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Van Hove singularity in the magnon spectrum of
the antiferromagnetic quantum honeycomb lattice
G. Sala 1,2, M. B. Stone 2, Binod K. Rai3, A. F. May 3, Pontus Laurell 4, V. O. Garlea2, N. P. Butch5,

M. D. Lumsden 2, G. Ehlers 6, G. Pokharel3,7, A. Podlesnyak 2, D. Mandrus3,7,8, D. S. Parker3,

S. Okamoto 3, Gábor B. Halász3 & A. D. Christianson 3✉

In quantum magnets, magnetic moments fluctuate heavily and are strongly entangled with

each other, a fundamental distinction from classical magnetism. Here, with inelastic neutron

scattering measurements, we probe the spin correlations of the honeycomb lattice quantum

magnet YbCl3. A linear spin wave theory with a single Heisenberg interaction on the hon-

eycomb lattice, including both transverse and longitudinal channels of the neutron response,

reproduces all of the key features in the spectrum. In particular, we identify a Van Hove

singularity, a clearly observable sharp feature within a continuum response. The demon-

stration of such a Van Hove singularity in a two-magnon continuum is important as a

confirmation of broadly held notions of continua in quantum magnetism and additionally

because analogous features in two-spinon continua could be used to distinguish quantum

spin liquids from merely disordered systems. These results establish YbCl3 as a benchmark

material for quantum magnetism on the honeycomb lattice.
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The honeycomb lattice decorated with interacting spins is a
particularly fascinating structural motif for the generation
of collective quantum behavior. This bipartite lattice geo-

metry has the minimum coordination number of three for a lattice
in two dimensions. When the interactions between the spins are
strongly anisotropic, as is the case for a growing number of Kitaev
materials1–22, the result is strongly frustrating interactions and,
hence, the honeycomb lattice is presently thought of as one of the
primary contenders to host quantum spin liquids. In the opposite
limit of isotropic spin interactions, frustrated quantum magnetism
can arise through the competition of nearest neighbor and next-
nearest neighbor interactions23–37. Indeed, most honeycomb lat-
tice materials studied thus far require the addition of further
neighbor interactions to explain the underlying physical
behavior6,8,38–47. Such materials, with a complicated phase dia-
gram as a function of first, second, and third nearest-neighbor
interactions, have been fertile ground for exploration.

On the other hand, finding an example of honeycomb lattice
magnetism where nearest-neighbor Heisenberg interactions are
dominant would provide an important benchmark for studying
quantum magnetism in two dimensions. In this instance, due to
the bipartite geometry of the honeycomb lattice, the Heisenberg
exchange interactions are not frustrated and a Néel ground state
is expected25,26,48 at zero temperature. However, long-range
order at finite temperature is prohibited by the Mermin–Wagner
theorem as long as there are no anisotropic or interlayer inter-
actions. Despite the lack of frustration, in this case, the low
connectivity of the honeycomb lattice indicates that collective
quantum effects are likely to be observable. Experimental reali-
zations of the ideal honeycomb lattice Heisenberg model
(HLHM) are thus attractive as a means of testing fundamental
concepts of collective quantum behavior.

For example, quantum effects connected to two-magnon con-
tinua, such as magnon decays and renormalizations, have been
predicted for a range of two-dimensional lattices49, including the
square50,51, triangular52,53, and honeycomb54 lattices. However,
while the Van Hove singularities of the two-magnon continua
have a crucial role in these quantum effects, the Van Hove sin-
gularities themselves have not been experimentally observed
despite extensive studies of square lattice55–57 and triangular
lattice58–60 quantum magnets. More generally, it is important to
distinguish quantum effects that arise entirely due to the hon-
eycomb geometry from those that also require other sources, such
as frustration or anisotropic interactions. A further motivation is
the identification of a model system where the energy scale of the
spin–spin interactions is modest enough to allow the quantum
properties to be studied as a function of a relevant tuning para-
meter, for example, an applied magnetic field54.

