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The patterns of deleterious mutations during
the domestication of soybean
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Globally, soybean is a major protein and oil crop. Enhancing our understanding of the soybean

domestication and improvement process helps boost genomics-assisted breeding efforts.

Here we present a genome-wide variation map of 10.6 million single-nucleotide poly-

morphisms and 1.4 million indels for 781 soybean individuals which includes 418 domes-

ticated (Glycine max), 345 wild (Glycine soja), and 18 natural hybrid (G. max/G. soja)

accessions. We describe the enhanced detection of 183 domestication-selective sweeps and

the patterns of putative deleterious mutations during domestication and improvement. This

predominantly selfing species shows 7.1% reduction of overall deleterious mutations in

domesticated soybean relative to wild soybean and a further 1.4% reduction from landrace to

improved accessions. The detected domestication-selective sweeps also show reduced levels

of deleterious alleles. Importantly, genotype imputation with this resource increases the

mapping resolution of genome-wide association studies for seed protein and oil traits in a

soybean diversity panel.
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Soybean (Glycine max [L.] Merr.) is a globally important
crop species, as it is a major source of seed protein and oil.
Cultivated soybean (G. max) was domesticated an estimated

7000–9000 years ago from wild soybean (Glycine soja Sieb. &
Zucc.) with distribution in East Asia1,2. The cultivation of soy-
bean has been historically confined to East Asia and only recently
expanded to North America, South America, and India, posi-
tioning it as one of the top crops in terms of growing area
worldwide3. Both wild and domesticated soybean are pre-
dominantly selfing4. The accumulation of recombination events
across generations in such selfing plant species may result in
rapid fixation and weak selection of both favorable and deleter-
ious mutations5. Furthermore, the reduced effective population
size due to a genetic bottleneck during domestication will
enhance the stochasticity of allelic fixation by genetic drift6.
Deleterious mutations are hypothesized to be the genetic basis of
inbreeding depression and heterosis in other major crops
including maize and cassava that have outcrossing mating sys-
tems7. Thus, understanding the genome-wide patterns of dele-
terious mutations across the wild-to-domesticated continuum of
soybean can help to better optimize soybean breeding and
potentially other major crops.

After the release of the draft soybean genome sequence8, efforts
to characterize soybean genetic variation by single-nucleotide
polymorphism (SNP) array genotyping2,9 and whole-genome
resequencing (WGS)10–14 have resulted in the global catalog of
common and rare SNPs across the genome. However, those data
have yet to be fully utilized in an integrated manner to impute
marker genotypes at millions of SNP loci as performed for other
plant species15–17. In addition, the genetic variation of wild soy-
bean remains largely untapped and unexplored relative to that of
domesticated soybean.

Here, we analyze the genomic variation of 781 soybean indi-
viduals consisting of 418 G. max, 345 G. soja, and 18 hybrid (G.
max ×G. soja) accessions obtained through high-coverage (>13X)
WGS data. We conduct the detection of presumed domestication-
selective sweeps and the identification of putative deleterious
mutations in soybean populations. We then show the usefulness
of our data in genetic mapping by imputing millions of the
identified SNPs to a panel of 8844 soybean accessions9,18 for
enhancing genome-wide association studies (GWAS) of seed
protein and oil traits.

Results
Genomic variation. We collected WGS data for a total of
855 samples from 833 soybean accessions that cover the world-
wide distribution of soybean while including large regional col-
lections from Korea, a central region in the geographic
distribution of indigenous soybean2 (Supplementary Data 1 and
Supplementary Note 1). The 855 samples included 22 replicated
samples that were added to examine the cause of high hetero-
zygosity rate in some samples observed at the initial stage of this
study. Of the 855 samples, 74 that showed higher than two-thirds
of heterozygous to homozygous non-reference SNP ratios or an
inbreeding coefficient per individual of <0.8 were excluded from
further downstream population analyses (Supplementary Figs. 1
and 2). The final non-redundant 781 accessions comprising the
haplotype map panel consisted of 418 G. max including 332
landraces and 86 improved lines, 345 G. soja, and 18 natural
hybrid (G. max ×G. soja) accessions. The G. soja and hybrid
accessions were obtained from China, Korea, Japan, and the
Russian Far East. The sequence data of the 781 accessions were
mapped to the soybean Williams 82 reference genome ver.
Wm82.a2.v18 with mean depths ranging from 14.09 to 61.27 after
removing duplicate reads and covered over 95.2% of the reference

genome by more than one read and over 85.4% by more than five
reads for all accessions whose lower bound of coverage is >10%
higher than those of rice and maize19,20. After variant calling and
filtration steps, we retained 10,597,683 high-quality SNPs to
perform most of the population analyses, with the exception of
the mutation load analysis that used 30,753,511 SNPs without the
1% minor allele frequency (MAF) filter (Supplementary Fig. 3,
Supplementary Table 1, and Supplementary Note 1). Of the
identified indels, 1,436,499 indels (17% of raw calls) were used for
population analyses. The indels were then separated into
1,414,161 small indels (≤50 bp) and 22,338 structural variants
(SV) (>50 bp) (Supplementary Fig. 4). The false-positive error
rate of variant calling, estimated with the proportion of segre-
gating sites in the reference accession, was <0.01% (Supplemen-
tary Fig. 5 and Supplementary Note 2). By comparison to the
180K SoyaSNP array data2, we estimated the power to detect
SNPs at 1% MAF for samples in our study is >99% across the
genome (Supplementary Fig. 6 and Supplementary Note 2).

Population structure and diversity patterns. The population
structure of the 781 soybean set assessed using the 10.6 million
SNPs (Supplementary Figs. 7 and 8, Fig. 1, and Supplementary
Note 3) was similar to that from our recent analysis of 3036 non-
redundant soybean accessions genotyped using the 180K
SoyaSNP array2. However, unlike the tree topology constructed
from 180K SNP array data that had some ascertainment bias that
favored selection of G. max soybean SNPs21, branch length dif-
ferences between G. max and G. soja in our phylogenetic tree
(Fig. 1) reflected almost two times higher nucleotide diversity (π)
in G. soja (0.0023) than G. max (0.0012) in our 781 soybean
genome population with a G. soja level (0.0020) in hybrid sam-
ples. The results indicate that, consistent with previous observa-
tions12,22, roughly half of the genetic diversity has been lost
during domestication from wild (G. soja) to domesticated

Fig. 1 Neighbor-joining tree of the 781 soybean accessions. The
accessions were divided into four color lines: Glycine max is red, most of
Glycine soja black, G. soja collected from the middle region of the Yellow
River basin orange, and hybrids blue.
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soybean, which supports the occurrence of a bottleneck in the
genetic pool during the soybean domestication process.

