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Thermostability profiling of MHC-bound peptides:
a new dimension in immunopeptidomics and aid
for immunotherapy design
Emma C. Jappe1,2, Christian Garde1, Sri H. Ramarathinam 3, Ethan Passantino3, Patricia T. Illing 3,

Nicole A. Mifsud 3, Thomas Trolle1, Jens V. Kringelum 1✉, Nathan P. Croft 3✉ & Anthony W. Purcell 3✉

The features of peptide antigens that contribute to their immunogenicity are not well

understood. Although the stability of peptide-MHC (pMHC) is known to be important,

current assays assess this interaction only for peptides in isolation and not in the context of

natural antigen processing and presentation. Here, we present a method that provides a

comprehensive and unbiased measure of pMHC stability for thousands of individual ligands

detected simultaneously by mass spectrometry (MS). The method allows rapid assessment

of intra-allelic and inter-allelic differences in pMHC stability and reveals profiles of stability

that are broader than previously appreciated. The additional dimensionality of the data

facilitated the training of a model which improves the prediction of peptide immunogenicity,

specifically of cancer neoepitopes. This assay can be applied to any cells bearing MHC or

MHC-like molecules, offering insight into not only the endogenous immunopeptidome, but

also that of neoepitopes and pathogen-derived sequences.
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CD8+ T cell recognition of epitopes relies upon target cells
processing protein antigens into peptides and presenting
these on the cell surface in complex with major histo-

compatibility complex (MHC) molecules [human leukocyte anti-
gen (HLA) in humans]1,2. Despite the multitude of potential
peptides in a given protein that may theoretically bind MHC, only
a fraction of these may actually be presented as a complex on the
cell surface3,4. Moreover, of these naturally presented peptides,
even fewer will be capable of eliciting a T cell response5. In the
context of patient-specific T cell immunotherapy in cancer,
identifying not only the peptides that will be presented on the
surface of the tumor but also the most efficacious targets—
the immunogenic neoepitopes—remains a major challenge6–8.
The use of MS to sequence and identify naturally processed and
presented peptides (immunopeptidomics) has provided large
qualitative, and in a limited number of cases, quantitative data-
sets9. However, these studies are yet to describe definitive features
of pMHC presentation that can predict immunogenicity10–12.
Indeed, current prediction algorithms only take a selection of
peptide features into account, and assays for the identification of
features linked to peptide immunogenicity typically study them in
isolation13,14. The stability of pMHC has been linked to immu-
nogenicity in several studies6,8,14. However, despite this feature
impacting on the composition of the immunopeptidome, it is
difficult to extract this information for individual peptides since
their presence is dictated by features of peptide generation, source
antigen abundance and turnover, MHC-binding characteristics,
and complex stability.

Inspired by the work of Nordlund and colleagues15,16 who
probed the thermostability of whole proteomes, here we develop a
method to generate thermostability curves across entire immu-
nopeptidomes. The method relies upon modification of estab-
lished immunopeptidomics workflows and rapid thermal
treatment of samples prior to utilizing an optimized immuno-
precipitation assay for thermostable native peptide HLA complex
(pHLA) isolation, peptide elution, and quantitative data-
independent acquisition-mass spectrometry (DIA-MS). As such,
we provide evidence of highly robust thermostability data on two
monoallelic cell lines, achieving a distribution of stability curves
for >1,000 peptides per allele. We find that the obtained measure
of thermostability yields important insights into peptide immu-
nogenicity by training artificial neural network (ANN) models
that improve the prediction of immunogenic peptides, specifically
cancer neoepitopes.

Results
An MS-based assay for stability profiling of the immuno-
peptidome. The MS immunopeptidomics workflow we recently
described in detail9 has been optimized to obtain large peptide
datasets representing “snapshots” of the peptide repertoire pre-
sented by the cell at a given point in time by isolating the pHLA
expressed by the cells. We reasoned that we could extend upon
this workflow by studying the thermal stability of these complexes
and that these modified conditions would result in temperature-
dependent recovery of specific pHLA, allowing a stability measure
for individual peptide ligands to be determined. Based on these
considerations, we developed a pHLA stability assay that applies a
modified microscale immunopeptidomics workflow and DIA-MS
approach to generate thermal stability curves for naturally pro-
cessed and presented immunopeptidomes (Fig. 1).