Here we focus on the nearly ideal honeycomb lattice material
YbCl3 as a potential model quantum magnet in the unfustrated
limit. The arrangement of the Yb3+ ions is illustrated in Fig. 1.
While YbCl3 is formally monoclinic (space group C12/m1), there
is only a very modest distortion (<0.5% difference between
Yb–Yb nearest-neighbor distances) from the ideal honeycomb
lattice geometry in the ab planes61. YbCl3 has been proposed as a
candidate for Kitaev physics62,63, but other studies suggest that
YbCl3 is likely to exist in the Heisenberg limit64. Thus, a key
question concerning the physical behavior of YbCl3 is the nature
of the spin interactions and the manifestation of collective
quantum effects. Experimental studies thus far have found a
broad signature in the specific heat peaked at 1.8 K that com-
prises ~99.8% of the entropy of Rln ð2Þ expected for the ground
state doublet62. At T= 0.6 K, a weak anomaly in the specific heat
is observed. The local crystallographic environment results in easy
plane anisotropy of the Yb3+ magnetic moments61. Finally, the
polycrystalline averaged magnetic excitation spectrum of YbCl361

is rather different from that of the prototype Kitaev material
RuCl317, suggesting that a different set of interactions govern the
physical behavior of YbCl3.

In this paper, we study YbCl3 with high-resolution inelastic
neutron scattering (INS) measurements of single crystals. In
addition to a conventional spin-wave (single-magnon) mode,
these measurements show a sharp Van Hove singularity (VHS)
within a broad two-magnon continuum that originates from
longitudinal (quantum) spin fluctuations. Linear spin-wave the-
ory with a single Heisenberg interaction on the honeycomb lattice
reproduces all features of the data, demonstrating the strong
quantum and almost perfectly two-dimensional character of
YbCl3. Additional support for these conclusions is presented
through polarized neutron diffraction and specific heat capacity
measurements in conjunction with microcanonical thermal pure
quantum state (mTPQ) calculations. Together, these results
demonstrate that YbCl3 is an ideal model system of a two-
dimensional quantum magnet without frustrated or anisotropic
interactions. Being considerably hard to find, such model systems
are crucial in quantum magnetism as they enable the controlled
experimental investigation of collective quantum behavior.
Moreover, on a conceptual level, the observation of a sharp fea-
ture within a continuum response demonstrates the coherent
origin of the continuum. Therefore, our results for the two-
magnon continuum are proof of the principle that similar fea-
tures within two-spinon continua could be utilized for more
unambiguous detection of fractionalized quantum magnets, such
as quantum spin liquids.

Results
Inelastic neutron scattering data. We first examine the low-
energy magnetic excitation spectra of YbCl3 at 0.24 K.
Figures 2a–c and 3a–e show the INS spectra as a function of
energy, ℏω, and wave vector, Q, transfer. Figure 2a–f is plotted as
the product of the intensity and the energy transfer to emphasize
higher energy features in the spectrum. The spectra contain three

Fig. 1 Crystal and magnetic structure of YbCl3. The monoclinic crystal
structure (space group C12/m1) and ordered spin configuration (magnetic
space group C20=m) of YbCl3. The monoclinic structure with a= 6.729Å,
b= 11.614Å, c= 6.313Å, and β= 110.6° (at T= 10 K) contains nearly ideal
honeycomb lattices of Yb3+ ions (red spheres)61. Within each honeycomb
lattice, the Yb3+ sites have nearest-neighbor distances of 3.884Å and
3.867Å for the exchanges J and J0 , respectively, and next-nearest-neighbor
distances of 6.729Å and 6.711Å for the exchanges J2 and J02, respectively.
The resulting three bond angles for the honeycomb lattice are 120°, 119.97°,
and 119.97°. The distance between the honeycomb planes is 6.313Å,
corresponding to an interlayer exchange Jc. For the ideal model (see Eq.
(1)), we consider J ¼ J0 and J2 ¼ J02 ¼ Jc ¼ 0. The spins are
antiferromagnetically aligned within each honeycomb plane and point
primarily along the a axis with a small tilt of 5(3)° along the c axis, as
described in the text.
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distinct features: a component characteristic of conventional
transverse spin waves (ℏω ≤ 0.6 meV), a continuum or multi-
magnon component, and a sharper component at higher energies
(0.8 ≤ ℏω ≤ 1.2 meV). The spin-wave mode disperses throughout
the (HK0) plane with no discernible dispersion along the (00L)
direction (see Fig. 3e and Fig. 5 of the Supplementary material).
The lack of an observable dispersion along the (00L) direction
indicates that the interactions between the honeycomb planes are