Genome-wide profiling of variants was performed on the
Williams 82 reference genome to reveal diversity patterns in
soybean (Fig. 2). Historical recombination rates (ρ) varied
substantially along chromosomes, consistent with observations in
other plants23,24. All chromosomes had lower recombination near
the centromere repeat regions, which are presumed to be within
pericentromeric regions spanning more than 10Mbp, relative to
that in euchromatin regions. This pattern of recombination
frequency distribution has been well supported experimentally
by studies of multi-parental maize mapping populations23,25,
although recombination rates were detected to be almost entirely
suppressed in pericentromeric regions in those mapping popula-
tions. With available estimates of the recombination rate (R) from
four soybean inter-crossed bi-parental populations, which cap-
tured ~38,000 meiotic crossovers26, we compared our estimates of
historical recombination rates with empirical estimates of the
recombination rate. Overall, R and ρ were moderately correlated,
suggesting that our historical recombination rate estimates inferred
on the basis of the SNP distribution likely reflected naturally
occurring recombination patterns (Spearman’s correlation coeffi-
cient= 0.256, P= 7.945e−16).

The overall chromosomal distribution patterns of gene density,
SNP density, indel density, and genomic evolutionary rate
profiling (GERP) scores were similar to those of recombination
rates (Fig. 2). A detailed description of GERP scores is provided
below. The patterns of these variables we observed across the
genome were significantly correlated, with the strongest correla-
tion between gene density and GERP score density (Supplemen-
tary Table 2) as has been reported in other plant genomes27,28.
We then estimated the patterns of linkage disequilibrium (LD),
which is strongly influenced by the mutation and recombination
history among many factors. LD (r2) decay was faster in G. soja
than G. max (Supplementary Fig. 9). LD decreased to half of its
maximum value at ~11 kb in wild soybean (G. soja, r2 < 0.2 within
9 kb), similar to those of a previous soybean study12 and
outcrossing wild rice (Oryza rufipogon, ~20 kb) including both
perennial and annual forms29. In contrast, the LD decay was
much slower than that of annual outcrossing wild maize (Z. mays
ssp. parviglumis, r2 <0.2 within 0.1 kb)30. In domesticated
soybean, LD increased to 97 kb similar to that of predominantly
selfing cultivated rice (~123 and ~167 kb in indica and japonica,
respectively)31 but much higher than outcrossing cultivated maize
(r2 < 0.2 in 5.5 kb)19. We found that the local LD of pericen-
tromeric (heterochromatic) regions with ~97 kb of half LD decay
distance was much greater than that of euchromatic regions with
~7 kb in total population (Fig. 2b and Supplementary Fig. 9). In
each of the subpopulations, the half LD decay distances of
heterochromatin regions were at least >11 times greater than
those of euchromatic regions. Thus, the chromosomal distribu-
tion pattern of LD is negatively correlated with historical
recombination rate, gene density, SNP density, indel density,
and GERP score (Supplementary Table 2).

Signals of selection for domestication in soybean. Our dataset
derived from a collection of 418 domesticated accessions and a
comparable number of wild accessions provides an enhanced
opportunity for the scanning of selective sweep regions during
domestication in soybean. To identify potential selective signals
during soybean domestication (wild versus domesticated soy-
bean), we scanned genomic regions with extreme allele frequency
differentiation over extended linked regions using a likelihood
test (the cross-population composite likelihood ratio, XP-CLR)32.
A total of 183 domestication-selective sweep regions were

detected (Fig. 3). Selective sweep regions had a mean size of 368
kb containing an average of 20 genes and accounted for 6.4% of
coding sequence (CDS) in the soybean genome (7,215,740 bp of
CDS for selective sweeps versus 104,886,718 bp CDS for the rest
of the genome). The detected selective sweeps showed multiple
signatures of selection, including elevated differentiation and an
expected profile of nucleotide diversity reduction in domesticated
soybean relative to wild soybean (Fig. 3). More selective sweep
regions were detected on chromosomes 3, 5, 11, 13, and 20,
consistent with the previous results that used small numbers of
wild soybean accessions12,13. A notable exception is two adjacent
large selective sweep regions spanning roughly 13Mb at the
pericentromeric region of chromosome 1. In this region, both
domesticated and wild soybean had low nucleotide diversity
reflecting a general pattern of pericentromeric regions in plant
genomes. However, Tajima’s D values for the domesticated soy-
bean population were highly negative, indicating that this large
pericentromeric region might have rapidly accumulated rare
alleles after selection of key loci for domestication.

When peaks on soybean chromosomes identified as putative
selective sweeps were compared with domestication-related QTL
from a recent comprehensive study using soybean bi-parental
(domesticated × wild) populations (Fig. 3 and Supplementary
Note 4)33, the comparison supported the selective sweeps
identified in this study. Out of 42 chromosomal regions
containing unique and overlapping QTL, about 70% corre-
sponded to chromosomal regions detected by XP-CLR. Among
17 QTL that had more than 5% of phenotypic variance explained,
13 corresponded to the selective sweep regions that were detected
by XP-CLR. However, because several QTL spanned more than
20Mb around pericentromeric regions that have low recombina-
tion rates, these comparisons should not be considered conclusive
but rather suggestive of findings for further study. Two (GmHs1-1
and Bloom1) of several genes implicated in having involvement in
soybean domestication were supported by XP-CLR scores and
frequency comparison of major domesticated alleles as weak
domestication genes or hitchhikers (Supplementary Data 2 and
Supplementary Note 4).

Reduced genetic load in selective sweep regions. Deleterious
alleles that are tightly linked to the strongly selected allele in
selective sweeps may be less effectively purged relative to those on
neutral backgrounds. Studies with several predominant or obli-
gate outcrossing species27,34–36 showed that the process of
domestication has resulted in an increased number of deleterious
variants in the domesticated genome, supporting the cost of
domestication hypothesis37,38. Here, to quantify the extent of
purifying selection on deleterious alleles in the self-compatible,
predominantly selfing plant soybean, we used GERP scores39.
GERP scores were obtained by computing constraint for indivi-
dual positions across the soybean genome on the basis of com-
parative genomic approaches using the whole-genome sequence
alignment of 12 species including six species in the family
Fabaceae. GERP identified 237.5 Mb of the soybean genome
(24.3%) as evolutionarily constrained (GERP > 0), and 111.5 Mb
(11.4%) as highly evolutionarily constrained with GERP > 2,
which is frequently used as a cut-off GERP score to identify the
deleterious mutations in constrained portions of the genome in
previous studies27,34,40 (Supplementary Fig. 10). As expected
from the distribution pattern of GERP scores on chromosomes
(Fig. 2), we found that 41.1% of the 1,187,829 total SNPs and
48.9% of the 742,149 nonsynonymous SNPs including stop
mutations inside CDS were also highly evolutionarily constrained
(GERP > 2) in soybean. As a result, we defined a set of 742,149
deleterious mutations with GERP > 2 for exploring the mutation
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Fig. 2 Genomic landscape of soybean. a Chromosomes based on the Williams 82 reference genome sequence v. Wm82.a2.v1 (a). Centromere repeat
regions are indicated by gray bands. Gene density heatmap (b). SNP density (c). Indel density (d). Population recombination rates calculated in 1Mb
windows (blue= historical recombination rate and red= estimates of recombination rate from mapping populations (e). SV density (f). Average GERP
score density (>0), with dark blue of high GERP score (g). All window sizes are 100 kb except recombination rates. b Mean LD scores estimated with a
1Mb window.
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burden in domesticated and wild soybean populations. To
examine the impact of the improvement process, the domes-
ticated soybean accessions were further divided into landraces
and improved lines. To allow for a comparative analysis, we used
Phaseolus vulgaris and Vigna radiata genomes, which diverged
from soybean 19 million years ago41, as outgroups to identify
derived deleterious alleles in soybean. Results showed a 7.1%
decrease (P < 2.2e−16) of overall deleterious alleles in landraces
relative to wild soybean accessions and 1.4% additional decrease
(P= 0.0003) in improved lines (Fig. 4a).

