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Bayesian genome scale modelling identifies thermal
determinants of yeast metabolism
Gang Li 1, Yating Hu1,7, Jan Zrimec 1,7, Hao Luo1, Hao Wang 1,2,3, Aleksej Zelezniak1,4, Boyang Ji1,5 &

Jens Nielsen 1,5,6✉

The molecular basis of how temperature affects cell metabolism has been a long-standing

question in biology, where the main obstacles are the lack of high-quality data and methods

to associate temperature effects on the function of individual proteins as well as to combine

them at a systems level. Here we develop and apply a Bayesian modeling approach to resolve

the temperature effects in genome scale metabolic models (GEM). The approach minimizes

uncertainties in enzymatic thermal parameters and greatly improves the predictive strength

of the GEMs. The resulting temperature constrained yeast GEM uncovers enzymes that limit

growth at superoptimal temperatures, and squalene epoxidase (ERG1) is predicted to be the

most rate limiting. By replacing this single key enzyme with an ortholog from a thermo-

tolerant yeast strain, we obtain a thermotolerant strain that outgrows the wild type,

demonstrating the critical role of sterol metabolism in yeast thermosensitivity. Therefore,

apart from identifying thermal determinants of cell metabolism and enabling the design of

thermotolerant strains, our Bayesian GEM approach facilitates modelling of complex biolo-

gical systems in the absence of high-quality data and therefore shows promise for becoming

a standard tool for genome scale modeling.
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Temperature is a key environmental and evolutionary factor
that shapes the physiology of living cells. Organisms have
successfully adapted to survive in diverse temperature

ranges1–3, where minor deviations from the optimal temperature
by merely a few degrees can dramatically impair cell growth. For
instance, the model eukaryotic organism Saccharomyces cerevisiae
has an optimal growth temperature (OGT) of ~30 °C, whereas a
temperature of 42 °C is already lethal to the organism4,5. Since
cell growth fundamentally requires all cellular components to be
functional in the temperature window of cell growth, proteins, an
abundant group of biomolecules that carry out the majority of
catalytic functions and are also highly sensitive to changes in
temperature5–7, are considered to have a critical effect on cell
physiology in relation to temperature. However, despite all our
knowledge of temperature effects at both the cellular and mole-
cular levels, including recent breakthroughs in temperature-
dependent protein folding7–10 and enzyme kinetics11,12, the
temperature association between proteins and cell physiology is
still poorly understood.

Multiple studies have attempted to model the temperature
effects on cell growth, though with very few proteome-wide
parameters13. Examples include the dominant activation barrier
and the number of essential proteins to cell growth14 and the
activation energy of the growth process and the free energy
change of protein denaturation15. These models showed excellent
performance when describing the general cell growth rate at
various temperatures, however, they could not pinpoint the
specific rate-limiting enzymes, nor predict the amount of
improvement in growth rate by replacing these enzymes with
temperature-insensitive homologs.

To this end, genome-scale metabolic models (GEMs)16–18,
which are a comprehensive mathematical representation of cel-
lular biochemical reactions19, have been used to model the
thermosensitivity of metabolism in Escherichia coli, for instance
by associating metabolic reactions with protein structures20 or by
modeling protein-folding networks21. It however remains chal-
lenging to model more complex, eukaryotic organisms, such as S.
cerevisiae, due to their metabolic complexity16 as well as due to
the lack of availability of the required enzymatic data7,22,
including high-quality protein structures20,21. In addition, such
GEMs rely on thousands of parameters to describe the tem-
perature effects on protein folding and kinetics16, which have to
be empirically or computationally estimated20,21. This leads to
large statistical uncertainties in model parameters and can make
the models unreliable, due to inaccurate temperature associations
between proteins and cell physiology. Therefore, in order to
enable accurate modeling of the temperature dependence of cell
metabolism, a key requirement is to develop a modeling approach
that resolves the issues with large uncertainties of temperature-
related parameters and produces accurate temperature con-
strained predictions.

Hence, in the present study, we introduce a Bayesian genome-
scale modeling approach to model the temperature effects on
cellular metabolism in S. cerevisiae, the most widely used indus-
trial organism with readily available thermal experimental
data5,23,24 and highly sophisticated GEMs16,18,25. We first quan-
tify and reduce the large uncertainties in the parameters
describing enzyme thermosensitivity using Bayesian statistical
learning26 to simulate phenotypic data. We show that the
resulting models are capable of reproducing various experimental
datasets and provide explicit insight into how yeast metabolism is
affected by temperature. Our approach identifies the sterol
metabolism as a key factor in the yeast thermal adaptation and
predicts the flux-controlling enzymes in superoptimal tempera-
ture ranges as potential targets for the future design of thermo-
tolerant yeast strains. We then experimentally validate the

predicted most rate-limiting enzyme by replacing it with an
ortholog from a known thermotolerant yeast Kluyveromyces
marxianus. We hereby demonstrate the power of Bayesian
genome-scale modeling for studying complex biological systems.

Results
Using Bayesian statistical learning to integrate temperature
dependence in ecGEMs. In this study, we developed a novel
approach for incorporating temperature dependence into an
enzyme-constrained GEM (ecGEM)16 (Fig. 1) with the resulting
model termed enzyme and temperature constrained GEM (etc-
GEM). The approach combined the following steps: (i) etcGEM
construction (Fig. 1a–d), (ii) flux balance analysis (FBA), and (iii)
Bayesian statistical learning (Fig. 1e). The ecGEM, which
includes, besides the traditional stoichiometric matrix, also
enzyme abundances and activities, provided an excellent template
to directly integrate the enzyme temperature effects. Firstly, for a
given reaction, the flux cannot exceed the capability of the
enzyme, which is defined as the product of the functional enzyme
concentration [E]N and its kcat. Secondly, the total amount of
enzymes that the cell can afford is also limited27. Inclusion of
temperature constraints into ecGEM was thus achieved by
making [E]N and kcat temperature-dependent, and by incorpor-
ating the additional cost of enzymes in the denatured state
(Fig. 1a, “Methods”). Three thermal parameters were required for
each enzyme in the resulting etcGEM, including (i) the melting
temperature Tm (Fig. 1b), (ii) the heat capacity change ΔCz

p

(Fig. 1c), and (iii) the optimal temperature Topt (Fig. 1d,
“Methods”). Moreover, to capture the temperature effects on the
energy cost of non-growth associated maintenance (NGAM), a
temperature-dependent NGAM expression term was estimated
from experimental data and included in the model.

To resolve the challenges arising from the uncertainties in the
parameter values, we used Bayesian statistical learning26, which is
a probabilistic framework that has been successfully applied for
quantifying and reducing uncertainties in various fields, including
deep learning28, ordinary differential equations29, and biochem-
ical kinetic models30. The approach uses experimental observa-
tions (D) to update Prior distributions (P(θ)) of model parameters
to Posterior ones (P(θ|D)) (Fig. 1e). We refer to the model
equipped with θ sampled from P(θ) or P(θ|D) as a Prior or
Posterior etcGEM, respectively. The resulting Posterior etcGEMs
provided a more reliable platform to study the thermal
dependence of cell metabolism, with an inherent benefit that
the uncertainty in the interpretation and prediction from the
improved Posterior etcGEMs could also be quantified.

Bayesian modeling improves etcGEM performance by reducing
parameter statistical uncertainties. We next applied the above
approach to model the temperature dependence of yeast meta-
bolism (Fig. 1). This was done by incorporating temperature
effects into the ecYeast7.616 model and the resulting model was
termed etcYeast7.6. Enzyme Tm and Topt parameters were either
collected from literature or predicted by machine-learning models
(“Methods”). The heat capacity change ΔCz

p was estimated as
−6.3 kJ/mol/K by fitting the macromolecular rate theory to the
yeast specific growth rate at various temperatures31 and then
applied for all enzymes. As a result, the etcYeast7.6 model was
obtained with an expansion of 2292 temperature-associated
parameters for a total of 764 metabolic enzymes (Fig. 1a). The
temperature dependence of NGAM was inferred from experi-
mental data (“Methods”, Supplementary Fig. 1). To assess the
quality of the models, three datasets were used that included (i)
the maximal specific growth rate in aerobic batch cultivations
(number of temperature points n= 8)4, (ii) anaerobic batch
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cultivations (n= 8)5, and (iii) fluxes of carbon dioxide (CO2),
ethanol, and glucose in chemostat cultivations (n= 6)23 (Sup-
plementary Fig. 2, “Methods”).

