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Depth-dependent valence stratification driven
by oxygen redox in lithium-rich layered oxide
Jin Zhang1,2,3,8, Qinchao Wang4,8, Shaofeng Li2, Zhisen Jiang2, Sha Tan 4, Xuelong Wang4, Kai Zhang1,

Qingxi Yuan 1✉, Sang-Jun Lee 2, Charles J. Titus 5, Kent D. Irwin 5, Dennis Nordlund 2,

Jun-Sik Lee 2, Piero Pianetta2, Xiqian Yu 6, Xianghui Xiao 7, Xiao-Qing Yang 4, Enyuan Hu 4✉ &

Yijin Liu 2✉

Lithium-rich nickel-manganese-cobalt (LirNMC) layered material is a promising cathode for

lithium-ion batteries thanks to its large energy density enabled by coexisting cation and anion

redox activities. It however suffers from a voltage decay upon cycling, urging for an in-depth

understanding of the particle-level structure and chemical complexity. In this work, we

investigate the Li1.2Ni0.13Mn0.54Co0.13O2 particles morphologically, compositionally, and

chemically in three-dimensions. While the composition is generally uniform throughout the

particle, the charging induces a strong depth dependency in transition metal valence. Such a

valence stratification phenomenon is attributed to the nature of oxygen redox which is very

likely mostly associated with Mn. The depth-dependent chemistry could be modulated by the

particles’ core-multi-shell morphology, suggesting a structural-chemical interplay. These

findings highlight the possibility of introducing a chemical gradient to address the oxygen-

loss-induced voltage fade in LirNMC layered materials.
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Lithium-ion battery (LIB) is crucial for a world based on clean
energy. Its importance has recently been recognized by the
awarding of 2019 Nobel prize in chemistry to scientists

working in this field1. Despite its great success, there is always
strong motivation to further increase the energy density of LIB,
especially when it comes to the application in large systems such
as electric vehicles. To reach this goal, an effective approach is to
increase the energy density of the cathode, a major component of
the LIB. Conventional cathodes are solely based on transition
metal (TM) cation redox, limiting the maximum capacity and
energy density that can be possibly achieved. In this context,
lithium-rich nickel–manganese–cobalt (LirNMC) layered mate-
rial stands out as a high energy cathode by utilizing both cation
and anion redox2–7. Typically, LirNMC can deliver capacity up to
280 mAh g−1. Unfortunately, this material has not been put into
practical application because its voltage keeps decreasing during
cycling (commonly referred to as “voltage fade” in the battery
community). Many research efforts have been devoted to
understanding the origin of such voltage fade8–11, mostly at the
atomic or the electrode level. To bridge the gap in the length scale,
it is highly desirable to understand the material at the particle
level, which is termed the mesoscale.

Material properties at the mesoscale are important for material
design. For example, mesoscale structural and chemical defects
were found to play a very significant role in affecting the overall
electrochemical performance of the battery12,13. Depth-
dependent redox heterogeneity within the cathode particles has
also been reported to affect the charging behavior14 and the
thermal stability15–17. It can be expected that compositional,
chemical, and morphological understanding of LirNMC material
at the mesoscale will provide insight into the mechanism of
voltage fade issue and suggest possible measures to address this
challenge.

In this work, we employ nano-resolution spectro-tomography
to study a typical LirNMC material- Li1.2Ni0.13Mn0.54Co0.13O2,
spatially resolving the morphological, compositional, and che-
mical features in three-dimensions (3D) within the LirNMC
particles18–20. We observed a multi-layer morphology, which is
very likely correlated with the depth-dependent chemistry. We
further reveal the chemical and spatial dependence of oxygen
redox behavior in LirNMC material, providing an in-depth
understanding of the voltage fade issue. These findings suggest
that a depth-dependent compositional engineering strategy21

could be a viable path for solving the voltage fade problem in the
LirNMC material.

Results
The composite battery cathode electrode is made of a large
amount of several micron-sized active particles that are imbedded
in a porous matrix of conductive carbon and binder domain
(CBD). The active cathode particles are, ultimately, the energy
reservoirs in the battery and their functionality relies on the CBD
to provide mechanical support, electrical conductivity, and ion
diffusion pathways. The synchrotron-based x-ray tomography
technique has been demonstrated as a powerful tool for non-
invasively reconstructing the 3D morphology of the cathode from
the cell22 and the electrode23 scales down to the particle level24–
29. As shown in Fig. 1a, the structure and morphology of the
pristine material are characterized by x-ray diffraction (XRD) and
scanning electron microscopy (SEM), respectively. Detailed
results of the Rietveld refinement of LirNMC material are shown
in Supplementary Table 1. XRD pattern indicates there is a
honeycomb superstructure in the Li/TM layer as evidenced by the
superlattice peaks on the right shoulder of the strongest XRD
peak (lowering the space group symmetry from R�3m to C2/m).