In comparisons between domesticated and wild soybean
accessions, we found that domesticated soybean showed 11.7%

(landraces) and 11.8% (improved lines) fewer (P < 2.2e−16,
Fig. 4b) deleterious alleles in sweep regions. Thus, the decrease in
deleterious alleles has likely been enhanced by artificial selection,
suggesting the decreased mutation load we observe in soybean
has been driven by reduced hitchhiking of deleterious alleles in
linkage regions associated with the selection of specific genes.
However, total mutation burden between landraces and improved
lines was significantly different (P= 0.0003, Fig. 4a) while there
was no significant difference between the two groups in selective
sweeps (P= 0.97, Fig. 4b), indicating improvement selection
outside of selective sweeps during modern soybean breeding. In
addition to the comparison between the domesticated and wild

Fig. 3 Genomic landscape of selection signals for domestication in soybean. Chromosomes based on the Williams 82 reference genome sequence v.
Wm82.a2.v1 (a). Centromere repeat regions are indicated by gray bands. Nucleotide diversity (π) in 1 Mb windows for each soybean subpopulation
(red=G. max, dark blue=G. soja, green=hybrid) (b). Tajima’s D for each soybean subpopulation (red=G. max, dark blue=G. soja, green=hybrid) (c).
Distribution of genome-wide likelihood (XP-CLR) values for selection during domestication (d). Plot is based on XP-CLR scores of 100-kb block with 10-kb
sliding windows. Domestication quantitative trait loci (QTL) and genes on chromosomes as detected in a large mapping population Williams 82 × PI
47975233 (QTL= blue bands and genes= dark blue bands) (e). Gene names are also shown.
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populations, within-population comparison of sweep regions with
the rest of the genome in deleterious alleles showed that selective
sweeps exhibited 9.0% (landraces) and 7.6% (improved lines)
decreases (P < 2.2e−16, Fig. 4c) in deleterious alleles in
domesticated soybean. However, in wild soybean, levels of

deleterious alleles in regions corresponding with selective sweeps
were only slightly lower (2.4% decrease of mean) than those in the
rest of the genome (P= 5.4e−13, Fig. 4c). Collectively, these
results suggest that haplotypes containing fewer deleterious alleles
have been favored during artificial selection.
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Patterns and levels of extant genetic diversity in crop plants are
strongly influenced by domestication history42. We inferred the
demographic history of the soybean populations using the
pairwise sequentially Markovian coalescent (PSMC)43. Because
both domesticated and wild soybean are a predominantly selfing
species, we adopted a strategy of creating pseudodiploid genomes
from data for two individuals, similar to what has been done in
other inbreeding species such as African rice44 and Caenorhab-
ditis45. Using this approach, we found that domesticated soybean
experienced a continual reduction of effective population size
(Ne) starting ~15,000 years ago until its nadir from ~5000 to 9000
years ago (Fig. 4d), which corresponds to the time of
domestication1, and is followed by rapid population growth.
The bottleneck sizes ranged from 9000 to a minimum of 3500.
However, no severe bottleneck was evident in wild soybean. This
severe bottleneck during the domestication of soybean is similar
to those observed in other annual crop species35,36,44,46.

Although we used a set of nonsynonymous SNPs with GERP >
2 to estimate mutation load, there were ~0.4 million synonymous
SNPs with GERP > 2 detected in CDS in this study. Even though
synonymous SNPs are largely ignored to be deleterious in
mutation load studies, numerous studies have shown that codon
bias, which refers to the uneven use of synonymous codons in the
transcriptome, serves as a secondary genetic code47,48. A GERP
score of 4 was also suggested as a stricter cut-off for deleterious
alleles34,40. When we estimated mutation load using SNP subsets
divided by these criteria such as nonsynonymous vs. synonymous
and 2 < GERP < 4 vs. GERP > 4 and then compared mutation
burden among landrace, improved, and wild soybean popula-
tions, the results showed that the overall difference in patterns of
mutation load were the same as those from the criteria of
nonsynonymous SNPs with GERP > 2 with different percentages
of differences (Supplementary Fig. 11).

We also estimated the mutation burden in domesticated and
wild soybean populations using 315,029 nonsynonymous deleter-
ious SNPs defined by SIFT score <0.05 with the correction of
reference bias (Supplementary Fig. 12)49. We observed similar
patterns in the mutation load among subgroups to those of
GERP-based estimation (Supplementary Fig. 13). However, even
with the correction, an ~37–68% additional decrease of overall
deleterious alleles in domesticated relative to wild soybean
accessions were observed. Interestingly, the mutation load in
Williams 82K, a variant of the soybean reference Williams 82,
based on the SIFT scores was the lowest among all the estimated
soybean accessions, which is similar to the results of a recent
report that the number of SIFT deleterious alleles of the reference
genomes were the lowest among the estimated 15 barley and eight
soybean accessions50, thereby indicating that the reference bias
correction was not sufficient. However, the mutation load in
Williams 82K based on the GERP scores for which we omitted
the soybean reference genome when computing the GERP scores
to prevent any reference bias was the fifth smallest among all the
estimated soybean accessions. These results are somewhat
consistent with a previous study51 that SIFT is more susceptible

to reference bias compared to the other approaches including
GERP. This notion was further supported by our observation of
properties of candidate domestication genes whose nonsynon-
ymous alleles have been almost fixed in the domesticated
population (allele frequency >0.99) and rare in the wild
population (allele frequency <0.01) (Supplementary Data 3 and
Supplementary Note 5). We collected 29 such candidate
domestication genes, two of which contained multiple such
SNPs. Chromosomal locations of the candidate genes collected
supported our XP-CLR results because 24 of the 29 genes located
at the selective sweeps identified in this study and the other five
located within 200 kb from the identified selective sweeps.
However, of the 29 genes, 26 were predicted to contain tolerated
SNPs with SIFT scores >0.05. In other words, the tolerated alleles
of the 26 genes that have likely been under selection were not
used to estimate the mutation load defined by SIFT score.
However, 21 of the 29 genes had GERP scores >2, which is our
cut-off score for deleterious alleles, and 24 genes had derived
reference allele status.

