution, and
the prior probability of each cluster. We use a grid-search
heuristic to fit these models and compute their likelihoods. These
are then used to test the null hypothesis using a likelihood ratio
test (see Supplementary Note 1).

Simulations. Consider the graph in Fig. 2a. There is no causal
link between the two traits X and Y, but they are both affected by
an unobserved confounder U. X has 10 binary instruments and U
has 20. We tested the performance of MR-Egger, IVW, and MR-
PRESSO on 100 datasets simulated from this graph (2000 samples
each), with summary statistics computed using linear regression
and instruments selected at p < 10−04. All causal quantities were
sampled independently from the same uniform distribution
Uc ¼ U �0:9;�0:1ð Þ∪ 0:1; 0:9ð Þ½ �, and each instrument was
generated randomly with probability pG, sampled from Ug=U
[0.05, 0.4] for each instrument. U,X,Y were all generated with
standard normal errors. All three methods tended to erroneously

predict a causal link from Y into X (e.g., at p < 0.01). Moreover,
the tests for heterogeneity (IVW) or pleiotropy (MR-Egger, MR-
PRESSO) produced insignificant results (p > 0.2 in >80% of the
cases), illustrating that utilizing these additional tests could not
salvage the analysis from making errors. In contrast, applying
UniqueIV before MR results in no causal links between X and Y
at the same 0.01 significance.

We also simulated data from a simpler MR model with a single
genetic variant G with either an X→ Y link or a feedback loop
(see Fig. 2b). Over 100 repeats, we tested the association between
G and Y with and without conditioning on X. The results had
multiple cases in which the association between G and Y was not
detected (at p < 0.001), illustrating how faithfulness may not hold
in finite samples. This also demonstrates why local faithfulness is
more realistic: it fits the graphs even if the CI test for G and Y
given X is insignificant and G and Y are associated marginally.

We next simulated single-sample synthetic data of larger graphs
over 15 continuous traits (with standard normal noise). Each trait
had randomly selected ingoing and outgoing neighbors such that
the expected in/out degree was set to deg 2 1; 1:25; 1:5; 1:75; 2ð Þ.
We then added k binary instruments for each trait, with k
randomly selected from U[10, 20]. To add horizontal pleiotropy,
for each instrument we decided whether it should have additional
adjacent traits (in the true causal graph) at random with
probability ppleio 2 0; 0:1; 0:2; 0:3; 0:4ð Þ, and if so, we added
between 1 and 10 additional adjacent traits (selected randomly
and uniformly). To summarize, as deg increases the generated
graph has more cycles, and as ppleio increases we are more likely to
have violations of the MR assumptions. When generating datasets,
causal quantities and binary instruments were generated using the
Uc and Ug distributions above. For more details on how to
simulate the data see Supplementary Note 1.

Figure 3 shows examples of the effects of our instrument filters
from graphs generated with deg= 1.5. To test the effects of our
filters even on skeleton edges, the MR methods were run on all
trait pairs using a 10% BY FDR threshold31. The figures show the
number of discoveries and their empirical FDR. MR-Egger is not
presented as it consistently had greater empirical FDR values. The
results of all MR methods and all possible combinations of deg,
ppleio, p1, p2 are available in Supplementary Data 1 and 2. All MR-
methods, when run on the set of all exposure-associated
instruments, had multiple cases of unreasonably high mean
empirical FDRs, which was as high as 40%. Both ImpIV and
UniqueIV consistently lowered the empirical FDR of IVW and
MR-PRESSO. ImpIV’s effect was moderate in many cases,
whereas UniqueIV had reasonable empirical FDR (<15%)
whenever p1 ≤ 0:001. Supplementary Fig. 1 shows the same
simulations as in Fig. 3 but with a 1% FDR cutoff. The empirical
FDR of the MR methods still remains unreasonably high with
high horizontal pleiotropy (>25%). It also illustrates that using
UniqueIV with MR-PRESSO is conservative as its empirical
performance remains far below the FDR threshold used.

Moving to non-MR methods, we tested the performance of the
ExSep-based approaches. Supplementary Fig. 2 shows an example
(see Supplementary Data 1–4 for the full results). As in the MR
analysis above, discoveries were made at 10% BY FDR
adjustment. The results show that the naive analysis had poor
performance when ppleio > 0:1. The MS test had a greater number
of discoveries and a lower empirical FDR. As shown in
Supplementary Data 3, there were a few cases in which the MS
test had an FDR between 15% and 20%.