Recent studies by House and Bruce et al suggest that the hon-
eycomb superstructure is closely related to the formation of O2

and oxygen vacancies30. The charge-discharge profile and the
electrochemical cycling data are shown in Fig. 1b. The first cycle
charge profile features a long plateau that is typical of the lithium-
rich layered material and contributes to around two thirds of the
whole charge capacity. As illustrated in Fig. 1c, we utilized the x-
ray tomography to reconstruct the structure of a small piece of
the LirNMC electrode. The studied electrode consists of a thin
layer of active material and CBD (nearly a monolayer of LirNMC
particles) on top of the aluminum current collector. High mass
loading and close particle packing in a thick electrode (40–60 μm
thick) is a common approach for improving energy density,
which, however, can lead to significant particle-to-particle var-
iation23,31,32. In our study, we choose to focus on the particle level
because our scientific focus is the interplay between the particleʼs
morphology and the particleʼs internal redox stratification.
Therefore, a low mass loading is purposely chosen to minimize
the cell polarization effect. More details about the electrode fab-
rication procedure can be found in the method section. To zoom
in to the sub-particle level microstructures, we utilized x-ray
nano-tomography to reconstruct the morphology of a few ran-
domly selected LirNMC cathodes particles (2D projection images
of several randomly selected particles are shown in Supplemen-
tary Fig. 1). As shown in Fig. 1c (panel I, II, and III), these
LirNMC particles have multi-layer morphologies, distinguishing
LirNMC from other cathode materials33,34. Although such mor-
phology has been hinted previously in two-dimensional images35,
our three-dimensional tomographic data offers unambiguous
visualization and quantification, which we will demonstrate in
detail later in this work. The multi-layer morphology may be due
to intrinsic complexities of LirNMC. For example, LirNMC has
multiple cations that differ greatly in size and reactivity. LirNMC
also has structural complexity and the nature of its structure
(whether a solid solution or a composite) has been debated for a
long time36–38. The multi-layer configuration may have a pro-
found impact on the redox chemistry within the particles as it
adds more complexities to the lithium-ion diffusion and transi-
tion metal redox behavior within the particle.

To gain the depth profile of transition metal valence, we
turned to the spectro-tomography technique39–42 which could
spatially resolve the local valence state of the element of interest
in 3D. Such capability is achieved by conducting tomographic
scans at a number of different energy levels across the absorption
edge of the targeted element of interest. This technique is first
applied to Mn, the most abundant transition metal in LirNMC.
Two particles at the pristine and the charged (to 4.8 V in the
initial cycle, at the fully charged state) states are scanned. As
shown in Fig. 2a, d, the particle morphology is fairly similar and
their Mn K-edge spectroscopic fingerprints over different regions
(see labeling in the virtual slices through the center of the par-
ticle) are shown in Fig. 2b and e, respectively. The pristine
particle appears to be relatively homogeneous in the Mn’s
valence state as indicated by the depth-dependent Mn XANES
plots in Fig. 2b and the 3D rendering of the Mn K-edge energy
distribution in Fig. 2c. On the other hand, the charged particle
clearly shows a depth-dependent Mn redox variation (see Fig. 2e,
f, g). The core and the surface layer of the charged LirNMC
particle exhibits high Mn valence state at 4+, while the Mn
cations in the transition layers appear to be relatively reduced.
These visual assessments of the pristine and the charged particles
are further confirmed by the depth profile of Mn’s K-edge energy
shown in Fig. 2h. While the relative homogeneity of the Mn
valence state distribution in the pristine particle is anticipated43,
the observed depth-dependent Mn valence in the charged
LirNMC particle is somewhat a surprise, specifically because of
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its non-monotonicity. This observation motivates a more sys-
tematic study of all the transition metal cations (Mn, Co, and Ni)
in the LirNMC particle in a correlative manner.