Uses of the haplotype dataset for genomic association. A major
objective for sequencing a large collection of accessions is to
impute genotypes to an even larger panel of diverse accessions for
improving the statistical power and resolution of GWAS. We
evaluated the usefulness of our generated dataset for GWAS by
imputing SNP genotypes to an existing SoySNP50K genotype and
phenotype dataset for dissecting the genetic architecture of seed
protein and oil content in a large mapping population9,18. In
soybean, numerous linkage analysis and GWAS efforts have been
conducted for these two important traits52,53.

We re-analyzed the previous GWAS of seed protein and oil
because of a substantial update of the soybean reference genome
version and to eliminate many nearly identical accessions in the
original 12,116 soybean accession set (Supplementary Figs. 14
and 15, Supplementary Table 3, and Supplementary Note 6). We
then imputed 4,467,134 SNP genotypes to 8844 non-redundant
soybean accessions with 36,489 SNPs from the SoySNP50K data
(Supplementary Fig. 16 and Supplementary Note 7). The
3,082,234 SNPs with accuracy of median Beagle r2 of 0.95 after
filtration based on the imputation accuracy assessment were used
for GWAS. The GWAS results of the two traits from conducting a
linear mixed model (LMM) with the imputed SNP dataset on the
8844 accessions were quite similar to our re-analysis results based
on the existing SoySNP50K array genotype and phenotype dataset
(Fig. 5 and Supplementary Fig. 17). As expected, major peaks
were identified for both seed oil and protein. Interestingly, more
than 10 novel minor significant peaks such as those on
chromosomes 2, 4, and 10 appeared for each of the oil and
protein traits and in multivariate GWAS. Although they were
clearly found, not a single SNP at these regions reached genome-
wide significance in the previous GWAS with the SoySNP50K
genotype dataset18,53. However, when we performed a multi-
locus mixed-model (MLMM) analysis on the same dataset, none

Fig. 4 Box-and-whisker plot distributions of mutation burden in domesticated and wild soybean populations and demographic history of soybean. Each
box represents the median and interquartile range (IQR). The whiskers represent the range of 1.5 times IQR and the open circles beyond the whiskers are
outlier values. a Total mutation burden in individual domesticated (Glycine max, landrace cultivars= 332 and improved lines= 86) and wild (Glycine soja,
n= 345) soybean accessions. b Mutation burden among landrace, improved, and wild soybean accessions in domestication sweep regions. c Mutation
burden in wild, landrace, and improved soybean accessions between domestication-selective sweeps and control regions (rest of the genome). Vertical
axis shows number of deleterious alleles per 100-kb CDS length. In panels a–c, the subgroups in each of plots are significantly different between one
another with P < 2.2e−16 in two-sided t-tests or Tukey multiple comparison tests except deleterious burdens between landrace and improved soybean
accessions with P= 0.0003 (a) and with P= 0.97 (b) and deleterious burdens with P= 5.4e−13 for deleterious burden in wild soybean accessions (c).
Source data are provided as a Source Data file. d PSMC-inferred demographic history of domesticated (blue lines) and wild (red lines) soybean. Each line
represents the change in the past effective population size through time inferred for a pair of genomes. Both the x and y axis are log10 scaled.
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of the novel minor signals remained significant (Supplementary
Fig. 18). This suggests that the minor signals are very weak effects
not retained in the optimal model or the result of complex long-
range LD patterns.

For the sake of simplicity for examining any improvement of
our imputed GWAS, we focused on five significant major peaks
on chromosomes 5, 8, 13, 15, and 20 from multivariate LMM
(mvLMM) (Fig. 5a), which were supported by both the LMM and
MLMM approaches. Similar to the previous GWAS that used
imputed datasets17,54,55, the general width and shape of the peaks
detected from unimputed data remained largely the same as those
from the imputed data with slightly more dense and broader
peaks (Fig. 5b and Supplementary Fig. 19). The number of

significant SNPs increased, and the most significant SNPs showed
improvement in signal strength and shifted in position in GWAS
with imputed data with a notable example of the major peak on
chromosome 13. Among genes that have been reported as
regulatory genes for oil content in soybean, the GmSWEET39
(Glyma.15g049200) gene provided an opportunity to examine the
improvement of our imputed GWAS. GmSWEET39 was cloned
as a gene controlling seed oil content by selection during soybean
improvement and was suggested as the causal gene for the major
association peak on chromosome 1556. The most significant SNP
did not shift in a notable manner (Fig. 5c) and the SNP is not
located at the genic region of GmSWEET39. The most significant
SNP does not necessarily correspond with variants from a causal

Fig. 5 Comparison of mvMLM-based GWAS for oil and protein contents using unimputed and imputed genotype data. a Results using the original
genotype data from SoySNP50K array. Horizontal red line represents 5% significance thresholds corrected for multiple testing using Benjamini–Hochberg. Five
major peaks are indicated by dashed vertical lines for comparison. b Results using 3.1 million SNP imputed data that imputed SNP data from 418 soybean
genomes into SoySNP50K data. c Comparison of mvMLM-based GWAS results using unimputed (SoySNP50K) and imputed genotype data at a major peak
on chromosome 15. A pale blue box indicates a chromosomal region of oil content regulator GmSWEET39 that includes its genic region and 5 kb of each of its
5′ upstream and 3′ downstream regions. SNPs located in the GmSWEET39 region are highlighted by purple dots. A single peak SNP for the SoySNP50 data and
unique single peak SNPs for each of protein (p) and oil (o) for the imputed data identified from the MLMM analysis are also highlighted by green dots.
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gene of an association peak, as notably shown by a rice GWAS57.
Interestingly, the GmSWEET39 (Gm15:3,875,081..3,876,544) gene
is located in a newly observed association region (~7.0 kb) with
34 significant imputed SNPs (higher than –log10(p-value) of
27.86) in the middle of the chromosome 15 peak, which was non-
significant valley in the GWAS with the original unimputed data
(Fig. 5c). Because the GmSWEET39 gene would not have been
regarded as a candidate causal gene in the GWAS with
unimputed data, this observation serves as apparent evidence
that GWAS with imputed data had the potential benefit of better
pinpointing candidate causal genes in soybean.