very weak. Interestingly, the spin-wave mode appears to be
broader than the instrumental resolution. While the reason for
this broadening is uncertain, it may arise due to domain forma-
tion as a result of bond disorder65, interaction with the multi-
magnon continuum (potentially following a renormalization of
the spin-wave spectrum52), or even the inability to fully distin-
guish the overlapping continuum contribution. We also point out
that the T= 3.7 K data in Fig. 3f illustrate a complete lack of well-

Fig. 2 Inelastic neutron scattering data and linear spin-wave theory calculations. a–c Inelastic neutron scattering data measured at T= 0.24 K using the
CNCS instrument. d–f Linear spin-wave calculations including transverse and longitudinal channels for the ideal model (see Eq. (1)) with a fitted value of
J= 0.421(5) meV along high symmetry directions in the (HK0) plane. Panels a–f are plotted as the product of intensity and energy transfer (ℏω). The Yb3+

magnetic form factor is included in the calculations. g Intensity as a function of ℏω through the Van Hove singularities at several wave vectors for T= 0.24
K (T= 5 K), marked by solid (open) points. Solid lines are Gaussian lineshapes with a sloping background. The horizontal bar represents the energy
resolution at ℏω= 1.19 meV. The color of the data in (g) corresponds to the wave vector indicated by the colored arrow at the top of (a)–(c). Peak positions
of the Gaussian lineshapes in (g) are shown as solid circles in (d)–(f). h–i Calculated (left) and measured (right) scattering intensity for ℏω= 0.9 meV (h)
and 0.3 meV (i). The data and calculation in (h) have been scaled by a factor of 5 to be on the same intensity scale as (i). Gray lines indicate high
symmetry directions of the Brillouin zone. Wave vector transfers are shown in the reciprocal space of the monoclinic lattice in reciprocal lattice units for
(a)–(g) and projected into a hexagonal lattice in (h)–(i). Data in (a)–(c) and (g) have been averaged about the H= 0 and K = 0 axes. Data in (h) and (i)
have been averaged about the vertical axis.
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formed magnetic excitations at higher temperatures. Finally, an
important feature of the data is the lack of an appreciable spin gap
(see Supplementary material for additional details). This obser-
vation suggests that the spins do not possess a significant uniaxial
anisotropy, in agreement with the crystal field ground state with
easy plane anisotropy determined in ref. 61.

The most unusual part of the spin excitation spectrum is the sharp
feature toward the top of the broad continuum. While there is
precedence for the observation of spinon and multimagnon continua
in one-dimensional66–70 and two-dimensional square and triangular
lattice55–60 quantum magnets, the observation of a sharp feature
within such a continuum has, to the best of our knowledge, not yet
been reported. This sharp multimagnon feature is explored further
through constant wave vector scans in Fig. 2g. At energies where the
sharp feature is well separated from the most intense parts of the
continuum, the width is essentially limited to the calculated energy
resolution of the instrument, FWHM= 0.04meV at ℏω= 1.19meV.
As will be described in more detail below, this result provides an
experimental demonstration of how a sharp feature can be generated
within a continuum response in a quantum magnet. Note that the
hexagonal symmetry of the spin excitations is manifest in both these
higher energy features and the transverse spin-wave modes at lower
energies, as shown in the right sides of Fig. 2h and i, respectively.