We observed that etcYeast7.6 predictions made using the initial
parameter values could only accurately reproduce the experi-
mental observations when the temperature was lower than 30 °C,
while the method failed at temperatures above 30 °C (Supplemen-
tary Fig. 2). This was assumed to occur since at lower
temperatures, the temperature dependence of enzyme kcat values
is the major determining factor, while at higher temperatures
there are additional factors, such as the protein denaturation and
increased energy for maintenance, that affect the cell growth5

(Fig. 1b, c). Particularly, the metabolic shift (Supplementary
Fig. 2c) happens within about 2° (36–38 °C) and accurate
prediction of this metabolic flux shift may require more precise
enzyme parameter values. Moreover, we measured a high level of
uncertainty associated with the initial parameter values, as the
average standard deviation was estimated as 3.4 and 5.9 °C for
enzymes with experimentally measured Tm and those without
experimentally measured Tm, respectively, and increased up to
13 °C with the Topt values predicted by machine learning
(“Methods”). Another potential source of error was due to
assuming the same ΔCz

p values for all enzymes.

Fig. 1 Using Bayesian statistical learning to integrate temperature dependence in enzyme-constrained GEMs. a An illustration of the temperature
effects on enzyme-catalyzed reactions and their integration into an etcGEM (see detailed description and equations in “Methods” section). The metabolic
network ecYeast7.616 is shown. b A two-state denaturation model20,21,58 was used to describe the temperature-dependent unfolding process. [E]N is the
concentration of the enzyme in the native state; Topt is the optimal temperature at which the specific activity is maximized; Tm and T90 are temperatures at
which there is a 50 and 90% probability that an enzyme is in the denatured state, respectively. c Macromolecular rate theory31,33 describing the
temperature dependence of enzyme turnover number kcat. Inset shows the heat capacity difference between ground state (E+ S) and transition state (E−
TS), adapted from Hobbs et al.31. d Temperature dependence of enzyme-specific activity r, which is a product of (b) and (c). e Overview the Bayesian
statistical learning approach, where the problem can be formulated as given a generative model (M) (enzyme and temperature constrained genome-scale
metabolic model, etcGEM in this study) corresponding to a set of parameters θ and a set of measurements D (phenome data), Bayes’ theorem provides a
direct way of updating the Prior distribution of parameters P(θ) to a Posterior distribution P(θ|D): PðθjDÞ ¼ PðDjθÞ ´ PðθÞ

PðDÞ . P(θ|D) is thereby a less uncertain
description of the real θ. Since P(D|θ) is, in most applications, computationally expensive or even infeasible to obtain, a sequential Monte Carlo based
approximate Bayesian computation (SMC-ABC) approach was implemented (“Methods”) to sample a list of parameter sets from the Posterior.
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We, therefore, applied the Bayesian statistical learning approach.
First, a threefold cross-validation using the above three datasets,
showed that there was both overlapping and orthogonal informa-
tion among the datasets (Supplementary Fig. 3), suggesting that all
three datasets should be used for updating the model parameters.
Next, the three datasets were combined and split into training
(50%) and test (50%) datasets based on the temperature points in
each dataset (Supplementary Fig. 4). The training dataset was used
to update the Prior, which was then tested on the test dataset after
each iteration (Supplementary Fig. 4: R2

test increased proportionally
with the R2

train). After ~80 iterations, the Posterior models achieved
a median R2

train score of 0.90 (5–95% percentile range: [0.89–0.93])
and a median R2

test score of 0.84 (5–95% percentile range:
[0.71–0.91]), demonstrating the high generalizability of the
Posterior models obtained from the SMC-ABC approach. Finally,
we used all three datasets to update the Prior to Posterior and
sampled 100 Posterior etcGEMs, where each model achieved an
average R2 higher than 0.9 on all three datasets (Supplementary
Fig. 5) and could therefore accurately describe the observed
measurements (Fig. 2a–c and Supplementary Fig. 6). The increased
performance on all three datasets clearly demonstrated the need to
update the parameter Prior distribution to a Posterior one.

We next explored which parameters had been updated in the
Bayesian approach. The principal component analysis applied to
the 21504 parameter sets generated in the approach showed a
clear trend of how the Prior distributions were gradually updated
to distinct Posterior distributions, despite the first two compo-
nents explaining less than 2% of the total data variance (Fig. 2d).
Further comparison between Prior and Posterior distributions
revealed that in all three parameter categories, a reduced variance
in the updated parameters was more likely than a change in mean
values (Fig. 2e, protein-wise comparison shown in Supplementary
Fig. 7). Particularly for enzyme Topt s, a significant (Šidák adj.
one-tailed F-test p value < 0.01) reduction in variance was
observed with 59% (449/764), whereas a significant (Šidák adj.
Welch’s t test p value < 0.01) change in the mean value was found
with merely 26% (200/764). Importantly, we observed that the
approach tended to change the enzyme Topt rather than its Tm
and ΔCz

p parameters (Fig. 2e). In addition, a machine learning
approach (“Methods”) further revealed that, out of all three
parameter types, the largest contribution to the improved
Posterior etcGEM performance during the Bayesian approach
was from enzyme Topt s (Fig. 2f). A note, even though the
uncertainties of most parameters were reduced (Fig. 2e), there
were still big uncertainties in the Posterior models (e.g., Topt, 10.9
vs. 7.1 °C; Tm, 4.9 vs. 4.0 °C; ΔCz

p, 2.0 vs. 1.8 kJ/mol/K, average
standard variance comparison between Prior and Posterior,
Supplementary Fig. 7).

To evaluate the Posterior parameter sets, the parity plot
comparing the Tm in the Posterior models and experimental
values used in the Prior showed that the Posterior mean values
were strongly correlated with the experimental ones (Pearson’s r
= 0.97, p value < 1e−32) (Fig. 2g). This indicated that the
parameter values returned by the SMC-ABC approach, and with
which the model fit the experiment data well, were not very
different from the experimentally measured values. We also
compared the Topt values in the Posterior models to the
experimental data collected from BRENDA, where 14 enzymes
with known Topt in BRENDA could be mapped to the etcYeast
model based on their UniProt IDs. A weak correlation (Pearson’s
r= 0.49, p value= 0.075) was found between the Posterior mean
values and the experimental data (Fig. 2h). Further comparison of
the distribution of Posterior mean values of all enzymes and 662
enzymes Topt records for S. cerevisiae in BRENDA showed that
the Posterior Topt values were more similarly distributed to the

experimental Topt values than were the original Prior values,
showing that the SMC-ABC approach indeed improved the
estimation of Topt values (Fig. 2i).

The yeast growth rate is explained by temperature effects on its
enzymes. With the Posterior etcGEMs capable of describing
various experimental observations (Fig. 2a–c), we analyzed how
the temperature effects on each of the three processes—NGAM,
kcat and the protein denaturation process—contribute to whole-
cell growth (Fig. 3a). We observed that, at temperatures below
29 °C, the temperature-dependent kcat was the only factor that
affected the cell growth rate. In the range between 29 and 35 °C,
both kcat and NGAM determined the growth rate. The con-
tribution of enzyme denaturation to the temperature dependence
of cell growth, however, was observed only at temperatures higher
than 35 °C, with the denaturing effect becoming the dominant
effect at ~40 °C and lack of cell growth at 42 °C. Therefore, in
contrast to previous reports indicating that an over tenfold
increase in NGAM cost with the temperature change from 30 to
33 °C was the major limiting factor to cell growth5,32, our mod-
eling approach showed that the increased NGAM has a merely
moderate effect on growth rate (Fig. 3a).

Interestingly, the temperature dependence of enzyme kcat s
alone could explain the temperature dependence of cell growth
below 35 °C, including the decline in cell growth right after the
optimal growth point defined by OGT. According to the
macromolecular rate theory31,33, kcat degeneration at tempera-
tures above the optimal point can be attributed to the negative
values of ΔCz

p for enzyme catalysis. This can explain the negative
curvature of enzyme-specific activities in the absence of the
denaturation process31,33,34. Given that experimentally measured
enzyme melting temperatures (Tm) are on average 20 °C higher
than enzyme Topt s collected from BRENDA35 (Fig. 3b), protein
denaturation alone seems to be insufficient to explain the thermal
mechanism underlying enzyme Topt s. In addition, all posterior
Topt s showed a similar distribution as experimental Topt s, even
though the etcGEM had never seen those experimental Topt s
(Fig. 2i), which supported our use of the macromolecular rate
theory in the model. In the Posterior models, the degeneration of
enzyme-specific activities clearly depended on the kcat degenera-
tion instead of protein denaturation (Fig. 3c). This indicates that
kcat degeneration, in addition to protein denaturation, plays an
important role in the temperature dependence of yeast cell
growth.