Discussion
The discovery and characterization of extensive genome-wide
genetic variation in the 781 diverse soybean accessions containing
an enhanced number of wild soybean accessions provided us with
an opportunity to find unique features of plant genomes that were
largely due to both wild and domesticated species being pre-
dominantly self-pollinating. The most striking feature is that
mutation burden was reduced in domesticated relative to wild
soybean accessions. During the past decade, studies of deleterious
alleles identified from genome-wide fine genetic variation data of
major crops including rice, maize, sorghum, cassava, and grape as
well as of dogs have revealed that more deleterious alleles have
remained in their domesticated accessions27,34–37,58 (see ref. 42

for a review) except a recent report of sorghum28. However, those
well-characterized major crops have different reproduction
modes from soybean. Both wild and domesticated species of
maize are predominantly outcrossing. Domesticated species of
rice and sorghum tends to be selfing while their wild types are
predominantly outcrossing. Both wild and domesticated species
of cassava and grape are outcrossing; however, cultivated types
are predominantly clonally propagated. Nonetheless, genome-
wide patterns of soybean variation were similar to those of other
major crops including the well-characterized maize, although the
genome-wide nucleotide diversity and half LD distance estimates
appeared to be unique in soybean. Moreover, soybean showed a
similar demographic history as the other major crops investi-
gated. Our results of total mutation burden comparison are in
contrast to the previous studies from cassava, grape, maize, rice,
and sunflower27,34–37,58. Interestingly, our results are similar to a
substantial decrease of the homozygous-mutation burden in
domesticated cassava and grape accessions, compared with pro-
genitors27,36. In selfing taxa Arabidopsis, selective sweeps of
extreme haplotype sharing were observed likely due to removal of
variation59. Decrease of overall mutation burden from landraces
to improved lines, which are inbreds, was also observed between
inbred elite maize lines and their comparable landraces19,60. This
decreasing trend of the homozygous-mutation burden somewhat
reflects the behavior of recessive model for human populations
that leads to a slight decrease in recessive load49. Taken together,
our results suggest that the selfing reproduction mode of both the
domesticated and wild forms contributed to reduction in muta-
tion burden in domesticated relative to wild soybean accessions5.

The findings from this study may be extended to the char-
acterization of wheat and barley61,62, which have the same
reproduction mode as soybean but whose genome analyses have
lagged behind due to their huge genome sizes. While there has
been the lack of quantitative comparisons of deleterious alleles
between domesticated and wild populations of these crops,
deleterious alleles were identified from 8 soybean and 15 barley
accessions and then their enrichment within genes associated
with phenotypic traits were shown50. For wheat, exome capture
sequence data of 890 diverse landrace and cultivar accessions
were collected and the identified variants revealed the reduced

deleterious allele burden by introgression and selection for
improvement and environmental adaptation in cultivars com-
pared with landraces63.

Of the originally resequenced 855 samples, we excluded
74 samples (8.65%), which showed high heterozygosity and low
inbreeding coefficient, based on the presumed reproduction mode
of soybean. The 781 soybean accessions were clearly divided into
domesticated and wild accession groups with a distinct sub-
grouping of wild accessions according to geographic collection
sites, in a similar fashion to other major crops. However, com-
pared to maize landraces that showed only 17% diversity reduc-
tion from their wild progenitor64, a drastic reduction in
nucleotide diversity (∼48%) was observed during the transition
from wild to domesticated soybean. This likely reflects different
reproduction modes between selfing soybean and outcrossing
maize. The overall chromosomal distribution patterns of varia-
tion of several variables including recombination, gene density,
and LD were also quite similar to those observed in other
major crops.

A diverse collection of 345 wild soybean accessions were
analyzed against 418 domesticated accessions to detect selective
signals for soybean domestication. Although many canonical
domestication genes have been cloned from major grass crop
species, such knowledge has not been translated well to domes-
tication research in eudicot seed crop species including soybean.
In major crop species, cultivated species and their progenitors
usually show distinct morphological and physiological differences
in so-called domestication syndrome traits such as seed size,
shattering, seed dormancy, flowering time, and viny growth habit.
Soybean is not an exception. However, organs and tissues where
several domestication traits are expressed differ between soybean
and grasses. For example, shattering is related to the pod in
soybean, but to pedicel in rice. Unfortunately, our analysis shows
that although two of them might be regarded as weak domes-
tication genes, none of the soybean domestication genes cloned
thus far should be regarded as a canonical domestication gene.
However, in this study, we reported many candidate canonical
domestication genes whose alleles are almost fixed in domes-
ticated soybean and are rare in wild soybean.

In this selfing species, overall deleterious alleles among land-
races relative to wild soybean accessions, which were defined by
GERP scores, have been moderately reduced by up to almost 7%,
similar to the observation in sorghum28. Mutation burden was
further decreased in improved lines from modern soybean
breeding. The results are in stark contrast to the observations that
deleterious alleles (the genetic load) that happen to be present in
the neighborhood background of the strongly selected allele in the
presence of selective sweeps may become more prevalent than
those in other neutral backgrounds37,38. However, a direct com-
parison in terms of the accumulation of deleterious alleles may be
difficult because of different reproduction modes between soy-
bean and other well-studied crops. Purging of deleterious alleles
from the domesticated soybean has been further enhanced in
selective sweep regions. Unlike outcrossing species that main-
tained accumulated deleterious mutations in the heterozygous
state, this predominantly selfing plant may have been less toler-
able to the accumulation of deleterious alleles, eventually leading
to the reduction of diversity. Introgression of untapped variation
in wild soybean should be an important objective for the future
breeding of soybean. Most of the deleterious alleles should be
prioritized for elimination through breeding process, although a
handful of deleterious alleles may provide beneficial effects for
soybean growth or yield in crop fields. Information obtained here
should help better design crossing and selfing efforts to efficiently
eliminate deleterious alleles in a breeding program to select
agronomically important untapped genes from wild soybean.
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Finally, we have shown that our high-quality map of SNP
variation in soybean could be used as a reference panel for the
imputation of genotypes to improve GWAS of oil and protein
traits. In addition to those unique genome variation features due
to selfing and being a eudicot seed crop species that suggest
soybean as a model for other such crops, our imputation results
suggest that the soybean variation map and methods developed
here can be used in a direct manner to accelerate genetic variation
discovery in this economically important crop.

Methods
Plant materials and sequencing. We initially selected 818 accessions based on the
180K Axiom® SoyaSNP array genotyping data of ~4400 diverse soybean accessions,
most of which were collected from South Korea. These diverse soybean accessions
also contained representatives from the worldwide distribution of soybean2. Soy-
bean plants were grown in the Ochang field of the Korea Research Institute of
Bioscience and Biotechnology, Cheongju, Korea. Although more than two times of
single plant selection for the SoyaSNP array genotyping had been performed2, we
collected young leaves from a single plant of each accession and then extracted
genomic DNA using the cetyltrimethylammonium bromide (CTAB) method65.
DNA sequencing was performed at LabGenomics (Seongnam) or Macrogen
(Seoul) companies in Korea. Paired-end sequencing libraries were constructed with
an insert size of 500 bp using a TruSeq DNA PCR-Free kit (Illumina, San Diego,
CA, USA) according to Illumina library preparation protocols. Libraries were then
sequenced using Illumina HiSeq 2500 or 4000 platforms with 2 × 151-bp paired
reads to a target coverage of 10X. Some accessions that showed high heterozygous
variant levels were sequenced multiple times. We also added resequencing data of
16 accessions determined in our previous studies11,66 except IT182932 that was
newly sequenced in the present study. Consequently, resequencing data from a
total of 855 samples were used for initial variant calling in this study (Supple-
mentary Data 1).