To develop this assay, we used the HLA class I low-expressing
C1R cell line17,18 modified to express high levels of either HLA-
A*02:01 or HLA-B*07:02 (Supplementary Fig. 1). Despite the low
surface expression of endogenous HLA I (HLA-B*35:03 and
HLA-C*04:01) by parental C1R cells, there is no impairment in

their antigen processing and presentation capacity making
transfected cells essentially monoallelic, antigen-presenting cells9.
HLA-A*02:01 and HLA-B*07:02 were selected as these represent
common HLA allotypes19.

Prior to carrying out the workflow pertaining to the stability
profiling of the immunopeptidome, we constructed spectral
libraries from immunopeptidomics data generated using the
C1R-A*02:01 and C1R-B*07:02 cell lines and more conventional
data acquisition strategies9. This enabled post-acquisition peptide
spectrum matching of DIA-MS data obtained for the stability
treated samples. Spectral libraries of more than 8,000 peptides per
allele were generated based on immunoaffinity purification of
pHLA complexes, isolation of their peptide cargo, and sequencing
of these eluted peptides by high-resolution data-dependent
acquisition (DDA)-based MS using published workflows9. Peptide
identity was established using PEAKS Studio 8.5®20 processing
(Fig. 1a,b, Supplementary Data 1 and Supplementary Data 2).

For stability profiling of the immunopeptidome, we developed
a microscale variation of the optimized immunopeptidomics
approach described by Purcell et al.9 The microscale workflow
was carried out by lysing C1R cells expressing either HLA-
A*02:01 or HLA-B*07:02, clearing lysates and separating these
into aliquots of 5 × 107 cell equivalents (Fig. 1c). Aliquots were
incubated for 10 min in triplicate at different temperatures in the
range 37–73 °C. We selected this temperature range and the
incubation time empirically. Inspired by results from previous
work6,21–23, we designed preliminary experiments to determine
the incubation time that would result in complete ablation of
peptide signal, indicative of complete pHLA dissociation at high
incubation temperature, yet enable sufficient peptide coverage at
37 °C (Supplementary Fig. 2). We tested two different incubation
times, 5 min and 10min, at temperature points 37 °C, 60 °C, 70 °C,
and 80 °C. An incubation time of 10min revealed a defined
temperature endpoint could be achieved at 70 °C whilst retaining
satisfactory peptide recovery at 37 °C (Supplementary Fig. 2).

Next, the effect of heating of C1R-A*02:01 or C1R-B*07:02 cell
lysates across the selected temperature range of 37–73 °C was
investigated by isolating the pHLA complexes using the pan-HLA I
antibody W6/32 after each thermal treatment and analyzing the
eluted peptides in DIA mode. Samples were analyzed using a DIA
strategy with fixed isolation window size of 24m/z (Fig. 1d). HLA-
specific spectral libraries were built in Skyline and used to match
DIA data obtained from the thermally treated samples (Fig. 1e).
DIA-MS data were filtered in Skyline to include only peptide
sequences of 8–11 amino acids in length as these constitute the
majority of MHCI-associated ligands2. The fold-change in peak
area for individual peptides as a result of increasing temperature
was determined based on the peak area at the selected reference
temperature (37 °C). MS chromatographic peak areas were normal-
ized based on indexed retention time (iRT) internal standard
peptides spiked into samples.

Upon inspection of the normalized DIA-MS data for the
thermally treated samples, we observed a sigmoidal decay trend
(Fig. 1f and Supplementary Fig. 3), and the normalized data were
therefore fitted to a logistic sigmoid function (for details, see
Methods). Despite the stringent filtering criteria selected, this
yielded >1,000 peptide-specific sigmoidal melt curves for both
HLA-A*02:01 and HLA-B*07:02 allotypes.