We further observed that, even though the model contained
only 764 enzymes from a total of ~6700 proteins36, protein
denaturation alone could still explain the termination of cell
growth at 42 °C (Fig. 3a). However, in the Posterior etcGEMs,
only 9 enzymes (1%) with a mean melting temperature below
42 °C were present (ERG1, ATP1, ALA1, KRS1, SER1, HEM1,
PDB1, ADH1, and TRP3) (Supplementary Fig. 8), of which three
(ATP1, HEM1, and PDB1) are located in the mitochondria37. The
other enzymes remained in the native state even at temperatures
several degrees higher than 42 °C (Fig. 3d), though they were
enzymatically active only in the temperature window of cell
growth between 10 and 42 °C (Fig. 3f), due to the low kcat values
beyond this temperature range (Fig. 3e). Nearly all yeast enzymes
were found to be cold-denatured only at temperatures lower than
0 °C, which is beyond the temperature window for cell growth
(Fig. 3d), although there have been studies showing that some
yeast proteins have a cold-induced denaturation above 0 °C38.
This may be due to the fact that the experimental data used to
improve the model performance were mainly obtained in the
supra-optimal temperature range, with few data available from
the suboptimal range.
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Metabolic shifts are explained by temperature-induced pro-
teome constraints. Published reports show that at temperatures
above 37 °C in chemostat cultures with a dilution rate of 0.1 h−1,
yeast shifts its metabolism from a completely respiratory one to a
partly fermentative one, which is also accompanied by a large
increase in glycolytic flux23. Since our updated Posterior etcGEMs
are able to simulate this metabolic shift (Fig. 2c and Supple-
mentary Fig. 6), we used them to further explore the mechanisms
behind the observed process. We observed that the shift occurs
due to a proteome constraint, meaning that the total protein level
in the cell reaches an upper bound (Fig. 4a). The proteome

constraint occurs due to the decrease in enzyme specific activities
with increasing temperature (Fig. 3f) and since the maximal
protein amount in the cell is limited27. As a result, the cell has to
synthesize more enzymes to maintain cell growth at the given
growth rate (Fig. 4a) until the enzyme amount hits the upper
bound. Doubling this protein constraint can delay the shift point
from 37 to 38 °C (Fig. 4b and Supplementary Fig. 9). These
findings are consistent with earlier studies showing that the
activation of the Crabtree effect in chemostat cultures at 30 °C is
due to a proteome constraint16,39. When the temperature
increases above 36 °C, ATP production by glycolysis is

Fig. 2 Bayesian modeling improves etcGEM performance by reducing parameter statistical uncertainties. a, b Simulated (a) aerobic and (b) anaerobic
growth rates in batch cultivations at various temperatures with Prior and Posterior etcGEMs. c Simulated ethanol secretion flux in a chemostat at various
temperatures. In a–c, lines indicate median values and shaded areas indicate regions between the 5th and 95th percentiles (n= 128 for Prior and n= 100
for Posteriormodels). d Principal component analysis (PCA) 21,504 parameter sets (θ̂) sampled in the Bayesian approach. Each parameter in the set θ* was
standardized by subtracting the mean and then be divided by the standard deviation before PCA. θ̂ of 128 Prior and 100 Posterior etcGEMs are highlighted in
blue and orange, respectively. All other θ̂ were termed as “intermediate” and marked in gray. e The number of enzymes, out of all 764, with a significantly
changed mean (Šidák adj. Welch’s t test p value < 0.01, two-sided) and variance (Šidák adj. one-tailed F-test p value < 0.01) in Tm, Topt, and ΔCz

p between
Prior and Posterior. Parameters from 128 Prior and 100 Posterior etcGEMs were used for statistical tests. f A random forest model was used to score the
importance of all 2292 parameters during the Bayesian approach (“Methods”). The plot shows the accumulated importance score for each of the three-
parameter categories. g Parity plot comparing the experimental Tm values and ones in the 100 Posterior models. h Parity plot comparing the experimental
Topt values from BRENDA and ones in the 100 Posterior models. In g, h, r denotes the Pearson’s correlation coefficient between experimental values and
Posterior mean values. i Comparison among distributions of the mean of Prior Topt s, mean of Posterior Topt s (Post) and experimental Topt s (Exp) from
BRENDA. The bimodal distribution of Topt values is due to the common values in BRENDA occurring at room temperature 25 °C (111 times), the optimal
growth temperature of yeast 30 °C (244 times), and 37 °C (142 times). Source data are provided as a Source Data file.
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dramatically increased, while ATP production by the mitochon-
dria decreases (Fig. 4a). Even though the respiratory pathway
produces more ATP per glucose amount, the fermentative
pathway produces more ATP per protein mass and therefore
becomes more energetically efficient when the cell reaches a
proteome constraint39. In addition, three key mitochondrial
enzymes (ATP1, HEM1, and PDB1) (Supplementary Fig. 8) were
found to be unstable, which makes the respiratory pathway even
more resource-inefficient for ATP production. When increasing
the Tm of these three enzymes to 50 °C, the same shift could still
be observed while the ATP production shift from mitochondria
to glycolysis was reduced (Fig. 4c and Supplementary Fig. 9).

etcGEM uncovers growth rate-limiting enzymes. To investigate
which enzymes limit the cell growth at superoptimal tempera-
tures, the flux sensitivity coefficient of each enzyme was calcu-
lated (“Methods”). Among all the enzymes in the model, the
squalene epoxidase ERG1 displayed order of magnitude higher
median flux sensitivity coefficient than other enzymes, indicating
that it is the most flux-controlling enzyme at 40 °C (Fig. 5a) and
above (Supplementary Fig. 10). Furthermore, the removal of the
temperature constraint on ERG1 increased the simulated specific
growth rate from 0.09 to 0.14 h−1 (Fig. 5b). We, therefore, eval-
uated the impact of replacing the wild-type ERG1 gene with ERG1
from the thermotolerant yeast Kluyveromyces marxianus
(KmERG1, “Methods”). At first, at the lethal temperature of
42 °C, only a small improvement in growth rate (from 0.01 to
0.06 h−1) was predicted and no significant growth difference was
detected between the wildtype and the strain with kmERG1

(Supplementary Fig. 11). However, already after 2 passages of
adaptation at 40 °C, the strain with KmERG1 indeed showed
significantly better growth than the wild type (Fig. 5c).

The reduced growth rate at 42 °C is likely caused by an
impaired function of several different enzymes, and rescuing a
single enzyme is insufficient to improve the growth rate.
Therefore, in order to characterize the set of growth rate-
limiting enzymes at 42 °C, we gradually removed the temperature
constraints on enzymes (set kcat and denaturation temperature
independent) in the order of decrescent flux sensitivity coefficient
values in each of the Posterior etcGEMs. Interestingly, in the case
of recovering the cell growth rate to 0.2 h−1, we found an
agreement among all Posterior etcGEMs that ten enzymes are
required to be fully functional at 42 °C (Fig. 5d). Since each model
predicted a different subset of such enzymes, an ensemble
approach was used to count the number of models (votes) in
which an enzyme is predicted to be one of ten such enzymes
(Fig. 5e). In total, 82 enzymes were predicted by at least 1
Posterior etcGEM, and only 24 (out of 82) enzymes were each
predicted by more than 10% of the Posterior etcGEMs (Fig. 5e,
inset). Among these 24 enzymes, 12 enzymes were engaged with
Glycolysis and 3 enzymes were involved in sterol biosynthesis:
ERG1, and HMG1,2 catalyzing the flux-controlling steps in sterol
biosynthesis40. The remaining enzymes were mainly involved in
DNA or protein synthesis related pathways.