Read mapping and variant calling. Short paired-end reads of 855 samples were
quality checked using FastQC (version 0.11.3) (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). We then essentially followed procedures descri-
bed in the Genome Analysis Toolkit (GATK) Best Practices for data pre-processing
and variant calling67,68. We used BWA (version 0.1.12) with default parameters
except for –M option69 to map genomic reads from each accession against soybean
Wm82.a2.v1 reference genome assembly8. Alignments were further checked for
PCR duplicates using Picard tools (version 1.134) (http://picard.sourceforge.net/).
We performed sorting operation, base recalibration, per-sample and joint variant
callings, and variant filtration using GATK (version 4.0.1.2). Known variant sites
for soybean extracted from NCBI dbSNP Build 144 (https://www.ncbi.nlm.nih.gov/
projects/SNP/snp_summary.cgi?build_id=144) were used for base recalibration.
Raw variant calling data were divided into SNPs and indels with SelectVariants
function of GATK (v. 4.0.1.2). A total of 62,987,283 SNPs and 8,567,041 indels
were identified from the analyses of the genomes of 855 samples. Quality filtering
of raw SNP calls was performed using VariantFiltration in GATK according to the
following criteria: ReadPosRankSum of <−2.0, MQRankSum <−2.0, polymorph-
ism confidence scores (QUAL) < 30.0, genotype call quality divided by depth (QD)
< 3.0, Phred-scaled P-value of Fisher exact test for strand (FS) > 30.0, mapping
quality (MQ) < 30.0, total depth of coverage (DP) < 100, genotype-filter-expression
depth of coverage (DP) < 5, and genotype-filter-expression genotype call quality
(GQ) < 10.0. Bi-allelic variants were then selected using VCFtools (version 0.1.15)
70. To exclude erroneous variants in repetitive regions, variants with high mapping
depth (>4X reads per sample, where X was mapping depth) in each sample were
masked. Allele balance (AB) was calculated and variants with AB < 30 in hetero-
zygous genotypes were masked71. The VCFtools was then used to remove markers
that were monomorphic and markers with call rates <50%. Up to this stage of
filtration, 36.8 millions of SNPs were defined as candidate variants. In the 62.9
million raw SNP calls, some samples showed more heterozygous than homozygous
non-reference alleles. Those samples still showed high heterozygous rates in the
36.8 million candidate SNP set. Thus, 66 samples that contained higher than two-
third heterozygous to homozygous non-reference SNPs ratios among the samples
with more than 0.5 million heterozygous SNPs in the raw SNP call set were
excluded from further analyses. The inbreeding coefficient per individual was then
calculated as the difference between the expected and the observed heterozygosity
standardized by the expected heterozygosity under Hardy–Weinberg. Based on the
assumption that pure inbred lines would show inbreeding coefficients of near 1.0,
we additionally excluded eight wild samples that had <0.8 inbreeding coefficients
per individual in the 36.8 million candidate SNP set. Finally, 781 accessions were
determined as our soybean genome variation study set. To perform population
analyses using a set of 781 accessions, we further filtered these candidate SNPs by
removing SNPs with >20% missing calls and >10% heterozygosity and mono-
morphic SNPs and then removing SNPs with minor allele frequency (MAF) < 1%.
Finally, we retained 10,597,683 high-quality SNPs for population analyses of the
genomes of 781 accessions except mutation load analysis, which used 30,753,511
SNPs without 1% MAF filtration. Filtering of raw indel calls was performed

according to the following threshold criteria: ReadPosRankSum of <−20.0, QUAL
< 30, QD < 2.0, and FS > 200. Bi-allelic variants were then selected using VCFtools
(version 0.1.15)70. A resultant set of 5,717,052 indels was further filtered to obtain
high-quality indels using the same cut-off criteria as the SNP filtration. From this
analysis of the genomes of 781 accessions, a filtered set of 1,436,499 indels were
defined. The indels were then divided into small indels and structural variants (SV)
with a cut-off of sequence length of 50 bp.

The Williams 82 reference genome assembly was constructed from sequencing
of multiple individuals that contained heterogeneous regions72. Genetic
polymorphisms identified in Williams 82K, a variant of Williams 82, across the
homogeneous chromosomes of the Williams 82 reference genome were used to
identify the false-positive error rate of soybean haplotype data. We validated our
soybean haplotype data by estimating the concordance rate in genotype calls
between the soybean haplotype data and 180K SoyaSNP array datasets2.

Population structure and diversity pattern inference. Principal component
analysis (PCA) was conducted to summarize the genetic structure and variation
present in the 781 accessions using smartpca function in Eigensoft v7.273,74. We
plotted the first three PCs. We further used the model-based, Bayesian clustering
software FastStructure v 1.075 to estimate the population structure. FastStructure
was run on default settings with 10-fold cross-validation for subpopulations (K)
ranging from K= 2 to 12. Numbers of subpopulations were defined using the
marginal likelihood function. We plotted the membership coefficient using DIS-
TRUCT v1.176. A neighbor-joining tree was constructed by MEGA777 under the p-
distances model.

Nucleotide diversity (π)78, SNP density, and Tajimas’s D79 for 100 kb were
calculated with the 10.6 million SNPs using vcftools --window-pi 100000,
--SNPdensity 100000, and --TajimaD 100000, respectively70. Indel and SV
densities for the bi-allelic variants were calculated using vcftools --SNPdensity
100000. Population recombination rates (Rho, ⍴) were estimated in the entire
panel using the machine learning R package FastEPRR v1.080. Linkage
disequilibrium (LD) decay was calculated using PopLDdecay v3.31 with -MaxDist
1000 -MAF 0.05 -Miss 0.1 parameters81. Measures of LD (r2) were calculated for
each subpopulation using Plot_MultiPop.pl with -bin1 100 -bin2 1000 -break 5000
-keepR parameters implemented in PopLDdecay81. The r2 values were also
calculated for the entire population for euchromatic and heterochromatic regions,
which were previously defined by the regions with high and low recombination
rate82. Pairwise LD scores were calculated from the unimputed 10.6 million SNP
dataset using the genome-wide complex trait analysis (GCTA) suite (version
1.92.1) with default settings83,84. Circos v0.69-685 was used to display distributions
of estimated variables on the Williams 82 reference genome ver. Wm82.a2.v18.

Genome scan for selective signals. To scan selective signals over the soybean
genome, we used a widely used cross-population composite likelihood ratio test
(XP-CLR) (version 1.0)32 updated by Hufford et al.64. XP-CLR uses allele fre-
quency differentiation between populations. A total of 763 soybean accessions
consisting of 418 domesticated and 345 wild accessions were used for detecting
selective sweep regions. Missing variants in our haplotype map data were imputed
using the Beagle v5.086 with the default option. Evidence for selection of domes-
tication across the genome was evaluated by comparing domesticated versus wild
soybean genomes. Individual SNPs were assigned at positions along with a
recombinant inbred genetic map derived from a cross between G. max var. Wil-
liams 82K and G. soja var. IT18293226. Markers located on the insertion of
unanchored scaffolds or different chromosome segments as well as on chromo-
some segments whose physical or genetic orders were not collinear between the
reference genome and our genetic maps were excluded from the genetic map.
Coordinates of the soybean reference genome assembly Wm82.a2.v1 were applied
to calculate genetic per physical distance between markers in the genetic map. XP-
CLR was performed with the following criteria: -w1 0.0005 200 100 –p1 0.7. In
other words, XP-CLR scores of 100 bp windows were calculated for a maximum of
200 SNPs per 0.05 cM genetic window. Markers with a correlation level >0.7 were
down-weighted. Manhattan plots of XP-CLR scores were constructed using
qqman87 in R package or using Circos85. Windows with >89.4 of XP-CLR values,
accounting for 5% of the genome, were considered as selective sweep regions.
Groups of adjacent windows with XP-CLR values not containing more than one
window below this threshold were defined as a single sweep region. We assigned
the gene closest to the window with the maximum XP-CLR score in each selective
sweep region as the most likely candidate.