The kinetic stability of pHLA is closely linked to thermo-
stability. Several studies have linked kinetic pMHC stability to
immunogenicity8,14,24, and a strong correlation between thermal
and kinetic stability of pHLA has recently been demonstrated
using differential scanning fluorimetry (DSF)6. To justify the use
of a thermostability measure to describe the stability of the pHLA
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complex, we attempted to replicate these findings and applied the
microscale immunoprecipitation approach illustrated in Fig. 1 to
study the kinetic stability of pHLA complexes eluted from C1R-
A*02:01 cells in a time rather than temperature-dependent
manner (Supplementary Note 1). These time-dependent samples
were analyzed in DIA-MS mode and peptide spectra were mat-
ched to the HLA-A*02:01-specific spectral library using Skyline.
Assuming that all complexes are intact at the initial time point
(0 hrs), this point was used as reference to calculate and compare
the fold-change in peak signal after different incubation times for
individual peptides. Peak areas were normalized and fitted to
exponential decay curves to calculate peptide half-lives (t½). We
found a good correlation between t½ and Tm in our study
(Spearman correlation coefficient = 0.79), supporting previous
findings6 and demonstrating that thermostability is a surrogate
for kinetic stability (Supplementary Fig. 4).

Extracting a thermostability measure from pHLA-specific melt
curves. We verified that the length of the peptides for which
sigmoidal melt curves could be constructed based on the DIA
data followed a typical length-distribution for both alleles
(Fig. 2a)11,18,23. Thus, no bias in peptide length was introduced in

the thermostability measurements. From these data, the stability
of each pHLA complex was inferred by calculating its thermal
melting temperature (Tm) – the temperature at which 50% of the
complex is unfolded (Supplementary Data 3 and Supplementary
Data 4)21. We found no correlation between the attained measure
of thermostability and the median peak area at 37 °C, demon-
strating that the results were not merely an artifact of the ioni-
zation efficiency of the peptide25 (Supplementary Fig. 5).
Furthermore, Tm values for peptides restricted by HLA-A*02:01
and HLA-B*07:02 showed that the thermostability for these
alleles is not generally length-dependent (Fig. 2b).

Revealing inter-allelic and intra-allelic differences in thermo-
stability. Although considered monoallelic, the C1R cell lines
used in these experiments also express low levels of HLA-
C*04:0118. Whilst the expression of HLA-C*04:01 is typically
considered to hamper the investigation of introduced HLA
alleles18, in this study the presence of HLA-C*04:01 was lever-
aged to assess assay robustness (Fig. 2c and Supplementary Fig. 3)
and for a comparison of the distribution of Tm values across all
three HLA loci (Fig. 2d). For the robustness analysis, we con-
sidered the correlation between Tm values for the HLA-C*04:01
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Fig. 1 Workflow for stability profiling of HLA-associated peptides. a Initially, immunoprecipitation on C1R cells expressing the HLA allele of interest was
carried out by culturing cells, lysing them, clearing the lysate, and isolating peptides according to established workflows9. b Liquid chromatography-tandem
mass spectrometry (LC-MS/MS) analysis of pHLA eluates was performed in DDA mode to create HLA allele-specific spectral libraries. c Small-scale
immunoprecipitation was carried out by clearing lysates and separating these into replicates consisting of 5 × 107 cells, after which aliquots were incubated
in triplicate at temperatures ranging from 37 to 73 °C with a temperature step-size of 3-4 °C. d Subsequently, the remaining thermostable HLA-bound
peptides were eluted, filtered, and analyzed using a DIA strategy to enable peptide quantification at different temperature points. e Spectral library
matching and filtering were performed in Skyline. f Peptide peak areas for triplicate samples were normalized and fitted to sigmoidal decay curves to
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was carried out at 12 different temperature points ranging from 37 to 73 °C with n=3 biological replicates at each temperature point. Data are presented as
median values ± SD. FDR: False Discovery Rate. Parts of the figure were generated using BioRender.com.
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peptides identified in both the C1R-A*02:01 and C1R-B*07:02
assays and found a strong correlation (Pearson Correlation
Coefficient = 0.78) (Fig. 2c and Supplementary Data 5). Intri-
guingly, we observed that the outlier peptides in the two assays
had high predicted binding affinity to one of the other ‘competing’
alleles expressed by the cell lines (Fig. 2c and Supplementary Table 1),
offering unique insights into the potential competition that occurs
between alleles expressed by a given cell line for available peptide
ligands. Tm values for individual ligands across the three alleles varied
from 40.1 °C to 67.1 °C, with a median of 57.8 °C, 59.9 °C and 53.5 °C
for HLA-A*02:01, HLA-B*07:02 and HLA-C*04:01, respectively
(Fig. 2d). A comparison of the distribution of Tm values of all pep-
tides across all three allotypes revealed that the stability of naturally
presented peptide ligands varies significantly inter-allelically (Fig. 2e).
HLA-C*04:01-bound peptides had the lowest average Tm, consistent
with a number of prior biochemical studies26,27, as well as reports
demonstrating lower cell surface expression levels and greater ER-
retention of HLA-C alleles26,28. Moreover, we observed that intra-
allelic Tm values varied in their level of dispersion, with HLA-
C*04:01 showing the highest variance (Fig. 2d,e).