Discussion
Here, we present a Bayesian genome-scale modeling approach to
resolve the temperature dependence of cellular metabolism. Using

Fig. 3 Yeast growth rate is explained by temperature effects on its enzymes. a Illustration of how the temperature dependence of different processes
combines to affect the growth rate. Fig. legend: ec—predictions with the enzyme constrained model; ec+NGAM(T)—incorporates the temperature effects
on nongrowth associated maintenance into the ec model (Supplementary Fig. 1); ec+kcat(T)—incorporates the temperature effects on enzyme kcat values
into the ec model; ec+denaturation(T)—incorporates the temperature effects on enzyme denaturation into the ec model; etc—enzyme and temperature
constrained model that includes the temperature effects on NGAM, kcat and enzyme denaturation into ec model. The growth rate at each temperature
point was simulated with all 100 Posterior etcGEMs. Lines indicate median values and shaded areas indicate regions between the 5th and 95th percentiles
(n= 100). b Comparison between distributions of experimentally measured enzyme Topt values (n= 662) from BRENDA35 and enzyme Tm values (n=
265) from Leuenberger et al.7 in S. cerevisiae. c Comparison between T1/2SA, the temperature at which the specific activity is 50% of its maximum, and
T1/2kcat, the temperature at which the kcat value is 50% of its maximum, and Tm in the Posterior models. d Probability of 764 enzymes in the native state.
From top to bottom, the enzymes showed increased s. Each pixel represents one probability value of an enzyme at a specific temperature. e Normalized kcat
values of 764 enzymes at different temperatures. Each pixel represents one normalized value of an enzyme at a specific temperature. f Normalized specific
activities of 764 enzymes at different temperatures. The values in (f) are products of (d) and (e). In d–f, the same ordering of enzymes is shown. Source
data are provided as a Source Data file.
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an ecGEM16 as a template, we modeled the temperature effects on
each individual enzyme by including temperature-dependent
terms for the independent processes of denaturation as well as
catalysis (Fig. 1a). Due to the high level of uncertainty and low
accuracy associated with the initial thermal parameter values
(Supplementary Fig. 7), which were a result of experimentally
measured noise or variability arising from machine learning or
theoretical predictions, the model predictions initially could not
correctly recapitulate experimental observations (Fig. 2a–c and
Supplementary Fig. 2). We, therefore, used Bayesian statistical
learning that enabled updating our Prior guess of the highly
uncertain thermal parameters to a more accurate Posterior esti-
mation of these parameters according to observed phenotypic
data (Fig. 1e). The resulting Posterior etcGEMs accurately
describe the experimental observations (Fig. 2a–c) and thus
provide a more reliable platform to study the thermal dependence
of yeast metabolism.

Previous studies modeling the temperature dependence of
enzyme activities have relied mainly on protein denaturation and
the Arrhenius equation, where protein denaturation explained the
negative curvature for the temperature dependence of enzyme
activity20,21. However, with the increasing amount of evidence
showing that protein denaturation alone is insufficient to explain
the decrease in enzyme specific activity above Topt, macro-
molecular molecular rate theory31,34 has become a promising
alternative. It was successfully applied to many enzymes31,33,34,
including its use in explaining the evolution of enzyme catalysis34.
According to the theory, a negative heat-capacity change (ΔCz

p)
exists between the transition state and the ground state in the
enzyme catalytic process (Fig. 1c), which leads to a negative
curvature for the temperature dependence of enzyme activity in
the absence of denaturation31. We found that with this theory, the
temperature dependence of kcat s acts as a major contributor to
the cell growth rate at all temperatures, which can especially

explain the decline in cell growth rate right after the OGT
(Fig. 3a). Yeast enzymes only maintain high kcat s in the tem-
perature window of cell growth (Fig. 3e), which means that the
metabolism becomes inefficient at superoptimal temperatures due
to the general decrease in enzyme turnover without denaturations
(Fig. 3d–f).

Using the Bayesian genome-scale modeling approach to
quantitatively depict the temperature effects on yeast metabolism
led to insights into the long-standing discussion on the roles of
different cellular factors in cellular fitness under heat
stresses4,5,7,23,41. For instance, protein denaturation has been
suspected as one of the main causes of the decline in cell growth
beyond the OGT point. However, recent high throughput mea-
surements of melting temperatures (Tm) for 707 S. cerevisiae
proteins revealed a Tm distribution with a mean value of 52 °C
and a minimum of 40 °C7, which suggests that protein dena-
turation alone might not be sufficient to explain the decline of
yeast cell growth between 30 °C (OGT) and 42 °C (lethal tem-
perature point). An alternative explanation is provided by the
evidence of a significant increase of NGAM observed with yeast
cells grown in anaerobic chemostat cultivations at high tem-
peratures (33–40 °C) compared to ones grown at low tempera-
tures (5–31 °C)5, which suggests an imbalance in cellular energy
allocation in the superoptimal temperature range. Quantitative
assessment using our modeling approach revealed that impaired
cell growth is caused by a combination of decreased kcat values,
increased NGAM costs, and protein denaturation (Fig. 3). Fur-
thermore, between 30 and 35 °C, the combined decrease in kcat s
and increase in NGAM explains the decline in cell growth,
whereas, with temperatures above 35 °C, protein denaturation
becomes the dominant factor, causing cell death at 42 °C. How-
ever, in accordance with published findings that cellular pro-
teomes have a broad distribution of protein stability with only
proteins at the tail of the distribution being problematic42, using

Fig. 4 Metabolic shifts are explained by temperature-induced proteome constraints. The ATP production in the cytoplasm and the total protein amount
required at different temperatures were simulated using Posterior etcGEMs with chemostat culture settings with a dilution rate of 0.1 h−1 (“Methods”).
Simulation results from a the original Posterior models, b the original Posterior models with doubled total protein constraint, c the original Posterior models
with increased Tm of ATP1, HEM1, and PDB1 (to 50 °C) and are shown. Lines indicate median values and shaded areas indicate the region between the 5th
and 95th percentile (n= 100). Source data are provided as a Source Data file.
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our approach we identified only ~1% unstable enzymes denatured
at the lethal point (Tm lower than 42 °C, Fig. 3d).

We identified two interesting metabolic pathways involved in
yeast thermotolerance: sterol metabolism and mitochondrial
energy metabolism. With sterol metabolism (Fig. 5d), it is known
that high sterol levels help yeast cells survive under heat stress43

and changes of the sterol composition of the yeast membrane
from ergosterol to fecosterol44 can significantly increase yeast
thermotolerance. However, yeast was found to downregulate its
whole ergosterol biosynthesis at both transcription and transla-
tion levels when increasing the temperature from 30 to 36 °C
(Supplementary Fig. 12). Our modeling approach identified three
problematic enzymes (Fig. 5d: HMG1,2 and ERG1) in the sterol

metabolism, which are also flux-controlling enzymes in the sterol
biosynthesis pathway45. We experimentally confirmed that the
replacement of ERG1 with its ortholog in the thermotolerant
yeast K. marxianus can significantly improve the cell growth at
40 °C (Fig. 5c). Further simulations by downregulating the genes
involved in ergosterol pathways (except ERG1) showed that when
these enzymes were down-regulated by a percentage higher than
~40%, a temperature-insensitive ERG1 can rescue the cell growth,
while it failed when they were downregulated to less than 40%
(Supplementary Fig. 13). We thereby hypothesize that, since those
three enzymes are problematic at superoptimal temperatures,
there is no need for the cell to maintain high expression and
translation levels of other enzymes in the same pathway. Instead,

Fig. 5 etcGEM uncovers growth rate-limiting enzymes. a Twenty enzymes with the highest flux sensitivity coefficients at 40 °C (n= 100 for each
enzyme). b Predicted maximal specific growth rate of wild-type yeast and the one without any temperature constraints (fully functional) on ERG1 enzyme
at 40 °C (n= 100 for each strain). In a, b, centerline, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; Each dot represents
the prediction from one Posterior etcGEMs. c The effect of KmERG1 expression on thermotolerance in S. cerevisiae. The strains were passaged for 7 times
(24 h for each passage) to obtain stable growth at 40 °C. Optical densities (600 nm) are shown at 24 h. Data are represented as mean values of five
replicates in the bar chart. Dots represent the values of five replicates. p Values denote Welch’s t test (two-sided). The exact p values for P1–P7 are 0.307,
0.438, 0.0066, 0.00020, 0.00046, 0.00015, 0.00018, respectively. d Simulated maximum specific growth rate by removing the temperature constraints
of most rate-limiting enzymes at each step in each Posterior etcGEM at 42 °C. Lines indicate median values and shaded areas indicate the region between
the 5th and 95th percentiles (n= 100). e The percentage of Posterior etcGEMs (n= 100) predicts an enzyme to be in the minimal enzyme set required to
be fully functional at 42 °C in order to achieve a maximal specific growth rate of 0.2 h−1. Inset shows the names and pathways of genes predicted by more
than Posterior etcGEMs 10% they are involved in. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20338-2

8 NATURE COMMUNICATIONS |          (2021) 12:190 | https://doi.org/10.1038/s41467-020-20338-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


it has to downregulate its whole ergosterol biosynthesis to save
resources and increase fitness.