Finally, we examined the simple π1 estimates as a method for
causal discovery. For a given threshold t we computed
the number of discoveries and empirical FDRs for trait pairs
with π1 > t but also the false positive rate among pairs with π1 < t
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(see Supplementary Data 5 and 6). The results show that trait
pairs with π1 > 0.9 had low empirical FDRs (<10% in almost all
cases). The few cases with FDR > 15% were all when p2 was set to
too low values (p2 < 10−4). Trait pairs with π1 < 0.3 tended to be
false positives (FPR > 90% in most cases). However, note that for
π1 to be valid for discovery in practice, we must add an
assumption that pleiotropic confounding occurs in low percen-
tages when examining the variants associated with an exposure.
Nevertheless, extremely low π1 scores can still be used for flagging
potential false positives without additional assumptions.

We also compared cGAUGE to two recent methods: (1)
CAUSE20, and the BN methods discussed in Howey et al. 24. We
used our simulated data with ppleio= 0 or ppleio= 0.3, and deg=
1.5 (see “Methods” section for details). The comparison with
CAUSE is presented in Supplementary Data 7. Overall, both
CAUSE and cGAUGE improve upon other methods in terms of
FDR control. However, we observed two advantages of cGAUGE:
(1) it tends to have greater power, especially for low levels of
horizontal pleiotropy, and (2) out of all compared methods only

UniqueIV with MR-PRESSO keeps the empirical FDR lower than
the predefined threshold in all cases. The latter is also correct in
terms of worst-case performance (i.e., maximal empirical FDR
observed over all simulated datasets), whereas CAUSE and
UniqueIV with IVW can have 20% or greater.

When testing BNs with ppleio= 0 the mean empirical FDR over
simulated datasets was 8–8.5% among the top 10 predicted links,
but was between 16% and 21.4% among the top 20 predicted
links. With ppleio= 0.3 the mean empirical FDR of either the top
10 or top 20 predicted causal links was >31%. These results again
illustrate how extant methods are sensitive to high pleiotropy
levels either from mediation (e.g., with ppleio= 0) or horizontal
pleiotropy (e.g., with ppleio= 0.3).

Results on the UK Biobank data. We applied cGAUGE to the 96
traits in Supplementary Data 8 using UniqueIV and MR-PRESSO
as the base MR analysis at 10% BY FDR, and with a π1 > 0.25
cutoff. We tested p1= 1 × 10−6, 1 × 10−7, or 1 × 10−8, and p2=

Fig. 2 Simulations of simple graphs illustrate some limitations of MR and the faithfulness assumption. a When simulating from linear models from the
presented graph (n= 2000 samples), MR methods tend to erroneously predict causal links between X and Y. The left panel shows the graph, where the
gray node U is an unobserved common cause (confounder) of X and Y. The right panel shows the distribution of the (−log10) p-values of different MR
methods when analyzing X and Y. Each boxplot shows the median, and first and third quartiles. The whiskers extend from the hinge to the largest and
lowest values, but no further than 1.5 * (the inter-quantile range). As input for MR, summary statistics were computed using linear regression and
instruments were selected using a p < 10−04 cutoff. b Simulations from simple MR models with a single binary instrument show violations of faithfulness in
finite samples. Each line presents the frequency of different dependency patterns between the simulated genetic instrument G and the phenotypes Y and X.
In all simulated cases G and X were significantly associated at p < 0.001, and are thus not shown. Disappearing associations: G and Y are associated
marginally, but become independent when conditioned on X (p > 0.1). Emerging associations: G and Y are independent but become associated when
conditioned on X. Consistent: G and Y are significantly associated with and without conditioning on X. Even though under faithfulness G and Y should be
associated with and without conditioning on X (in both graphs, X acts as a collider on the path from G to Y through U), we see mixed results. Nevertheless,
the detected associations occur only when a non-blocked path exists between G and Y, satisfying our refined local faithfulness assumption.
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0.01, or 0.001. These ranges are in line with MR publications for
p132,33, and settings of causal discovery algorithms for p234.
Comparing the choices for p1 and p2, the results are generally
robust especially with p2= 0.001 (>0.7 Jaccard coefficient, Sup-
plementary Fig. 3). All trait pair results and the discovered
instrument sets are available in Supplementary Data 8–16.