Thermostability profiling provides added data dimensionality.
To assess whether intra-allelic variance in pHLA Tm could be
explained by ligand affinity, we predicted peptide binding affi-
nities using NetMHCpan-4.011 and correlated these with ther-
mostability measurements. This analysis showed a poor
correlation (Fig. 3a), with the majority of the eluted ligands
predicted to have high binding affinity to their cognate HLA
allele. Our ability to discriminate these peptides using the ther-
mostability assay, therefore, provides an additional dimension of
information (Fig. 3a). This led us to explore whether we could
tease apart sequence features that drive peptide stability. For this,
we trained ANN models based on transformed thermostability
data (Fig. 3b), which enabled the identification of binding motifs
in the larger eluted ligand datasets (Fig. 3c). We observed a dis-
tinction between the motifs of the high and low stability binders
when predicting eluted ligands with our stability model, which
could not be identified when predicting the ligands using
NetMHCpan-4.0 (Fig. 3c). The information content in the
peptide-binding motifs was higher for the more stable binders
compared to the less stable binders for both HLA-A*02:01 and
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HLA-B*07:02 (Fig. 3c and Supplementary Fig. 6). While anchor
positions (P2 and P9) were similar between peptides predicted to
have high and low stability, the difference in binding motifs for
HLA-A*02:01 peptides was striking at P4 and P6 – a difference
not observed when predicting the ligand likelihood using
NetMHCpan-4.0. Interestingly, the largest difference between
immunogenic and non-immunogenic pMHCs has previously
been demonstrated to be at these central positions29, which have
been shown to be in close contact with the T cell receptor and
important for T cell recognition30,31. These findings collectively
highlight the limitations of current binding affinity and eluted
ligand likelihood prediction algorithms.

Thermostability data improve the prediction of cancer neoe-
pitopes. We investigated whether the stability data encompassed
information that could directly improve the prediction of T cell
epitopes with the focus in this work being specifically on cancer
neoepitopes. We used the HLA-A*02:01 data to train an
ANN model, since the discrepancy between the motifs of
high and low stability HLA-A*02:01 binders was more prominent
and indicative of high information content in the stability data,
and sufficient HLA-A*02:01-restricted neoepitope data were
available to evaluate the trained model. Thus, an HLA-A*02:01
Stability Predictor was trained using transformed Tm values as
positive data and randomly sampled, length-balanced peptides
from the human UniProt-Swissprot database as negative data