With mitochondria, previous studies have indicated that the
mitochondrial genome plays an important role in yeast thermal
adaptation46–48. We found that out of the nine unstable enzymes
identified with the Posterior etcGEMs (with a Tm lower than 42 °
C, Supplementary Fig. 8), three (ATP1, HEM1, and PDB1)
belonged to the mitochondrial energy metabolism. Simulation of
chemostat data (Fig. 4) revealed that at superoptimal tempera-
tures, yeast prefers to produce ATP via the glycolysis metabolism
instead of the mitochondrial energy metabolism in the mito-
chondria. This can be explained by the limited total protein
content in the cell and resource-inefficient mitochondrial energy
metabolism. A previous study also found that a mitochondrial
matrix protein Mge1p, which is essential for mitochondrial
functions, loses its functions at temperatures higher than 37 °C
due to denaturation and dimer dissociation49. Another study
found that the mitochondrial inner membrane is severely affected
at 38 °C and may impair the function of mitochondria50. Fur-
thermore, mitochondria only exist in eukaryotes and almost all of
them have evolved to have an OGT below 40 °C3. All these
findings indicate that mitochondria are not evolved to be func-
tional at very high temperatures. Since mitochondrial energy
metabolism is not essential for yeast cell growth, as there are
alternative energy pathways (Fig. 4), this also explains why we
could not successfully predict mitochondrial enzymes to be
engineering targets for the recovery of cell growth at 42 °C
(Fig. 5d), despite the existence of three unstable enzymes in the
mitochondrial energy metabolism.

As a note, the assumption of two-state denaturation and mac-
romolecular theory to describe the temperature dependence of
enzyme activity may be oversimplified for some enzymes. The
experimental data used to update the Prior guesses of thermal
parameters was mainly from the superoptimal temperature range
(Fig. 2a–c), whereas there are still big uncertainties in the current
Posterior (Supplementary Fig. 7). These all indicate that the
etcYeast7.6 can still be enhanced in the future by (i) improving the
formulation of enzyme temperature-dependence and (ii) more
experimental data for model validation and uncertainty reduction.

In conclusion, we demonstrate the usefulness of a Bayesian
genome-scale modeling approach for reconciling temperature
dependence of yeast metabolism. Describing the link between
temperature and cell physiology is of industrial importance, e.g.,
for finding optimized production of biochemicals24,51–53, but also
in medicine, e.g., to understand the effects of temperature on
human metabolism54–56. Furthermore, based on its success here,
we foresee that our method can be integrated into genome-scale
modeling approaches in general. This approach can also become
a staple of GEM modeling in order to resolve uncertainties pre-
sent in the data, which can be important as GEMs have become a
widely used platform for integration of various biological data,
such as transcriptomics and proteomics data that are associated
with large uncertainties57.

Methods
The temperature-dependent enzyme-constrained genome-scale metabolic
model. The central concepts of an enzyme constrained model16 are as follows: (1)
the flux through each reaction cannot exceed the capacity of its catalytic enzyme:
vi ≤ kcat;i � ½E�i , where [E]i is the concentration of enzyme i; (2) the total enzyme
amount is constrained by the experimental measurement:

P½E�i ≤ ½E�t : Once the
temperature-dependent denaturation and kcat were considered, [E]i in the first
constraint should be [E]N,i, which is the concentration of individual active enzymes.
[E]i in the second constraint should be ½E�t;i ¼ ½E�N;i þ ½E�U;i , which is the total
concentration of enzymes in both active and denatured forms (Fig. 1a). In addition,
to capture the increased expenditure for maintenance under increased heat stress, a
temperature-dependent non-growth-associated ATP maintenance term can be
assumed from experimental measurements. In summary, the updated constraints

in etcGEM are

Sv ¼ 0

0 ≤ vi ≤ kcat;i Tð Þ � E½ �N;i Tð Þ
P

E½ �N;i Tð Þ þ E½ �U ;i Tð Þ
� �

≤ E½ �t
NGAM Tð Þ ¼ f Tð Þ

8>>>><
>>>>:

: ð1Þ

The effect of temperature on kcat values can be described with an expanded
Arrhenius equation (macromolecular rate theory), by including a nonzero heat-
capacity change (ΔCz

p) between the transition state and the ground state of the
enzyme catalytic process31,33:

kcat Tð Þ / kBT
h

e�
ΔGz Tð Þ

RT ; ð2Þ

in which kB is the Boltzmann constant, h is Planck’s constant, R is the universal gas
constant and ΔGzðTÞ is the free energy difference between the ground state and the
transition state. The latter can be expanded as

ΔGzðTÞ ¼ ΔHz
T0

þ ΔCz
p T � T0ð Þ � T ΔSzT0

þ ΔCz
pln

T
T0

� �� �
; ð3Þ

where ΔHz
T0
, ΔSzT0

, and ΔCz
p are the differences in enthalpy, entropy, and heat

capacity change between the transition and ground states, respectively, and T0 is
the reference temperature. This theory has been successfully applied to study the
temperature dependence of enzyme activity31,33 and evolution34.

Since there is not enough detailed information regarding the heat-induced
denaturation process of yeast proteins, a simple two-state model denaturation was
assumed as in many other studies20,21,58. In such a model, a protein molecule could
be either in a native state (N) or a denatured state (U), and an equilibrium state was
assumed: N ↔ U. Thereby

½E�N;i ¼
1

1þ e�
ΔGu Tð Þ

RT

½E�t;i; ð4Þ

in which ½E�t;i ¼ ½E�N;i þ ½E�U ;i, where [E]t,i is the concentration of enzyme i and
ΔGu(T) is the free energy difference between the denatured state and the native
state and can be expressed as

ΔGu Tð Þ ¼ ΔHu Tð Þ � TΔSu Tð Þ; ð5Þ
where ΔHu(T) and ΔSu(T) are the enthalpy and entropy changes between the
denatured and native states at temperature T. It has been found that convergence
temperatures T*

H (373.5 K) and T*
S (385 K) exist for ΔHu and ΔSu,

respectively41,59,60. At such temperatures, the ΔHu and ΔSu converge to a common
value of ΔH* and ΔS*. Thereby,

ΔGu Tð Þ ¼ ΔH* þ ΔCp;u T � T*
H

� �
� TΔS* � TΔCp;ulog

T

T*
S

� �
; ð6Þ

in which ΔCp;u is the difference in heat-capacity change between the denatured and
native states.

In summary, the values of ΔGzðTÞ and ΔGu(T) need to be determined in order
to model the temperature dependence of enzyme activities, and they can be
associated with six unknown parameters: ΔHz

T0
, ΔSzT0

, and ΔCz
p for ΔGzðTÞ, and

ΔH*, ΔS*, and ΔCp,u for ΔGu(T).

Computation of thermal parameters. Since it is difficult to directly measure those
six thermal parameters (ΔHz

T0
, ΔSzT0

, ΔCz
p , ΔH*, ΔS,*and ΔCp,u) for each enzyme,

indirect measurements have to be used to approximate the larger set of thermal
parameters. As there are six free variables in the system, six different equations are
required to solve for those parameters.

1. At the protein melting temperature Tm:

ΔGu Tmð Þ ¼ 0: ð7Þ
2. At the enzyme optimal temperature Topt, the enzyme activity is maximized:

dr
dT

jT¼Topt
¼ 0: ð8Þ

in which r= kcat[E]N;
3. kcat at the enzyme optimal temperature Topt is known:

kcatðToptÞ ¼
kBT
h

e
�ΔGz ðTopt Þ

RTopt : ð9Þ
4. ΔCz

p value can be approximate from the temperature dependence of cell
growth rate31.