Figure 4a shows GT inferred with p1= 1 × 10−7, resulting in
669 edges and 95 nodes. Clustering using the MCODE
algorithm35,36 detected groups of densely connected related
phenotypes. Changing p1 to 1 × 10−6 resulted in a similar
network and clusters (Supplementary Fig. 4). Analyzing GV,T,
we observed that up to 42.5% of the original GWAS results can be
filtered, depending on p1 and p2 (Fig. 4b). These surviving
variants (per GWAS) are more likely to contain true direct causal
loci as compared to those excluded. In addition, when using p2=
0.001 all p1 values result in a similar GV,T.

With p1= 1 × 10−7, p2= 0.001, we identified 290 causal links
using our MR analysis (see Supplementary Data 9). Figure 5
shows a subset of the network that focuses on causal links from
biomarkers into diseases and other phenotypes. Both LDL and
lipoprotein A increase the risk for heart disease (e.g., angina q <
10−17, 0.58 log odds ratio (LOR)/mmol/L and 3.8 × 10−3 LOR/
nmol/L, respectively)37,38. Other expected links include urate to gout
(LOR/μmol/L 0.025, q= 1.97 × 10−60, MS test p= 9.64 × 10−54)37,
body mass index (BMI) to pulse rate (β= 0.43, q= 1.85 × 10−5)39,
BMI to diabetes (LOR/kg/m2 0.25, q= 4.28 × 10−15)40, and basal
metabolic rate (BMR) to diabetes (LOR/kJ, 4.8 × 10−4, q= 0.003)41.
The network also contains causal links into behavioral phenotypes.
For example, intelligence has a negative effect on mood swings (β=
−0.15, q= 0.001, MS test p < 1 × 10−100), whereas depression has
a positive effect (β= 0.5, q= 0.05).

While many links in Fig. 5 are expected, we detect multiple
interactions that were previously suggested in observational
studies. For example, we identify risk increasing factors for atrial
fibrillation including blood pressure (SBP, LOR/mmHg 0.02, q=
0.098)42, and BMR (LOR/kJ 7 × 10−4, q= 5.9 × 10−8), which is in
line with previous reports about correlations between the disease
and metabolic syndrome43. Eosinophil count has risk increasing
links to asthma (LOR/109 cells/L 5.4 q= 4.4 × 10−29, MS test p=
3.46 × 10−57)44,45, and hypothyroidism (LOR/109 cells/L 1.4, q=
0.1)46. The network also suggests that albumin increases FEV/
FVC ratios (β= 0.002, q= 0.03). Serum albumin tends to be
greater in normal individuals when compared to COPD patients
or smokers, which tend to have lower FEV/FVC ratios47,48.

Figure 6 shows the top 40 pairs that had insignificant MR
results and significant ExSep MS test results (all significant results
are available in Supplementary Data 10). The network presents
intelligence as a main hub that affects the Townsend deprivation
score, age of menarche, smoking status, forced expiratory volume
(FVC), angina, and height, which is also a feedback loop. Height-
related causal links may result from temporal information, as
discussed previously in O’Connor and Price7. For example,
positive correlation between height and intelligence is a well-
recognized phenomenon in children49, and nutritional status as a
child is known to affect menarche age, height, lung capacity, and
BMR50–53. The network also suggests RBW as a cause of
myocardial infarction. The link between RBW and cardiovascular
disease has observational evidence54.

Discussion
In this work, we presented methods that utilize CI tests to enrich
the causal analysis tool set of genetic biobanks. Our ImpIV and