(Supplementary Data 3 and Fig. 3d). We tested this model on a
dataset of 26 cancer neoepitopes curated from the literature by
Blaha et al.6 and 20 cancer peptides confirmed to be negative in
multiple subjects tested in multimer/tetramer or ELISPOT assays,
retrieved from the Immune Epitope Database (IEDB)32 (Sup-
plementary Data 6). This negative dataset is considered to consist
of “difficult negatives” as they were predominantly investigated
based on being anticipated HLA binders, thus making it chal-
lenging for a prediction model to distinguish the positive and
negative datasets. We established that our Stability Predictor is
superior to the state-of-the-art prediction tools33, NetMHCpan-
4.011, MixMHCpred34, and MHCFlurry12, in distinguishing
immunogenic neoepitopes from non-immunogenic cancer pep-
tides across all performance measures with nine of the predicted
top 10 peptides being true immunogenic neoepitopes (Fig. 3e and
Supplementary Fig. 7). Achieving such high precision in neoe-
pitope prediction remains crucial for the optimal design of per-
sonalized T cell immunotherapies in cancer. Of note, the Stability
Predictor was trained using significantly less data than the vast
amount of binding affinity and eluted ligand data used to train
the prediction tools included in this benchmark11,12,34. Due to the
limited size of the negative test dataset, we carried out an addi-
tional benchmark analysis to ensure robustness in our results in
which we retrieved all confident negatives (199 peptides) from the
IEDB, including all cancer, autoimmune and viral peptides. Here,
we show that the Stability Predictor significantly outperforms
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Fig. 3 Thermostability data of HLA-ligands improves immunogenicity prediction. a The information content of the stability data for each of the two main
alleles studied (HLA-A*02:01 and HLA-B*07:02) was investigated by predicting peptide binding affinity with netMHCpan-4.0 (BA)11 of the 8-11mer eluted
ligands for which stability measurements were achieved demonstrating no correlation between predicted affinity and measured stability. Thus, granularity
through peptide stability for predicted high-affinity HLA ligands was observed for both alleles. b Tm values were calculated based on thermal melt curves for
the identified peptides across 12 different temperature points ranging from 37 °C to 73 °C with n=3 biological replicates at each temperature point.
Thermal melt curve data are presented as median values ± SD. We trained an ANN model using transformed Tm values as input for the identified 1094
peptides restricted by HLA-A*02:01. The resulting models were used to predict >8,000 allele-specific eluted ligands. Binding motifs were constructed
using the 1500 best and poorest predictions in both models. c This demonstrated a separation in the motif identified for high and low stability binders
which could not be achieved using netMHCpan-4.0 (EL). d We investigated whether the additional dimensionality of the thermostability data could
improve the prediction of immunogenic cancer neoepitopes by training ANNs with Tm values rescaled to the interval [0.5;1] as positive training data and
length-balanced, randomly sampled peptides from the human UniProt-Swissprot as negative training data. e The resulting Stability Predictor demonstrates
superior performance to current prediction tools with 9 of the predicted peptides in the top 10 being true neoepitopes (Precision in Top10). BA: binding
affinity. PCC: Pearson Correlation Coefficient. EL: eluted ligand. AUC: Area Under the Curve. ROC: Receiver Operating Characteristic. PPV: Positive
Predictive Value.
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current prediction algorithms for all model comparisons (AUC
p < 0.05). This leads us to hypothesize that the same trend will be
evident when predicting a larger neoepitope dataset.

Discussion
The work herein represents an important step towards expanding
our current understanding of peptide immunogenicity. We have
developed a method to obtain quantitative stability data on
naturally processed and presented MHC-associated peptide
ligands using a modified immunopeptidomics workflow and
targeted MS approach. The ease of implementation and use of the
method makes it highly accessible for the field of immuno-
peptidomics. Combined with a tailored bioinformatics pipeline,
the method enables the generation of thermostability curves for
endogenous pMHC ligands in a simultaneous and unbiased
manner. By extracting pMHC-specific thermostability measures
for >1000 peptide sequences per allele, we have shown that the
method provides added dimensionality to the data we typically
derive from “snapshot” immunopeptidomics studies. We
demonstrate both intra- and inter-allelic variance in stability
profiles which may hold the potential to discriminate competition
for binding of promiscuous peptides. Importantly, we show that
by incorporating thermostability data for naturally presented
ligands we improve the prediction of immunogenic cancer
neoepitopes. These findings are of great relevance as we are
currently challenged in identifying the most efficacious targets
from a list of predicted high-affinity MHC ligands.

Our findings are supported by previous reports suggesting that
pMHC stability is a promising feature for neoepitope
prioritization6,8. Multiple studies have demonstrated a correlation
between pMHC stability and peptide immunogenicity and, in
some instances, even shown that pMHC stability is a better
predictor of immunogenicity than pMHC affinity14,24, which has
been attributed to the importance of prolonged exposure of the
complex to circulating T cells24,35.

To date, most studies utilizing pMHC stability as a feature to
better guide the prediction of peptide immunogenicity have
focused on the kinetic stability of the complex14,24,36,37. As
demonstrated previously and shown in this work, another means
of studying the stability of a ligand-protein interaction is through
changes in the thermostability of the protein as a result of ligand
binding38, which has been leveraged to probe the thermostability
of whole proteomes15,16. Multiple studies have investigated the
thermostability specifically of MHC molecules with different
peptides bound within the binding groove; however, it has not
previously been possible to study the thermodynamics of exten-
sive, naturally processed and presented peptide repertoires, and
the majority of studies looking into pMHC thermostability have
not investigated this as a direct measure of immunogenicity6,21–23.
In addition to this, assays for pMHC stability analysis rely on the
ability to re-fold MHC heavy chain and β2m in vitro and require
pre-selection and synthesis of peptides. The latter is a major
downside of current affinity and stability assays13,14,21, as the
selection of peptides is typically based on prior knowledge of
peptide affinity profiles. The method described in this work elim-
inates this bias as the natural processing of pMHC has been
allowed to proceed prior to the assay.