Linear spin-wave theory. To understand the physics begetting
the novel spin excitation spectrum of YbCl3, we consider a Hei-
senberg model on the honeycomb lattice with a single anti-
ferromagnetic exchange interaction J between nearest-neighbor
S= 1/2 spins

H ¼ J
X
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!

r0 ¼ J
X
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SzrS
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On the bipartite honeycomb lattice, the ground state 0j i of this
Heisenberg Hamiltonian H is the antiferromagnetic Néel

state25,26,48. Assuming without loss of generality that the spins are
parallel to the z direction, the transverse and the longitudinal
components of the dynamical spin structure factor are

S ± ðq;ωÞ ¼
1

4πN

X
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respectively, where gx,y,z are appropriate g factors. In linear spin-
wave theory, the Hamiltonian in Eq. (1) is expanded up to
quadratic order in Holstein–Primakoff bosons to obtain an ana-
lytically tractable approximation (see Supplementary material for
additional details). The dynamical spin structure factors in Eq. (2)
are then computed by expanding the spins up to the lowest
nontrivial order in the same Holstein–Primakoff bosons, which
can be identified as magnon excitations. For the transverse
component, expansion of the spins up to linear order gives rise to
a sharp single-magnon (spin wave) contribution

S ± ðq;ωÞ ¼
ðg2x þ g2yÞð1� jλqj cos ϑqÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jλqj2

q δðω� εqÞ; ð3Þ

corresponding to the spin-wave dispersion

ω ¼ εq ¼ 3J
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jλqj2

q
; λq ¼ 1

3

P3

j¼1
eiq�rj ; ð4Þ

where eiϑq ¼ λq=jλqj, and r1,2,3 are the three bond vectors con-
necting nearest-neighbor sites on the honeycomb lattice. For the
longitudinal component, the spins must be expanded up to

Fig. 3 Inelastic neutron scattering data and calculations for YbCl3. a–e Measured at 0.24 K using the CNCS instrument. f Measured at 3.7 K. Black points
are the locations of the absolute peak intensity at different wave vectors. The solid black line is the fitted spin-wave dispersion with a single interaction J=
0.421(5) meV. The dashed red line is the calculated upper boundary of the corresponding two-magnon continuum scattering. g–k Linear spin-wave
calculations of the transverse spectrum for interactions J= 0.42(1) meV, J0 ¼ 0:43ð1Þ meV, and Jc = 0meV, as described in the text. Data in (a)–(f) have
been averaged about the H= 0 and K= 0 axes.
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quadratic order to get a nontrivial inelastic contribution

Szzðq;ωÞ ¼
g2z
4N

X

k

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jλkj2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jλq�kj2

q
� jλkjjλq�kj cosðϑk þ ϑq�kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jλkj2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jλq�kj2

q δðω� εk � εq�kÞ:

ð5Þ
This two-magnon contribution gives a broad continuum over a
finite energy range for each momentum q because the energy
transfer, ω= εk+ εq−k, depends on the momenta k and q − k of
the individual magnons. We note that, in linear spin-wave theory,
the staggered magnetic moment of the Néel state is only ≈ 48% of
its classical value on the honeycomb lattice, in comparison to ≈
61% on the square lattice71. Such a large reduction of the mag-
netic moment indicates that quantum fluctuations are strong due
to the low coordination number of the honeycomb lattice72.