With the above-mentioned motivation, we carry out spectro-
tomographic scans of a charged LirNMC particle over the
absorption K-edges of the Mn, Co, and Ni, respectively, and
correlatively. As shown in Fig. 3a, a depth-dependent redox
heterogeneity can be observed in all the transition metal cations.
To evaluate whether or not the compositional heterogeneity plays
a role here, we first utilize the edge jump measurements on the K-
edges of Mn, Co, and Ni (see Fig. 3b) to quantify the local ele-
mental concentrations of these three metal elements44. The 3D
elemental distributions are further quantified by evaluating their
respective depth dependency (Fig. 3c), which suggests that the
studied particle is relatively compositionally homogeneous
throughout the particle volume. Correlating each pixel with edge
position not only enables direct evaluation of 2D/3D images, but
also provides a relative probability distribution as shown in
Fig. 3d. The number of pixels featuring certain energy is divided
by the number of total pixels to obtain the relative probability at
that energy. Based on such probability distribution, we can fur-
ther quantify the degrees of redox heterogeneity using the his-
togram plot of the 3D matrixes of edge energy. As shown in
Supplementary Figs. 2–5, there are close relationship between
edge position of the spectra and the valence of the transition
metal. Therefore, the shape of the peak represents the relative
probability distribution of the edge energy and the width of the
peak effectively measures the degree of chemical nonuniformity.
As shown in Fig. 3d, the Co’s valence state shows larger full width
at half maximum (FWHM) in its histogram plot than that of the

Mn and Ni. A quantitative evaluation of transition metal valence
as a function of depth is shown in Fig. 3e. The valence of Ni is
considerably low in the outermost layer and then gradually
increases towards the core of the particle. The valences of Mn and
Co are high in the outermost layer and then decrease going
through the intermediate layer before increasing to high valence
in the core area. In addition, in situ x-ray absorption spectroscopy
(XAS) experiment at Ni, Mn, and Co K-edges was carried out
(Supplementary Fig. 6) and the transition metal (mostly Ni) XAS
spectra show obvious edge shift before the 4.5 V plateau and show
no shift after the plateau begins. This suggests that as the oxi-
dation of transition metal (mostly Ni) takes place way before the
end of charge (transition metal oxidation contributes only around
one third of the total capacity, followed by oxygen oxidation
which contributes to two thirds), the low valence of transition
metal is unlikely caused by insufficient oxidation, but by the
oxygen redox around the transition metal cations. To confirm
that the transition metal’s low valence is associated with oxygen
redox, we further conduct spectro-tomography and compare the
depth dependency of the redox profile (single pixel resolution) on
particles at different states of charge (4.3 and 4.8 V in the first
cycle) and after long-term battery operation (at 4.8 V after 50
cycles) shown in Fig. 4a for Ni, Mn, and Co, respectively. During
the 1st cycle charging (going from 4.3 to 4.8 V), the valence
profiles of Ni and Mn change significantly and in very different
ways while the profile of Co is relatively stable. At intermediate
depths (excluding the surface vicinity as well as the center), the
oxidation states increase for Ni but decrease for Mn. The Ni
valence increase may be caused by incomplete Ni oxidation at 4.3
V and further charging leads to its valence increase. For Mn, the
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valence decreases going from 4.3 to 4.8 V. This may be because of
the oxygen redox and the largest part of it could be associated
with Mn. Detailed reasons will be explained later when discussing
the valence profile change during cycling. The outcome of oxygen
redox may be in the form of O−45,46, oxygen vacancy9, or O2 in
the lattice30. They all can lead to a decrease in the valence of TM,
or very likely Mn. For Co, it is well known that Co can form a
very strong covalent bond with oxygen and this may contribute to
the relatively unchanged valence profile of Co during charging. In
the surface vicinity, or in the passivation layer, Ni and Mn can