Determination of effects of nucleotide variants. To predict functional effects of
variants, we used Sorting Intolerant From Tolerant 4G (SIFT 4G)88 to annotate the
30.8 million SNP dataset. To create a soybean database, uniref90 (https://www.
uniprot.org/, download date: 9 February 2019) was used as a reference protein set.
Annotation of G. maxWm82.a2.v1 was downloaded from EnsemblPlants (ftp://ftp.
ensemblgenomes.org/pub/plants/release-44/gff3/glycine_max). Gff3 format was
converted to Ensembl GTF format. Soybean SIFT 4G database was constructed
using SIFT4G_Create_Genomic_DB implemented in SIFT 4G. SIFT scores ranged
from 0 to 1, and any nonsynonymous position with a SIFT score <0.05 was con-
sidered to be putatively deleterious.
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Genomic evolutionary rate profiling (GERP). We estimated the individual bur-
den of deleterious alleles based on the genomic evolutionary rate profiling (GERP)
scores39 for each site in the soybean genome. GERP score reflects the strength of
purifying selection based on constraint in a whole-genome alignment of multiple
plant species. For the whole genome alignment, we used the LASTz/MULTIz
approach (http://genomewiki.ucsc.edu/index.php/DoBlastzChainNet.pl) described
for the alignment of 20 angiosperm genomes to A. thaliana reference89 with the
following minor modifications. We aligned 12 soft repeat-masked genomes of
Arabidopsis thaliana (TAIR10.1), Cajanus cajan (V1.0), Lupinus angustifolius
(v1.0), Medicago truncatula (4.0), Oryza sativa (IRGSP_1.0), Phaseolus vulgaris
(1_0), Populus trichocarpa (v3), Prunus persica (v2), Vigna radiata (ver6), Zea
mays (v4) from RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/), and Vitis
vinifera (V2) from URGI database (https://urgi.versailles.inra.fr/Species/Vitis) to
the G. max (Wm82.a2.v1) genome using LASTz v1.04.00 and MULTIz v012109.
Topology of the 12 species of interest was extracted from the whole phylogenetic
tree using ete3 toolkit (v3.1.1)90. The phylogenetic tree was downloaded from
Phylogenetic Resources files on Dryad database (https://doi.org/10.5061/
dryad.63q27.2)91. The branch length (substitution per site) of the phylogenetic tree
was calculated using phyloFit v1.592 with four-fold degenerated sites of chromo-
some 1 in G. max. All alignment files (maf files) were merged using MULTIz and
converted to fasta format using maf2fasta function. Alignment gaps (−) in the
reference genome (G. max) and sequences of the same position in other genomes
were removed. Finally, we calculated GERP scores using gerpcol with –j option
from GERP++39. The -j option projected out the soybean reference sequence to
prevent any bias in the estimates using GERP, a method that predicts functional
consequences based on phylogenetic information34,40. Uncalculated positions were
filled with 0 because neither GERP score of N nor n sequence position in G. max
genome was calculated.

Mutation load estimation. We estimated genome-wide mutation load using
numbers of derived deleterious alleles identified in soybean accessions based on
GERP or SIFT scores. From ~30.8 million SNPs, we extracted 1,187,829 SNPs
located inside the coding regions of soybean genes (CDS). We then polarized
derived and ancestral alleles for the 1,187,829 CDS SNPs using Phaseolus vulgaris
(1_0) and Vigna radiata (ver6) genomes as outgroups. For each variant, the cor-
responding nucleotides in both the outgroup genomes were identified based on the
whole-genome alignment for the GERP score calculation above. We then used the
est-sfs (v2.03) software93 to infer the probability of the derived versus ancestral
allelic state at a polymorphic site. For estimation of GERP-based mutation load, we
categorized these mutations into four categories of deleterious variants: non-
synonymous SNPs (stop mutations were included in nonsynonymous mutations in
this study) with moderately-conserved deleterious mutations (2 < GERP > 4),
synonymous SNPs with moderately-conserved deleterious mutations, nonsynon-
ymous SNPs with highly conserved deleterious mutations (GERP > 4), and
synonymous SNPs with highly conserved deleterious mutations. The criterion of
GERP > 2 to determine conservative site was proposed by previous studies27,34,40

based on the distribution of GERP scores. For most of the mutation load analysis, a
combined dataset containing all nonsynonymous SNPs with GERP > 2 was used.
For estimation of SIFT-based mutation load, we referred to nonsynonymous SNPs
with SIFT score <0.05 as deleterious mutations. However, because we also observed
a strong reference bias that sites where the reference soybean genome carries the
derived allele are much more likely to be classified as tolerated than are sites where
the reference is ancestral as reported in human genetics (Supplementary Fig. 12),
we corrected the number of derived deleterious alleles at sites at which the refer-
ence genome carries the derived allele by multiplying the estimated probability
following Simons et al.49. Finally, we summarized the mutation load as the number
of derived deleterious alleles in an accession27,94.

Demographic analysis. We conducted historical demographic analysis with PSMC
(v0.6.5-r67)43, considering each soybean accession as a single genomic haplotype.
Because both domesticated and wild soybean are predominantly selfing species, we
adopted a strategy of creating pseudodiploid genomes from data for two individuals,
similar to those performed in other inbreeding species such as African rice44 and
Caenorhabditis45. Eight samples with >19X genome coverage after removing
duplicate reads for each of domesticated (G. max) and wild (G. soja) soybean were
used to generate pseudodiploid genomes. Each of SNPs in genomes was called using
a SAMtools v1.995 and BCFtools v1.996 pipeline. The soft-masked Williams 82
genome sequence (version Wm82.a2.v1) was used to identify repetitive regions and
mask genotype calls overlapping these repetitive regions. Pseudodiploid was gen-
erated using Seqtk v1.2 (https://github.com/lh3/seqtk). Heterozygous sites were
randomly selected by randbase function and each haploid was merged by mergefa
function. The eight samples for domesticated soybean consisted of four (Fu yang
(30), No. 39 Green, Ji li huang dou, and PI 72227) from China, two (PI87631-1 and
PI87630) from Japan, and two (PI 96786 and PI 458232) from Korea. The eight
samples for wild soybean consisted of four (PI 464937 B, PI 447003 B, PI 483464 B,
and PI 597459 D) from China, two (B07162 and PI 378691) from Japan, and two
(IT182932 and YWS1588) from Korea. Analysis employed default parameters for
the PSMC program. Assuming a mutation rate of 1.5 × 10−8 mutations per
nucleotide per year97 and a generation time of 1 year, we converted scaled popu-
lation parameters into years and Ne. We constructed pseudodiploid genomes for all

28 possible combinations of the eight accessions for each of domesticated and wild
soybean. We excluded 15 pseudodiploids of the 28 wild pseudodiploids from further
analysis owing to spurious PSMC profiles. Most of the 15 pseudodiploids with
spurious profiles were derived from samples within countries. No such spurious
profiles were observed from the domesticated pseudodiploids.