Discussion
Comparison between data and model. The HLHM in Eq. (1)
reproduces the experimental data for the transverse spin-wave
mode, the broad continuum, and the sharp feature toward the top
of the continuum. We first note that, due to the summation over
the momentum k, the contribution from the two-magnon states
in Eq. (5) results in a broad continuum of scattering. To deter-
mine the Heisenberg exchange J, we consider the transverse
component of the data. Due to the large scattering intensity of the
continuum, we compare the calculated dispersion to the overall
maxima in the scattering intensity as a function of q (solid points
in Fig. 3a–e). Comparing these values for points restricted to the
(HK0) plane yields a Heisenberg exchange of J= 0.421(5) meV,
shown as a solid line in Fig. 3a–e. Moreover, we directly compare
the data along the (0K0), (H20), and (1K0) directions to the
numerical evaluation of Eqs. (3) and (5) convolved with a
Gaussian approximation to the instrumental energy and wave
vector resolution functions while also including the spherical
approximation for the Yb3+ magnetic form factor and an additive
background term. The resulting spectra are shown in Fig. 2d–f
and h–i; the continuum response and the sharp feature within the
continuum are reproduced exceptionally well. (see Supplemen-
tary material for additional comparisons between the data and the
model.) We remark that the excellent agreement between the
experimental data and the ideal HLHM is also in accordance with
the prediction of ref. 64.

The sharp feature toward the top of the continuum is a
particularly interesting aspect of the spectrum that, to the best of
our knowledge, has not been previously observed in a quantum
magnet. In the model, such a sharp feature appears within the
two-magnon continuum due to a VHS in the joint density of
states49,50,52–54. Indeed, on the level of pure kinematics (i.e.,
ignoring any matrix element effects), the longitudinal two-
magnon response in Eq. (5) is proportional to the joint density of
states, ĝqðωÞ ¼

P
kδðω� εk � εq�kÞ, at each momentum q,

which corresponds to the joint band dispersion ε̂qðkÞ ¼ εk þ
εq�k as a function of the individual magnon momentum k. Being
a two-dimensional band dispersion, ε̂qðkÞ has a saddle-point VHS
which gives a logarithmic divergence in the density of states ĝqðωÞ
and, thus, in the longitudinal spin response. Physically, the VHS
is a specific energy transfer ω that can create many distinct
magnon pairs with a fixed total momentum q but different
individual momenta k and q − k. The coalescence of such distinct
scattering processes is analogous to the coalescence of light rays
giving rise to caustic features in ray optics (see Fig. 4). Therefore,
using this analogy, the VHS can also be understood as a caustic
feature in the longitudinal spin dynamics. We emphasize that the
observation of a VHS is direct evidence for strong quantum
fluctuations in YbCl3 (because the VHS appears in the

longitudinal spin response) as well as the two-dimensional nature
of its quantum magnetism (because significant interlayer
exchange would smear out the VHS).

Upon close examination, the analytic model does not fully
capture the intensity and dispersion of the VHS over the entire
zone, as can be seen in Fig. 2a–f. By plotting the fitted peak
positions of the VHS from Fig. 2g on the calculated spectra in
Fig. 2d–f, we notice that there are differences between the
calculated and the observed VHS energies near the (100) and
ð12 20Þ wave vectors (≈0.2 meV). These energy differences may
arise from a renormalization of the two-magnon continuum due
to magnon interactions neglected in linear spin-wave theory.
Also, we point out that domain formation due to bond disorder65

could, in principle, play a role in partially smearing out the VHS
and thus explaining why certain portions of the predicted VHS
are absent from the experimental data.

We now explore the potential importance of additional exchange
interactions through comparison of the experimental spin-wave
dispersion, including points measured along the L direction, to
calculations using the SpinW software73. Since there are very small
differences in the bond lengths within the honeycomb layers of
YbCl3, as described in Fig. 1, we label two of the three nearest-
neighbor exchanges as J for the d= 3.884Å bonds and the third
one as J 0 for the d= 3.867Å bond. The numerical comparison
yields J= 0.42(1) meV and J 0 ¼ 0:43ð1Þ meV, while Jc refines to a
value below the detection limit of 0.016meV for the measurements
reported here (see Supplementary material for additional details).
The resulting cross-section is shown in Fig. 3g–k. The numerically
determined J and J 0 are indistinguishable from each other and close
to the value determined by a comparison to the analytical model.
The spin-wave modes from linear spin-wave theory accurately
reproduce the dispersion and intensity distribution of this portion
of the measured spectrum (Fig. 3g–k). We also attempted to include
next-nearest-neighbor exchange interactions within the plane of the
honeycomb lattice; the best fit values of J2 and J 02 are three orders of
magnitude smaller than J and zero within the error bars of the
refined value (see Supplementary material for additional details).