also behave differently. For example, NiMn2O4 is a commonly
seen spinel phase arising from loss of lithium and oxygen in the
layered material9. In NiMn2O4, Ni is in a low valence state
(divalent) while Mn is in high valence state (between trivalent and
tetravalent and can be higher if it is partially substituted by Li). In
other words, the reconstructed surface may have low valence Ni
but high valence Mn. Upon cycling, the valence profile evolves
in different ways for Ni, Mn, and Co. The tetravalent Ni has been
well known to have high oxygen partial pressure and oxygen
around Ni can be easily released. This can lead to Ni valence
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decrease and may be related to the voltage fade issue. Our pre-
vious work suggested that continuous oxygen loss from the lattice
is one of the main reasons for voltage fade in lithium-rich layered
material. Similarly, the decrease of Co valence during cycling may
also be linked with the voltage fade issue. For Mn, the valence
profile shows relatively little change upon cycling. Interestingly,
Gent et al showed that oxygen redox can be fairly reversible
during cycling as indicated by the clearly visible oxygen oxidation
RIXS feature in the long cycled sample46. These two observations
may indicate that the largest part of reversible oxygen redox is
coupled to Mn cations. Such argument is also supported by
theoretical calculations showing that oxygen redox mainly takes
place on those oxygen anions in the Li–O–Li moiety which has Li
in the Li/TM layer47. The monovalent Li is most likely sur-
rounded by high valent TM such as Mn (maybe also Co) because
this helps to release the strain48. In other words, the active oxygen
anions are most likely around the Mn cations.

In addition to the evolution of the redox heterogeneity, we
conducted additional synchrotron nano-tomography on particles
after 50 electrochemical cycles at a rate of 0.5 C and observed that
clear cracks are populated in the particles after long-term cycling.
It is useful to point out that the cracks are not confined in the

particle core regions. Some of the cracks propagate through
multiple shell layers, effectively open up the interior of the par-
ticle to the liquid electrolyte, forming fresh active solid-to-liquid
interface that could facilitate the lithium exchange between the
particle and the external environment (Supplementary Figure 7).
The chemomechanical interplay in battery cathode particles is an
active research field. Follow-up efforts for studying the particle
morphological control as a viable method to mitigate the particle
disintegration effect is highly desirable.

Valence heterogeneity is not a surprise as it has been observed
in several cathode materials22,27,33. The unique TM valence
profile in LirNMC is indicative of its own characteristic chem-
istry. In conventional layered NMC, the capacity is almost
exclusively contributed by transition metal cations and oxygen
anions do not participate in the redox reaction. For these mate-
rials (at charged state), the valence of Ni usually is highest in the
outer layer and gradually decreases as the depth increases (dis-
regarding the very surface layer of a few nanometers, which has
other chemical complexities such as the surface reconstruction
effect). This is suggesting a more complete TM oxidation in the
outer layer where lithium ion can be more effectively extracted.
However, in oxygen-active cathode material such as LirNMC,
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oxygen activity and the possible consequent oxygen vacancy
induces an oxidation state depth profile that is significantly dis-
tinct from the conventional NMC.

Soft x-ray resonant inelastic x-ray scattering (RIXS), a powerful
tool to study anion redox, is used in this study and the results are
shown in Fig. 4b and c. At the charged state (Fig. 4b), a peak is
clearly visible at excitation energy of 531 eV and emission
energy of 523 eV, fingerprinting the formation of O−1 in the sub-
surface transition layer of the material upon charging to high
voltage49–51. The comparison of the super partial fluorescence
yield (sPFY)49 signals from the pristine and the charged samples
shown in Fig. 4c clearly support this observation. Althoughoxy-
gen activity can increase the capacity and hence the energy
density of cathode material, it would eventually lead to oxygen
loss, leaving behind oxygen vacancy around the transition metal
cations and decreasing their valences. Such uniqueness of the
LirNMC explains why the TM valence has a very different profile
from that of conventional NMC despite the fact that both have
nonuniform lithium distribution in the charged particle.

Discussion
To gain in-depth understanding of the voltage fade issue in
LirNMC materials, synchrotron-based nano-resolution spectro-
tomography is used to study the material Li1.2Ni0.13Mn0.54-
Co0.13O2 at the particle level, providing morphological, compo-
sitional, and chemical information. The unique multi-layer
morphology of LirNMC is revealed in 3D with nanoscale reso-
lution. The composition of the studied LirNMC is rather
homogeneous throughout the pristine particle and not affected by
charging. However, charging induces a depth-dependent profile
of transition metal valence that is unique and distinguishes
LirNMC from conventional NMC material. Such unique redox
stratification is likely correlated with the depth-dependent asso-
ciation of oxygen redox with different transition metal cations.

Our results highlight the importance of particle level engineering,
which could be a key to maximize the effective electrochemical
activity of the active materials.