Fig. 3 Mean number of discoveries and empirical false discovery rates (FDR) of Mendelian randomization methods in simulated data from graphs with
15 continuous traits. The underlying causal diagram was generated such that the expected in- and out-going degrees of the traits were 1.5. All simulated
graphs contained cycles. For each trait we added between 10 and 20 binary instruments (uniformly, i.i.d). To add horizontal pleiotropy, for each instrument
we decided whether it is horizontally pleiotropic or not with probability ppleio, and if so, we added between 1 and 10 links into additional traits (uniformly,
iid). When generating datasets, the traits had standard normal noise, causal quantities were randomly and uniformly sampled such that their absolute value
was between 0.1 and 0.9, and binary instruments were generated randomly with a probability between 0.05 and 0.4. The plots show the mean results of
the simulations for different ppleio values (e.g., the mean of the empirical FDR over the simulated graphs). Discoveries from each statistical test were done
at a 10% significance level after adjusting for FDR using the BY algorithm. When two methods have a similar empirical FDR, greater number of predictions
correspond to greater power. a Results with p1= 0.001 and p2= 0.01. b Results with p1= 1 × 10−05 and p2= 0.001. MR-Egger is not presented as it
consistently had greater empirical FDR values than the other methods.
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Fig. 5 cGAUGE MR analysis with p1= 1 × 10−07 and p2= 0.001. All presented links were detected at 10% BY FDR correction and had π1 > 0.25. Solid
arrows represent GT edges (phenotypes whose correlation is robust to conditioning) and dashed arrows represent GT non-edges. For simplicity, we
excluded waist circumference and height, arrows out of diseases, and arrows into biomarkers. DBP diastolic blood pressure, SBP systolic blood pressure,
HbA1c hemoglobin A1c levels, FEV forced expiratory volume, FVC forced vital capacity, IGF1 insulin like growth factor 1 levels, LDL direct low-density
lipoprotein levels, HDL cholesterol high-density lipoprotein levels, SHBG sex hormone-binding globulin levels.

Fig. 4 Inferred skeletons that represent associations that are robust to conditioning. a The skeleton inferred among the phenotypes (GT). The edges
represent phenotype pairs that remain associated at p1 < 1 × 10−7 when conditioned on other phenotypes. In this computation for a pair of variables X and
Y, we tested the association between X and Y conditioning on all other phenotypes or all other phenotype pairs. Arrows point out to clusters detected with
MCODE. b The effect of conditional independence filtering on genome-wide association analysis (GWAS) results. Here we show the effect of removing
variant–phenotype pairs (detected in a standard GWAS) for which there exists another phenotype whom conditioning upon renders the association
insignificant (>p2).
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UniqueIV filters highlight which genetic instruments to use for MR
analysis. They both start with the genetic variables detected in the
GWAS. ImpIV filters out improper instruments but has no guar-
antees for the validity of the remaining set. UniqueIV removes more
instruments and has guarantees about the remaining set, but it may
be small and therefore less powerful in subsequent statistical ana-
lyses. Our theorems on which these filters rely mainly pertain to
trait pairs that can be rendered independent by conditioning on
other traits. However, given that they can still highlight valid
instruments in all cases, they provide an alternative to the current
practice in the community of using the GWAS results without
filtering instruments while relying on assumptions alone.

We also provide a non-MR analysis for causal discovery based
on the ExSep pattern: cases in which the association between
genetic variables and the outcome are nullified when conditioned
on the exposure. We provide a statistical test for the null
hypothesis that no ExSep events exist when analyzing an
exposure–outcome pair, which utilizes the set of all independent
genetic variables and does not require selecting the instruments in
advance. Our test is based on a grid search and future work can
test if alternative optimization techniques improve the power of
the test. In addition, unlike MR, this test does not infer the causal
effect size. Future work can address integrating the results from
our different analyses including the traits skeleton, the MR ana-
lysis, and the ExSep test. A major challenge here is to maintain
the validity of our theorems while considering the uncertainty of
skeleton edges under the same optimization framework.

Our instrument filters and the skeleton inference processes
require p-value thresholds for either accepting or rejecting the null
hypothesis of (conditional) independence. This is a general limita-
tion of causal discovery algorithms as hypothesis testing was not
developed for accepting null hypotheses1,2,55,56. Moreover, most
causal discovery algorithms utilize a single p-value threshold and
thus assume that for any statistical test they can decide between null
and non-null. cGAUGE alleviates this issue in two ways. First, it
leverages the large-scale nature of hypothesis testing with genetic
variables using empirical Bayes techniques as these can sometimes
justify inference about the proportion of null cases27. Second, we
use two p-value thresholds such that CI events are used only if an
association was first discovered with p < p1 and later had p > p2
when adjusting for additional variables.