5. We found that there is a very strong linear correlation (r2= 0.998, Pearson’s
correlation) between ΔH* and ΔS* of 116 proteins from Sawle et al.41

(Supplementary Fig. 14)

ΔH* ¼ 299:58ΔS* þ 20008J=mol ð10Þ
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6. For some enzymes, T90, where a 90% possibility exists that an enzyme
molecule is in the denatured state, is experimentally measured:

ΔGu T90ð Þ ¼ �RT90ln9: ð11Þ

As a result, the six thermal parameters ΔHz
T0
, ΔSzT0

, ΔCz
p ΔH*, ΔS*, and ΔCp,u

can be obtained by solving the above equations.
In the case of lacking T90 or failed to obtain a positive ΔCp,u, protein sequence

length was used to estimate ΔH* and ΔS*41 as below:

ΔH* ¼ 4:0N þ 143ð Þ ´ 1000: ð12Þ

ΔS* ¼ 13:27N þ 448: ð13Þ

Sequential Monte Carlo-based approximate Bayesian computation. Approx-
imate Bayesian computation61 was applied to infer parameter sets from Posterior
distributions. Given an observed dataset D and a model specified by θ̂ sampled
from the Prior distribution P(θ), if the distance between simulated data D̂ and
observed D is less than a given threshold ϵ, then this θ̂ is accepted as the one
sampled from P ρ D; D̂

� �
< ϵ

� �
. P ρ D; D̂

� �
< ϵ

� �
is often used to approximate the

Posterior P(θ|D) when ϵ is sufficiently small. In the case of high-dimensional
parameter space and/or when the P(θ) is very different from P(θ|D), the acceptance
rate would be very low and thus this approach becomes computationally expensive
to generate a population of θ̂ from P ρ D; D̂

� �
< ϵ

� �
. In this work, a sequential

Monte Carlo approach was designed (Supplementary Table 1) to generate a
population of θ̂ sampled from P ρ D; D̂

� �
< ϵ

� �
. This approach was validated on

several toy models with known parameter values and was found to outperform
existing other population-based methods when the number of parameters is far
greater than the number of samples for fitting (Supplementary Note 1, Supple-
mentary Figs. 16–20).

Melting temperatures. Among the 764 enzymes included in ecYeast7.616, the Tm

(melting temperature) and T90 (the temperature at which 90% of the protein is in
the denatured state) for 266 yeast proteins have been reported previously7. For
enzymes lacking an experimentally measured Tm, a melting temperature of 51.9 °C
(the average of existing Tm s of 707 yeast proteins) was assumed. In the original
paper7, the 95% confidence interval was reported for peptides measured in the
experiments and the average standard error was estimated at 3.4 °C. This same
value was used as the uncertainty measure for the experimentally determined Tm s,
since the standard error for protein Tm was not available. The Tm of the 266
enzymes was then described with a normal distribution N(Tm,i, 3.4), in which Tm,i

is the experimentally measured melting temperature of protein i. For enzymes that
use the mean Tm of 707 proteins7 as Tm estimation, the corresponding uncertainty
is described as the standard deviation of the 707 Tm s, equaling 5.9 °C. Thereby, a
normal distribution N(51.9,5.9) was used.

Enzyme optimal temperature. Topt values of all enzymes in this study were cal-
culated using a previously developed machine-learning method Tome v1.0 (https://
github.com/EngqvistLab/Tome)22, which predicts enzyme Topt based on primary
sequences. This model has a coefficient of determination (R2 score) of 0.5 on the
test dataset. Root-mean-squared error (RMSE) of the prediction was then estimated
with

R2 ¼ 1�
Pn

i¼1 yi � fið Þ2Pn
i¼1 yi � �yð Þ2 ¼ 1�

1
n

Pn
i¼1 yi � fið Þ2

1
n

Pn
i¼1 yi � �yð Þ2 ¼ 1�MSE

δ2DB
: ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2ð Þδ2DB

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5ð Þ´ 337

p
¼ 13:0 �C: ð15Þ

where fi is the predicted value and yi is the observed true value of enzyme i. Then each
one of these predicted Topt s was described with a normal distribution N(Topt,i, 13.0).

Heat capacity change. ΔCz
p value was approximated by assuming temperature

dependence of yeast cell growth rate as −6.3 kJ/mol/K for all enzymes31. Given that
ΔCz

p should be in the general negative for most enzymes33, a standard variance of
2.0 was selected from testing a wide range of values because it covers a broad range
of ΔCz

p and with a very low possibility of getting a positive value (Supplementary
Fig. 15). A normal distribution of N(−6.3, 2.0) was subsequently used to describe
the ΔCz

p of all enzymes.

Non-growth associated ATP maintenance. To capture the increased expenditure
for maintenance under increased heat stress, an empirical equation (Supplementary
Fig. 1) was constructed to estimate the NGAM at different temperatures:

NGAM Tð Þ ¼ 0:740þ 5:893

1þ e31:920� T�273:15ð Þ þ 6:12 ´ 10�6 ´ ðT � 273:15� 16:72Þ4;
ð16Þ

based on the experimental data5. Since the experimental data only covers the
temperature range of between 5 and 40 °C, any NGAM for temperatures lower
than 5 °C was set to the value at 5 °C and for those higher than 40 °C was set to the
value at 40 °C. The Eq. (16) was used for the anaerobic growth data as well as for
aerobic growth since no experimental data were available for this condition.

FBA simulations with etcYeast7.6. At a given temperature, first the kcat values

and
½E�N;i

½E�N;iþ½E�D;i were calculated and integrated into the enzyme-constrained model

and then the NGAM at this temperature was calculated and included in the model.
For batch growth simulations, unlimited substrates were used, the same as
described in ref. 16. The enzyme saturation factor σ of 0.5 was used39. For the
simulation of anaerobic growth, in addition to the above changes, the uptake of
oxygen was blocked and fatty acids and sterols were supplied into the medium as
described in16. The growth associated with ATP maintenance (GAM) was esti-
mated from experimental data5 as 70.17 mmol ATP/gdw. Other parameters were
unchanged. For the simulation of fluxes at aerobic chemostat conditions, with the
same model settings as aerobic batch conditions, the simulation was carried out by
first fixing the growth rate to a given dilution rate (0.1 h−1) and minimizing the
glucose uptake rate. Then the glucose uptake rate was fixed to the simulated value
multiplied by a factor of 1.001 (for simulation purposes). Finally, the total enzyme
usage was minimized (same as used in ref. 16). To get the flux sensitivity coefficient
of an enzyme at a given temperature, the kcat of all reactions associated with this
enzyme were perturbed by a factor of (1+ δ). Then the maximal growth rates were
simulated before (u) and after (up) perturbation. Finally, the flux sensitivity coef-

ficient of enzyme i was calculated as
up�μ

u
δ , where μ and up are maximal specific

growth rate before and after perturbation. δ of 10 was used in this study.

The distance function used in SMC-ABC approach. The observed data used in
this study was the maximal specific growth rate in aerobic4 and anaerobic5 batch
cultivations at different temperatures, and glucose, carbon dioxide, and ethanol flux
values at different temperatures measured in chemostat cultivations with a dilution
rate of 0.1 h−1 23. The distance function was designed as follows: first, the coeffi-
cient of determination (R2) between simulated and experimental data was calcu-
lated for each of the above conditions. Then the average R2 across these three
conditions multiplied by −1 was used to represent the distance ρ D; D̂

� �
. ϵ of −0.9

was used in the SMC-ABC simulation.

Statistical tests for comparison between P(θ) and P(θ|D). The significance test
for the difference in mean values between Prior and Posterior was carried out by
Welch’s t test62. The significance test for reduced variance was carried out by the
one-tailed F-test. p values were adjusted with the correction63 using a family-wise
error rate of 0.01. The significance cutoff was set to 0.01 (Fig. 2e).

Machine learning applied to score the importance of parameters. Totally, 2292
parameters of 21504 parameter sets were used as the input feature matrix and the
average R2 scores obtained with the Bayesian approach were used as target labels.
The dataset was split into train (80%), validation (10%), and test (10%) datasets. A
random forest regressor with 1000 estimators was used. The train and validation
datasets were used to optimize the hyperparameter. The obtained model could
explain in total 23% the variance in the test dataset. The feature importance scores
were extracted directly from the obtained model.