Filtration and imputation of soybean data genotyped using SoySNP50K array.
Genotype data in soysnp50k_wm82.a2_41317.vcf that consisted of 42,291 SNPs
scored on 20,087 germplasm accessions using the Illumina Infinium SoySNP50K
BeadChip9 were downloaded from SoyBase as of 10 June 201998. In this dataset, we
corrected the genotypes of 3494 reverse-oriented SNP sites in Glyma.Wm82.a2. We
removed 96 SNPs presumed to be absent in Glyma.Wm82.a2 because they showed
a base that was different from both reference and non-reference bases. We also
removed 2 mitochondrial DNA SNPs. The resultant 42,193 then underwent further
filtration. From the whole set, we selected a total of 12,116 accessions for GWAS of
seed protein and oil content by Bandillo et al.18. Of the 12,116 accessions, 559 with
heterozygous rate >0.05 or missing rate >0.05 were removed. We calculated
identical-by-descent (IBD) values for all pairwise comparisons among 11,557 G.
max accessions using PLINK v1.999. We considered pairs of accessions to be
duplicated if they had an IBD > 0.98100. As a result, 3272 duplicates were removed,
leaving 8844 non-duplicated accessions with high-quality genotype data. In this set
of 8844 accessions, SNPs with heterozygous rate >0.02, minor allele frequency
<0.02, and missing rate >0.10 were discarded from the genotype data, leaving a
total of 36,489 high-quality SNPs for the imputation of soybean haplotype data and
GWAS. Beagle v5.0 was used to impute the SoySNP50K data using 4,467,134 SNP
data on chromosomes with MAF > 0.02 from 481 G. max genomes. The strategy
that we used 481 G. max genome data instead of the whole 781 soybean genome is
similar to imputation strategies in human genetics that use a part of reference
haplotype panels closely related to subjects (e.g., see refs. 101,102). A genetic map
constructed from a population of 233 recombinant inbred individuals derived from
a cross between Williams 82K and IT18293226 was used as the fine-scale recom-
bination map input for imputation. Genotype imputation accuracy was assessed in
terms of the squared correlation (r2) between the true allele dosage and the
imputed posterior allele probability implemented in the Beagle program103. After
genotype imputation, we filtered out poorly imputed (Beagle r2 < 0.3) and low MAF
(<0.01) SNPs, resulting in 3,082,234 SNPs available for GWAS analysis.

Genome-wide association analyses for oil and protein contents. For GWAS for
seed protein and oil content on the 8844 accessions using the original SoySNP50K
data, of the 36,647 high-quality SNPs, 36,498 SNPs located on 20 soybean chro-
mosomes were used. GWAS on the 12,116 accessions originally used by Bandillo
et al.18 was also conducted for a comparison using 37,142 SNPs located on the
20 soybean chromosomes with frequency >2%. Missing variants were imputed using
Beagle v5.0104 with default option. We used GEMMA v0.98.1105 to infer the cor-
relation between each variant and seed oil and protein content. We first estimated a
relatedness matrix from genotypes using the -gk 1 option in GEMMA. Then, we
assessed evidence for correlation in a univariate linear mixed model (LMM) fra-
mework using the -lmm 4 option. We also assessed evidence for testing marker
associations between oil and protein content as well as for estimating genetic cor-
relations between oil and protein content in a multivariate linear mixed model
(mvLMM). The Benjamini–Hochberg procedure106 was used to account for mul-
tiple testing by controlling the false discovery rate (FDR) at 5%. Manhattan plots
were constructed to display GWAS results using qqman v0.1.487 in R package. The
GWAS procedure for seed protein and oil content on the 8844 accessions using
genotype data that imputed 4.5 million SNPs into SoySNP50K array data of 8844
accessions were essentially the same as that for unimputed SoySNP50K data.

A modified genome-wide approach107 for implementing a multi-locus mixed-
model (MLMM)108 to resolve association signals involving large-effect genes was
used to further identify SNPs potentially associated with the oil and protein traits.
The MLMM method relies on a simple, stepwise mixed-model regression
procedure with forward selection and backward elimination while re-estimating the
genetic and error variances at each step of the regression. This method may well
lead to higher detection power and a lower FDR relative to traditional single-locus
approaches. Because the imputed data appeared to exceed the computing power
available, we reduced the number of markers by linkage disequilibrium (LD)-based
marker pruning in PLINK v1.9 software99. Briefly, we pruned markers from
imputed data using the --indep-pairwise 100 25 0.99 option in PLINK. This option
considers a window of 100 SNPs, calculates LD between each pair of SNPs in the
window, and finally removes one of a pair of SNPs if the LD is >0.99. Next,
overlapping SNPs between the imputed data and SoySNP50K data that were
deleted during pruning were added back to the pruned data, resulting into 291,388
markers for MLMM models.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Although 16 of the original data (NCBI SRA accession numbers ERX2248648-ERX48662
and ERR953473) have been released in conjunction with prior publications11,66, we
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uploaded raw reads in fastq format for all 855 final accessions to NCBI SRA with SRA
accession number PRJNA555366. Large datasets including SNPs, indels, SV calls, SIFT
scores, GERP scores, and ancestral state of CDS SNP variants and the source data for
Supplementary Fig. 16 are available from figshare repository (https://figshare.com/
projects/Soybean_haplotype_map_project/76110). Data supporting the findings of this
work are available within the paper and its Supplementary Information files. A reporting
summary for this Article is available as a Supplementary Information file. The datasets
and plant materials generated and analyzed during the current study are available from
the corresponding author upon request. Known variant sites for soybean, uniref90, and
annotation of G. max Wm82.a2.v1 were downloaded from NCBI dbSNP Build 144
(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?build_id=144), UniProt
(https://www.uniprot.org/), and EnsemblPlants (ftp://ftp.ensemblgenomes.org/pub/
plants/release-44/gff3/glycine_max), respectively. Plant reference genome sequences were
downloaded from RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/) and URGI
database (https://urgi.versailles.inra.fr/Species/Vitis). The phylogenetic tree was
downloaded from Dryad database (https://datadryad.org/resource/doi:10.5061/
dryad.63q27.2). Source data are provided with this paper.
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