Magnetic moment and Néel temperature. To further check the
validity of the ideal HLHM, we have performed polarized neutron
diffraction measurements at T= 0.3 K (see Supplementary material
for additional details). We observe an antiferromagnetic spin
arrangement with a well-defined staggered magnetic moment. By
symmetry, this moment can either lie in the ac plane or point along
the b axis, i.e., a linear combination of the two directions is not
allowed. Our measurements reveal that the magnitude of the ordered
moment is 1.06(4) μB and that the moment points primarily along
the a axis with only a small deviation of 5(3)° along the c axis. The
expected moment from the ground state crystal field doublet is 2.24
(5) μB61. The value of the ordered moment is thus ≈47% of the fully
polarized moment, which is in excellent agreement with the value of
≈48% obtained from linear spin-wave theory and the value of ≈54%
determined by more accurate techniques72,74–77. We emphasize,
however, that these theoretical values are extremely sensitive to any
interlayer exchange Jc. For example, if we include ∣Jc/J∣ ≈ 4%, corre-
sponding to the detection limit from the INS response (see above),
the ordered moment in linear spin wave theory already increases
from ≈48% to ≈63%. Therefore, the small value of the experimental
moment indicates that the actual value of Jc is significantly below the
INS detection limit and further confirms our conclusion that the
magnetism in YbCl3 is two dimensional to a very good
approximation.

The same conclusion is demonstrated even more strikingly by
the very small value of the Néel temperature, TN ≈ 0.6 K62.
Theoretically, for a quasi-two-dimensional Heisenberg magnet,
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the Néel temperature is approximately given by TN ¼ 4πρs=
log jJ=Jcj, where ρs is the spin stiffness of the purely two-
dimensional system. At this temperature, T= TN, the individual
interlayer exchanges Jc add constructively within an area of linear
size ξ � expð2πρs=TÞ78,79 to produce an effective interlayer
exchange on the order of the intralayer exchange J. Taking ρs ≈
0.101J from the literature76,77 and J ≈ 0.42 meV from the neutron
scattering data, the relative interlayer exchange is then estimated
to be jJc=Jj � expð�4πρs=TNÞ � 3 ´ 10�5. This value is three
orders of magnitude smaller than the detection limit from the INS
response and indicates that the magnetism in YbCl3 is as close to
two-dimensional as in the canonical cuprate antiferromagnet
La2CuO4

80. Moreover, the specific ordering pattern below TN
signals the presence of very small anisotropic interactions on top
of the dominant Heisenberg exchange J. Since these anisotropic
spin interactions should also contribute to TN, the interlayer
exchange may be even smaller than our estimate. We finally
remark that the application of a small magnetic field should, in
principle, cause the ordering transition to sharpen and the Néel
temperature to increase79. While there are experimental indica-
tions for such behavior in the specific heat62, more detailed
studies of the field dependence would be very important to
confirm not only this prediction but also further predictions of
interesting quantum effects at larger magnetic fields54.

Heat capacity calculations. Specific heat capacity measurements
provide an additional means of examining the HLHM in YbCl3.
The experimental specific heat and the entropy of YbCl3 for 0.5 K
< T < 8 K are shown in Fig. 5a and b. Between T= 0.5 K and T=
8 K, nearly all of the entropy, Rln ð2Þ, for the ground state doublet
has been recovered by the system with only a very small con-
tribution in the region of the transition to long-range magnetic
order62. We use mTPQ calculations81, as implemented in the HΦ
library82, for a cluster size of 32 spin 1

2 elements to calculate the
heat capacity as a function of the reduced temperature T/J
(see Supplementary material for additional details). The results
for the HLHM with J= 0.42 meV, obtained by fitting the INS
data, are shown in Fig. 5a and b. The overall shape is in rea-
sonable agreement with the data, but a somewhat improved
comparison is found by using J= 0.32 meV. The discrepancy may
be due to quantum corrections, such as renormalizations due to
magnon interactions51,52, that are captured by the mTPQ cal-
culations but neglected in linear spin wave theory.