Genetic manipulation for the experimental validation of ERG1. The background
strain we used in this study was IMX581 derived from CEN.PK113-5D, which
contains an integrated Cas9 expression cassette controlled by TEFp promoter64. All
the genetic manipulations were conducted based on the CRISPR/cas9 system. The
codon-optimized kmERG1 were ordered from GenScript (Supplementary Data 1),
and the PrimerSTAR HS polymerase was utilized for gene amplification through
PCR. Based on strain IMX581, the codon-optimized gene ERG1 from K. marx-
ianus (KmERG1) was integrated to replace the native ERG1 (ScERG1) using
CRISPR/cas9, yielding HL01. All the design and construction of the plasmid fol-
lows the previously described method64. The gRNA cassette for target gene scERG1
was obtained using the single-stranded oligos gRNA-ERG1-F/gRNA-ERG1-R,
followed by assembling with the linearized backbone plasmid pMEL10, the single
gRNA plasmid was constructed by Gibson assembly. The repair fragment con-
taining kmERG1 with round 60 bp overlap was amplified by primers kmEGR1-
scERG1up-F/kmEGR1-scERG1dn-R using codon-optimized kmERG1 as a tem-
plate. Then the repair fragment and single gRNA plasmid were co-transformed
into IMX58. All the strains and primers used in this study were listed in Supple-
mentary Tables 2 and 3.

Strain cultivation under different temperatures. The thermotolerance was tested
and compared between S. cerevisiae IMX581 and HL01. Five single colonies of each
strain were selected and precultured in YPD media at 30 °C, and cells were then
transferred to flasks in 20 mL YPD media to reach 0.1 initial OD600 cultured at 40
± 0.5 °C, 200 rpm. After that, the cells were transferred into fresh YPD media every
24 h with 0.1 initial OD600 and cultivated at 40 ± 0.5 °C, 200 rpm.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The datasets and plant materials generated and analyzed
during the current study are available from the corresponding author upon request. The
data for reproducing the figures in both the main and supplementary files are provided as
a Zenodo repository (https://zenodo.org/record/3996543#.X0J1BNP7S3I). Source data
are provided with this paper.

Code availability
All simulations of genome-scale models have carried out with Cobrapy64 with Gurobi
(Gurobi Optimization, LLC) solver. All code is available on Github (https://github.com/
SysBioChalmers/BayesianGEM).

Received: 1 April 2020; Accepted: 25 November 2020;

References
1. Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N. & Gouy, M. Parallel

adaptations to high temperatures in the Archaeaneon. Nature 456, 942–945
(2008).

2. Hickey, D. A. & Singer, G. A. C. Genomic and proteomic adaptations to
growth at high temperature. Genome Biol. 5, 117 (2004).

3. Engqvist, M. K. M. Correlating enzyme annotations with a large set of
microbial growth temperatures reveals metabolic adaptations to growth at
diverse temperatures. BMC Microbiol. 18, 177 (2018).

4. Caspeta, L. & Nielsen, J. Thermotolerant yeast strains adapted by laboratory
evolution show trade-off at ancestral temperatures and preadaptation to other
stresses. MBio 6, e00431 (2015).

5. Zakhartsev, M., Yang, X., Reuss, M. & Pörtner, H. O. Metabolic efficiency in
yeast Saccharomyces cerevisiae in relation to temperature dependent growth
and biomass yield. J. Therm. Biol. 52, 117–129 (2015).

6. Fersht, A. R. & Daggett, V. Protein folding and unfolding at atomic resolution.
Cell 108, 573–582 (2002).

7. Leuenberger, P. et al. Cell-wide analysis of protein thermal unfolding reveals
determinants of thermostability. Science 355, eaai7825 (2017).

8. Guo, M., Xu, Y. & Gruebele, M. Temperature dependence of protein folding
kinetics in living cells. Proc. Natl Acad. Sci. USA 109, 17863–17867 (2012).

9. Rocklin, G. J. et al. Global analysis of protein folding using massively parallel
design, synthesis, and testing. Science 357, 168–175 (2017).

10. Mateus, A. et al. Thermal proteome profiling in bacteria: probing protein state.
Mol. Syst. Biol. 14, e8242 (2018).

11. Arcus, V. L. et al. On the temperature dependence of enzyme-catalyzed rates.
Biochemistry 55, 1681–1688 (2016).

12. DeLong, J. P. et al. The combined effects of reactant kinetics and enzyme
stability explain the temperature dependence of metabolic rates. Ecol. Evol. 7,
3940–3950 (2017).

13. Grimaud, G. M., Mairet, F., Sciandra, A. & Bernard, O. Modeling the
temperature effect on the specific growth rate of phytoplankton: a review. Rev.
Environ. Sci. Bio/Technol. 16, 625–645 (2017).

14. Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes.
Proc. Natl Acad. Sci. USA 108, 17876–17882 (2011).

15. Villadsen, J., Nielsen, J. & Lidén, G. Bioreaction Engineering Principles.
(Springer Science & Business Media, 2011).

16. Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome-
scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol.
13, 935 (2017).

17. Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale
reconstruction of the Saccharomyces cerevisiae metabolic network. Genome
Res. 13, 244–253 (2003).

18. Chen, Y., Li, G. & Nielsen, J. Genome-scale metabolic modeling from yeast to
human cell models of complex diseases: latest advances and challenges.
Methods Mol. Biol. 2049, 329–345 (2019).

19. Price, N. D., Reed, J. L. & Palsson, B. Ø. Genome-scale models of microbial
cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2,
886–897 (2004).

20. Chang, R. L. et al. Structural systems biology evaluation of metabolic
thermotolerance in Escherichia coli. Science 340, 1220–1223 (2013).

21. Chen, K. et al. Thermosensitivity of growth is determined by chaperone-
mediated proteome reallocation. Proc. Natl Acad. Sci. USA 114, 11548–11553
(2017).

22. Li, G., Rabe, K. S., Nielsen, J. & Engqvist, M. K. M. Machine learning applied
to predicting microorganism growth temperatures and enzyme catalytic
optima. ACS Synth. Biol. 8, 1411–1420 (2019).

23. Postmus, J. et al. Quantitative analysis of the high temperature-induced
glycolytic flux increase in Saccharomyces cerevisiae reveals dominant
metabolic regulation. J. Biol. Chem. 283, 23524–23532 (2008).

24. Mohd Azhar, S. H. et al. Yeasts in sustainable bioethanol production: a review.
Biochem. Biophys. Rep. 10, 52–61 (2017).

25. Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its
ecosystem for comprehensively probing cellular metabolism. Nat. Commun.
10, 3586 (2019).

26. Yau, C. & Campbell, K. Bayesian statistical learning for big data biology.
Biophys. Rev. 11, 95–102 (2019).

27. Lahtvee, P.-J. et al. Absolute quantification of protein and mRNA abundances
demonstrate variability in gene-specific translation efficiency in yeast. Cell
Syst. 4, 495–504.e5 (2017).

28. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. Preprint at
https://arxiv.org/abs/1312.6114 (2013).

29. Girolami, M. Bayesian inference for differential equations. Theor. Comput. Sci.
408, 4–16 (2008).

30. Miskovic, L., Béal, J., Moret, M. & Hatzimanikatis, V. Uncertainty reduction in
biochemical kinetic models: enforcing desired model properties. PLoS
Comput. Biol. 15, e1007242 (2019).

31. Hobbs, J. K. et al. Change in heat capacity for enzyme catalysis determines
temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 12, 868
(2017).

32. Lahtvee, P.-J., Kumar, R., Hallström, B. M. & Nielsen, J. Adaptation to
different types of stress converge on mitochondrial metabolism.Mol. Biol. Cell
27, 2505–2514 (2016).

33. van der Kamp, M. W. et al. Dynamical origins of heat capacity changes in
enzyme-catalysed reactions. Nat. Commun. 9, 1177 (2018).

34. Nguyen, V. et al. Evolutionary drivers of thermoadaptation in enzyme
catalysis. Science 355, 289–294 (2017).

35. Jeske, L., Placzek, S., Schomburg, I., Chang, A. & Schomburg, D. BRENDA in
2019: a European ELIXIR core data resource. Nucleic Acids Res. 47,
D542–D549 (2019).