In simulations we show that our methods have substantially
lower empirical FDR. Specifically, our UniqueIV filter can reduce
the empirical FDR by up to 30%, whereas our ExSep MS test has
reasonable empirical FDR in almost all tested cases. In contrast, we
observe that MR-Egger and BN learning have unreasonable
empirical FDRs even with zero levels of added horizontal pleio-
tropy. IVW and MR-PRESSO can also have >20% empirical FDR
(at 1% or 10% adjustment) as added horizontal pleiotropy levels
increase (e.g., when 10% of the instruments are horizontally
pleiotropic). We also illustrate that using the MR internal tests for
pleiotropy cannot salvage the analysis when an unobserved con-
founder is well explained genetically (Fig. 2a). Our simulations were
done using a single-sample, and when applied to the two-sample

Fig. 6 The top 40 links discovered uniquely by the ExSep MS test. The null hypothesis is that there are no ExSep events. That is, that there are no genetic
variants that become independent of the outcome when adjusted for the exposure. An arrow represents an ordered pair with evidence for causal
interaction with a significant MS test p-value even at 1% FDR adjustment. The MS-test does not report the direction of the causal effect, but can be
significant even if the causal interaction is not linear. All links in the figure were not discovered by the MR analysis at 10% FDR adjustment, and are thus not
in Fig. 5. SBP systolic blood pressure, HbA1c hemoglobin A1c levels, FVC forced vital capacity, IGF1 insulin like growth factor 1 levels, LDL direct low-density
lipoprotein levels, RBC red blood count, SHBG sex hormone-binding globulin levels.
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case, methods like MR-Egger and MR-PRESSO can have lower
FDR. However, the observed empirical FDRs are still unacceptably
high, and a two-sample MR can have additional challenges because
of biases that lead to selection of improper instruments13. Finally,
we observe that both cGAUGE and CAUSE reduce the empirical
FDR as compared to all other methods. However, cGAUGE tends
to have greater power, and it consistently keeps the empirical FDR
in the desired level even in cases where CAUSE does not. These two
methods, while being very different, represent a substantial progress
in avoiding spurious results. Future studies can explore ways to
integrate their ideas to further increase power.

We applied cGAUGE to a set of 96 phenotypes from the UKBB
data. These were selected such that they cover many individuals and
were not perfectly correlated as causal discovery may be invalid
otherwise2. cGUAGE reports hundreds of causal links, most of
which are expected. However, many of the identified links are novel
and confirm previous suggestions from epidemiological observa-
tional studies that reported correlations with no causal inference.
Notable examples include links from blood pressure to atrial
fibrillation, serum albumin to lung function, and RBW to cardio-
vascular disease. These are only a few examples and we provide the
results for all pairs in the supplementary material. There are two
important considerations when interpreting large-scale causal net-
works. First, while we adjusted for population structure using the
top genetic principal components, and included the Townsend
deprivation score to account for socio-economic status, there may
still be some errors in the output networks due to statistical errors.
For example, even in our simulations of data with limited pleiotropy
levels, the empirical FDR was not zero. Second, some significant
MR results were filtered out using our π1 > 0.25 cutoff, including
known false positives (e.g., HDL→ angina57). π1 quantifies the
proportion of non-null exposure instruments that are associated
with the outcome. Both in theory and in simulations, low π1 sug-
gests that the detected links may be false positives. Thus, it allows
flagging problematic results.

Utilizing CI patterns is a unique property of our flow that is not
covered by extant approaches that use genetic data. These tests
require using the individual-level data and are thus not as easily
available as the GWAS summary statistics that standard MR uses.
However, if the summary statistics of these tests are provided,
cGAUGE can be run without the individual level data. In our case,
this amounts to all CI tests for roughly 50,000 genetic variants,
which is a reasonable size dataset that can be shared by the com-
munity. Moreover, while our MR analyses in this paper are all based
on single-sample MR, our UniqueIV and ImpIV filters provide
static instrument sets that can be used and explored in future stu-
dies. Specifically, these can be used for two-sample MR, which
requires learning the instrument set on one sample and estimating
the causal effects on another. This analysis can help in reducing bias
of estimated causal effects58. The same methodology can be used to
improve multivariate MR as it also requires precise instrument sets
(e.g., by requiring that the instruments are not directly linked to
confounders)19. In addition, our instrument sets can be used as
weights when interpreting the GWAS results of an exposure.
UniqueIV variants are more likely to be causal than ImpIV-only
variants. Variants that are removed by ImpIV can be down
weighted as cGAUGE identifies evidence for a path to some out-
come that is not through the exposure.