We have used INS to investigate the collective magnetic
excitation spectrum of YbCl3. In addition to a conventional

transverse spin-wave (single-magnon) mode, there is a long-
itudinal two-magnon continuum harboring a sharp VHS. These
components are all reproduced by linear spin-wave theory with a
single nearest-neighbor Heisenberg interaction on the honey-
comb lattice. The sharp VHS is observable due to the almost
perfectly two-dimensional quantum magnetism in YbCl3, which
is further reflected in a strongly reduced ordered moment and a
very small ordering temperature. Our results establish YbCl3 as
an ideal model system to investigate the collective quantum
behavior of the honeycomb antiferromagnet in the unfrustrated
limit. Finally, we point out that the observation of a VHS in a
two-magnon continuum provides a strong indication that a
similar observation in the two-spinon spectrum of a two-
dimensional quantum spin liquid83,84 is experimentally feasible.
Such an observation in a quantum spin liquid would be important
in ruling out competing sources of a continuum response, such as
quenched disorder or overdamped magnons, and could provide a
more unambiguous signature of a long-range-entangled quantum
state.

Fig. 4 Alternative understanding of Van Hove singularities as caustic features in the collective spin dynamics. a Caustic features in ray optics. Parallel
light rays (black lines) enter an optical system at different positions. When these light rays reflecting from a circular mirror (red line) coalesce, they give
rise to caustic features in real space. b Caustic features in a spin response. The two-magnon continuum can be understood as a sum of sharp contributions,
ω= εk+ εq−k, each corresponding to a fixed momentum k of the first magnon. When these sharp contributions (black lines) coalesce, they give rise to
caustic features in the two-magnon continuum. Note that the spin response shown here is for a one-dimensional model system; for the two-dimensional
system in consideration, the caustic features appear inside the continuum (not at its edge) and are weaker as they correspond to logarithmic (rather than
square-root) singularities.

Fig. 5 Magnetic specific heat capacity, entropy, and mTPQ calculations
for YbCl3. Specific heat capacity (a) and entropy (b) for YbCl3. The solid
red line is the best fit calculation using mTPQ as described in the text. The
dashed blue line is the calculated specific heat using mTPQ with the value
J= 0.42 meV obtained by fitting the INS data.
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Methods
Single crystals of YbCl3 were grown using the Bridgman technique in evacuated silica
ampoules (see Supplementary material and ref. 85 for further details). INS mea-
surements were performed with the cold neutron chopper spectrometer (CNCS)86 at
the Spallation Neutron Source at Oak Ridge National Laboratory. Additional mea-
surements were made with the disk chopper spectrometer (DCS) at NIST (see Sup-
plementary material for additional details). The CNCS measurements were
performed with a 0.625 g sample oriented with the (HK0) scattering plane horizontal
using 2.49 meV incident energy, Ei, neutrons in the high flux configuration of the
instrument. To minimize the effects of the modest neutron absorption cross section
of Yb and Cl, the sample used at CNCS was constructed of a stack of plates cut to
dimensions of 3.2mm by 3.4mm. The polarized HYSPEC measurements were
performed using the same sample as the CNCS experiment. We employed 3D
polarization analysis, i.e., we measured the Px, Py, and Pz spin-flip and non-spin flip
channels. Additional details are provided in the Supplementary material.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information files. Additional data are available
from the corresponding author upon reasonable request.

Code availability
All numerical codes used in this paper are available from the corresponding author upon
reasonable request.
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