36. Li, G., Ji, B. & Nielsen, J. The pan-genome of Saccharomyces cerevisiae. FEMS
Yeast Res. 19, foz064 (2019).

37. Malina, C., Larsson, C. & Nielsen, J. Yeast mitochondria: an overview of
mitochondrial biology and the potential of mitochondrial systems biology.
FEMS Yeast Res. 18, foy040 (2018).

38. Pastore, A. et al. Unbiased cold denaturation: low- and high-temperature
unfolding of yeast frataxin under physiological conditions. J. Am. Chem. Soc.
129, 5374–5375 (2007).

39. Nilsson, A. & Nielsen, J. Metabolic trade-offs in yeast are caused by F1F0-ATP
synthase. Sci. Rep. 6, 22264 (2016).

40. Friesen, J. A. & Rodwell, V. W. The 3-hydroxy-3-methylglutaryl coenzyme-A
(HMG-CoA) reductases. Genome Biol. 5, 248 (2004).

41. Sawle, L. & Ghosh, K. How do thermophilic proteins and proteomes
withstand high temperature? Biophys. J. 101, 217–227 (2011).

42. Ghosh, K. & Dill, K. Cellular proteomes have broad distributions of protein
stability. Biophys. J. 99, 3996–4002 (2010).

43. Swan, T. M. & Watson, K. Stress tolerance in a yeast sterol auxotroph: role of
ergosterol, heat shock proteins and trehalose. FEMS Microbiol. Lett. 169,
191–197 (1998).

44. Caspeta, L. et al. Altered sterol composition renders yeast thermotolerant.
Science 346, 75–78 (2014).

45. Ma, B.-X., Ke, X., Tang, X.-L., Zheng, R.-C. & Zheng, Y.-G. Rate-limiting steps
in the Saccharomyces cerevisiae ergosterol pathway: towards improved
ergosta-5,7-dien-3β-ol accumulation by metabolic engineering. World J.
Microbiol. Biotechnol. 34, 55 (2018).

46. Baker, E. P. et al. Mitochondrial DNA and temperature tolerance in lager
yeasts. Sci. Adv. 5, eaav1869 (2019).

47. Wolters, J. F. et al. Mitochondrial recombination reveals mito–mito epistasis
in yeast. Genetics 209, 307–319 (2018).

48. Paliwal, S., Fiumera, A. C. & Fiumera, H. L. Mitochondrial-nuclear epistasis
contributes to phenotypic variation and coadaptation in natural isolates of
Saccharomyces cerevisiae. Genetics 198, 1251–1265 (2014).

49. Moro, F. & Muga, A. Thermal adaptation of the yeast mitochondrial
Hsp70 system is regulated by the reversible unfolding of its nucleotide
exchange factor. J. Mol. Biol. 358, 1367–1377 (2006).

50. Postmus, J. et al. Dynamic regulation of mitochondrial respiratory chain
efficiency in Saccharomyces cerevisiae. Microbiology 157, 3500–3511 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20338-2 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:190 | https://doi.org/10.1038/s41467-020-20338-2 | www.nature.com/naturecommunications 11

https://zenodo.org/record/3996543#.X0J1BNP7S3I
https://github.com/SysBioChalmers/BayesianGEM
https://github.com/SysBioChalmers/BayesianGEM
https://arxiv.org/abs/1312.6114
www.nature.com/naturecommunications
www.nature.com/naturecommunications


51. Ou, M. S., Ingram, L. O. & Shanmugam, K. T. L (+)-Lactic acid production
from non-food carbohydrates by thermotolerant Bacillus coagulans. J. Ind.
Microbiol. Biotechnol. 38, 599–605 (2011).

52. Matsushita, K. et al. Genomic analyses of thermotolerant microorganisms
used for high-temperature fermentations. Biosci. Biotechnol. Biochem. 80,
655–668 (2016).

53. Arora, R., Behera, S. & Kumar, S. Bioprospecting thermophilic/thermotolerant
microbes for production of lignocellulosic ethanol: a future perspective.
Renew. Sustain. Energy Rev. 51, 699–717 (2015).

54. Repasky, E. A., Evans, S. S. & Dewhirst, M. W. Temperature Matters! And
why it should matter to tumor immunologists. Cancer Immunol. Res. 1,
210–216 (2013).

55. Protsiv, M., Ley, C., Lankester, J., Hastie, T. & Parsonnet, J. Decreasing human
body temperature in the United States since the industrial revolution. Elife 9
(2020).

56. Baracos, V. E., Whitmore, W. T. & Gale, R. The metabolic cost of fever. Can. J.
Physiol. Pharmacol. 65, 1248–1254 (1987).

57. Sánchez, B. J. & Nielsen, J. Genome scale models of yeast: towards
standardized evaluation and consistent omic integration. Integr. Biol. 7,
846–858 (2015).

58. Kumar, S. & Nussinov, R. How do thermophilic proteins deal with heat? Cell.
Mol. Life Sci. 58, 1216–1233 (2001).

59. Murphy, K. P. & Gill, S. J. Solid model compounds and the thermodynamics
of protein unfolding. J. Mol. Biol. 222, 699–709 (1991).

60. Robertson, A. D. & Murphy, K. P. Protein structure and the energetics of
protein stability. Chem. Rev. 97, 1251–1268 (1997).

61. Sunnåker, M. et al. Approximate Bayesian computation. PLoS Comput. Biol. 9,
e1002803 (2013).

62. Welch, B. L. The generalization of ‘Student’s’ problem when several different
population variances are involved. Biometrika 34, 28 (1947).

63. Šidák, Z. Rectangular confidence regions for the means of multivariate normal
distributions. J. Am. Stat. Assoc. 62, 626–633 (1967).

64. Mans, R. et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous
introduction of multiple genetic modifications in Saccharomyces cerevisiae.
FEMS Yeast Res. 15 (2015).

Acknowledgements
The authors would like to thank Tyler W. Doughty, Benjamín J. Sánchez, Avlant Nielsen,
and Ibrahim Elsemman for the helpful discussions. G.L. and J.N. have received funding
from the European Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie program, project PAcMEN (grant agreement No. 722287). J.N.
also acknowledges funding from the Novo Nordisk Foundation (grant No.
NNF10CC1016517), the Knut and Alice Wallenberg Foundation. J.Z. and A.Z. are
supported by SciLifeLab funding. The computations were performed on resources at
Chalmers Centre for Computational Science and Engineering (C3SE) provided by the
Swedish National Infrastructure for Computing (SNIC).

Author contributions
G.L. and J.N. conceptualized the project; G.L. designed and performed all computations;
G.L. and H.L. designed and performed validation of the S.M.C.-A.B.C. approach; G.L.,
Y.H., J.Z., and J.N. designed the experiments. G.L., J.Z., B.J., H.W., A.Z., and J.N.
interpreted the results. Y.H. performed the experimental validations; G.L., J.Z., H.W., and
Y.H. wrote the initial draft paper. All authors carried out revisions on the initial draft and
wrote the final version.

Funding
Open Access funding provided by Chalmers University of Technology.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-20338-2.

Correspondence and requests for materials should be addressed to J.N.

Peer review information Nature Communications thanks Roger Chang, Gertien Smits
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20338-2

12 NATURE COMMUNICATIONS |          (2021) 12:190 | https://doi.org/10.1038/s41467-020-20338-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-20338-2
https://doi.org/10.1038/s41467-020-20338-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
	Results
	Using Bayesian statistical learning to integrate temperature dependence in ecGEMs
	Bayesian modeling improves etcGEM performance by reducing parameter statistical uncertainties
	The yeast growth rate is explained by temperature effects on its enzymes
	Metabolic shifts are explained by temperature-induced proteome constraints
	etcGEM uncovers growth rate-limiting enzymes

	Discussion
	Methods
	The temperature-dependent enzyme-constrained genome-scale metabolic model
	Computation of thermal parameters
	Sequential Monte Carlo-based approximate Bayesian computation
	Melting temperatures
	Enzyme optimal temperature
	Heat capacity change
	Non-growth associated ATP maintenance
	FBA simulations with etcYeast7.6
	The distance function used in SMC-ABC approach
	Statistical tests for comparison between P(θ) and P(θ|D)
	Machine learning applied to score the importance of parameters
	Genetic manipulation for the experimental validation of ERG1
	Strain cultivation under different temperatures

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