Methods
UK Biobank data. We used 805,462 directly genotyped variants from 337,198 white
British subjects from the UK Biobank25,26. The MHC region was excluded (chromo-
some 6, positions 23–35M). Data were preprocessed as explained in ref. 59 with a small
change: we excluded variants with a MAF < 1%. 96 phenotypes (traits and diseases)
were selected for the analysis (see Supplementary Table 8). These were selected to cover
the phenotypes analyzed by O'Connor and Price7, but additional traits that had large
sample sizes were added.

Biomarker data. Biomarker measurements from UK Biobank participants were
adjusted for 83 covariates, including age, sex, their interaction, assessment centers,
and technical factors60, except that Townsend Deprivation Index and principal
components of the genotyping matrix were not included in the regression. Resi-
duals from these regressions were used for downstream analysis.

Single GWAS. Genome wide association analysis per phenotype was performed
using PLINK (version 2.0a2)61. The baseline results for each each GWAS were
adjusted for sex, age, and the top five genetic PCs. We also clumped the results
using PLINK’s greedy approach with the following parameters: –clump-p1 0.0001,
–clump-r2 0.1, and –clump-kb 500.

Graph visualization. All networks were plotted using Cytoscape version 3.7.262,63.

Computing π1. When analyzing an exposure–outcome pair with a given set of
exposure instruments, we examined the distribution of the p-values of the
associations of the variants with the outcome. We computed the proportion of
non-null p-values as a measure of association significance consistency. This
measure is commonly used by FDR methods and it is estimated by comparing
the observed distribution of p-values to a random uniform distribution.
Specifically, we use the local FDR method implemented in limma (version
3.42.2)64,65.

BN inference. We used the bnlearn R package (version 4.5) for inferring BN66. We
implemented the analysis presented in Howey et al. 24: BN were inferred using the
hill climbing algorithm using the Bayesian Information Criterion (BIC) as the
objective function with 50 random restarts to address convergence into local
optimum. Directed edges from the phenotypes into the genetic variants were not
allowed (i.e., using the bl option of the algorithm). We used the BIC-CG
discrete–continuous hybrid objective function that models continuous variables
using a mixture of Gaussians. Discretization of the data instead of this option
resulted in worse empirical FDR scores and was therefore excluded. Networks were
averaged over 100 bootstrap repeats, where in each repeat the top inferred network
was kept. For each phenotype pair, we computed the proportion of times they were
linked in the networks and took either the top 10 or top 20 as the predictions of the
algorithm.

Other analyses. We tested MR methods by taking the GWAS summary statistics
of each phenotype (without the MHC region) and ignoring the CI tests. For MR,
given a p-value threshold (p= 1 × 10−6, 1 × 10−7, or 1 × 10−8) we select the top
GWAS regions with MAF > 1%, clump them using PLINK, and use the filtered
results as the instruments. We used the MendelianRandomization R package
(version 0.4.2)67 to run MR-Egger and IVW. We used the MR-PRESSO imple-
mentation from the original publication8 (version 1.0) with outlier correction, and
also report the results of its global test for pleiotropy.

Robustness analysis. To measure the robustness of our pipeline we tested dif-
ferent values for p1 (1 × 10−6, 1 × 10−7, 1 × 10−8) and p2 (0.1, 0.01,0.001) and
computed the Jaccard score for each network type between the different combi-
nations of p1 and p2 (see Supplementary Fig. 3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Code to simulate data and the UK-Biobank summary statistics used to generate the
results are available at https://github.com/david-dd-amar/cGAUGE/ 68. UK-Biobank
data was retrieved using application 24983. The results from all analyses, including the
instrument sets and pairwise Mendelian Randomization results are available in the
Supplementary Data.

Code availability
R implementation of cGAUGE is available at https://github.com/david-dd-amar/
cGAUGE/. Code for preprocessing UK-Biobank biomarker data is available at https://
github.com/rivas-lab/public-resources/tree/master/uk_biobank/laboratory-tests.
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