Methods
Sample preparation. Li1.2Ni0.13Mn0.54Co0.13O2 compound was prepared by a
conventional solid-state reaction using stoichiometric lithium carbonate (5% excess
of lithium) and the metal hydroxide with Ni:Mn:Co of 0.13:0.54:0.13 in molar ratio.
The mixture was firstly calcinated at 450 °C for 5 h, then calcinated at 850 °C for
12 h in air and cooled naturally. Electrodes were prepared by spreading the slurry
(N-Methyl-2-pyrrolidone as the solvent) containing active materials (80 wt.%),
acetylene carbon (10 wt.%) and polyvinylidene difluoride (PVDF, 10 wt.%) as the
binder and casting it on carbon-coated aluminum foils. The electrodes were
then dried overnight at 120 °C in a vacuum oven and transferred into an
Ar-filled glovebox for future use. The active mass loadings for the electrodes were
1 mg cm−2. CR2032 coin cells were assembled in an Ar-filled glovebox (O2 <
0.5 ppm, H2O < 0.5 ppm) using the composite cathode, lithium foil (MTI) anode
with thickness of 250 μm, Celgard 2500 as the separator and electrolyte made of
1 M LiPF6 dissolved in ethylene carbonate (EC) and ethyl methyl carbonate (EMC)
(1:2 in volume). The LirNMC electrode was charged to 4.8 V using a Biological
potentiostat/galvanostat (SP-300). The charging rate is C/8 corresponding to
around 37.5 mA g−1. The cell was then disassembled in the Ar-filled glovebox and
the electrode was thoroughly washed by dimethyl carbonate (DMC) solvents. The
washed electrode was dried overnight in the Ar atmosphere before it is further
characterized.

Materials characterization. The crystal structure of the materials was character-
ized by powder x-ray diffraction (XPD) at 28-ID-2 beamline of the National
Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL)
by a Perkin Elmer amorphous-Si flat panel detector, and the x-ray wavelength was
0.1917 Å. XRD refinement was conducted by the Rietveld method using the
TOPAS52. The morphology of the materials was characterized by field emission
scanning electron microscopy (FE-SEM, Hitachi 4800). The ex-situ and in situ x-
ray absorption spectroscopy (XAS) experiments were performed in transmission
mode using a Si (111) double-crystal monochromator at beamline 7-BM (QAS) of
the NSLS-II at BNL. A reference spectrum for each element was simultaneously
collected with the corresponding spectrum of the in-situ cells using transition metal
foil. The energy calibration was carried out using the first inflection point of the K-
edge spectrum of the transition metal foil as a reference. The XANES and extended
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x-ray absorption fine-structure data were analyzed using the ATHENA software
package53.

Nano-resolution spectro-tomography. X-ray micro-CT scan of a small piece of
LirNMC cathode electrode was performed using Xradia Zeiss 520 Versa at Stanford
Nano Shared Facilities (SNSF). In this scan, 1600 projections were collected from
−90° to+ 90°. More details of this equipment could be found elsewhere36.

The spectro-tomography was performed using the transmission x-ray
microscopy (TXM) at the beamline 6-2c of Stanford Synchrotron Radiation
Lightsource (SSRL) of SLAC National Accelerator Laboratory or at beamline 18-ID
(FXI) of National Synchrotron Light Source II (NSLS II) at BNL. The nominal
spatial resolution of TXM is ~30 nm. The LirNMC particles were first carefully
peeled off from the Al current collector and then loaded in the quartz capillary (100
microns in diameter, 10 microns in wall thickness). During the 3D spectro-
tomography scan, the energy scan across the absorption K-edges of Mn, Co, and Ni
were carried out. The energy range of the incident x-ray is 6384 eV to 6776 eV for
Mn, 7554 eV to 7946 eV for Co, and 8178 eV to 8570 eV for Ni, respectively. For
each of these three edges, tomography was performed at 63 different energy points.
In the near edge regions, (6534–6576 eV for Mn, 7704–7746 eV for Co, and
8328–8370 eV for Ni, respectively), the energy step was set to 1 eV to ensure
sufficient energy resolution. The energy step size of the pre-edge and post-edge
regions were set to 10 eV for covering a relatively wide energy window for
normalization of the spectra. The 3D tomographic reconstruction and the XANES
spectra analysis were carried out using an in-house developed software package
known as TXM-Wizard40.

Resonant inelastic x-ray scattering (RIXS). Soft XAS and RIXS experiments
were conducted at beamline 10-1 at Stanford Synchrotron Radiation Lightsource
(SSRL)54. More experiment details about the soft x-ray spectroscopic measure-
ments can be found in our previous work5.

Data availability
The data that support the findings within this paper are available from the corresponding
authors on request.
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