Although we here focus on endogenous pHLA repertoires from
cultured cell lines, the versatility and ease of use of the method
makes it applicable to all types of cells expressing MHC from any
species, provided an antibody exists to immunoprecipitate the
complex for analysis. This, therefore, allows the investigation of
any MHC molecule in any context and can be readily extended to
investigate peptide presentation in cancer, autoimmunity, or
infectious disease. Although here we used a DIA-MS method, the

approach can be adapted to more sensitive assays such as multiple
reaction monitoring, which is ideally suited to detecting low
copy-number peptides. Thus, the method would enable the study
of the stability of peptide repertoires presented by cancerous cells,
and how these are affected by varying levels of IFNγ
exposure39,40, or the stability of repertoires presented by virally
infected cells, and how such repertoires change during an infec-
tious cycle41. Particularly, mouse models for virus infection are
ideal for studying features of pMHC and T cell immunogenicity
because they are so well established and highly tractable3,41. In
addition to this, the method could be applied to study the effect of
post-translational modifications on the stability of pMHC bind-
ing, which is currently an unexplored area of research.

In the future, we foresee the assay having a clear application in
generating stability measurements for neoepitopes from patient-
derived cell lines or biopsies to drive a better selection of
immunotherapeutic targets. In addition, measuring the extent to
which the stability of pathogen-derived pMHC correlates with
known CD8+ T cell responses will only serve to bolster our
fundamental understanding of peptide immunogenicity.

Methods
Cell lines and culture. The class I-reduced B-lymphoblastoid C1R cell line (ATCC
CRL-1993) has reduced expression of endogenous HLA-A*02:01 and HLA-
B*35:03 and normal expression of HLA-C*04:0117,18 and was used for the gen-
eration of monoallelic cell lines expressing either HLA-A*02:01 or HLA-B*07:02.
C1R-A*02:01 is a transfectant cell line, generated as described in42, and C1R-
B*07:02 is retrovirally transduced using established transduction methodologies43.
Cell lines were cultured in RPMI 1640 media (Thermo Fisher Scientific, Waltham,
MA) supplemented with 10% heat-inactivated fetal calf serum (Sigma-Aldrich,
USA), 1 mM MEM sodium pyruvate, 2 mM L-glutamine, 100 mM MEM non-
essential amino acids, 5 mM HEPES buffer solution, 55 mM 2-mercaptoethanol,
100 Uml−1 penicillin and 100 mgml−1 streptomycin; purchased from Gibco
(Thermo Fisher Scientific), at 37 °C, 5% CO2. In addition, C1R-A*02:01 trans-
fectants were maintained under hygromycin (0.3 mg ml−1) selection during cell
culture. Cells were tested for mycoplasma contamination, and continued HLA class
I expression was confirmed using flow cytometry after staining with W6/32 (pan
HLA class I-specific monoclonal antibody produced in-house from W6/32 hybri-
doma, ATCC HB-95), and Goat F(ab′)2 Anti-Mouse IgG(H+ L), Human ads-PE
(1:500, catalog number 1032-09, Southern Biotech, USA). Once cells had grown to
high density, they were harvested in batches of 4 × 108 cells by centrifugation
(520 × g, 10 min, 4 °C) and washing in ice-cold phosphate-buffered saline (PBS),
after which the pellets were snap-frozen in liquid nitrogen and stored at -80 °C
until further use.

Purification of pHLA complexes to generate spectral library. Peptide spectral
libraries of HLA-A*02:01 and HLA-B*07:02 were generated based on the isolation
of pHLA complexes and subsequent dissociation of bound peptides using the
immunoprecipitation protocol described in detail in9, using 8 × 108 cells. Briefly,
cells were lysed by homogenization followed by detergent-based lysis and incu-
bation with rotation for 45 min at 4 °C. The lysate was centrifuged for 10 min at
2,000 × g, 4 °C, after which the supernatant was transferred to a pre-chilled ultra-
centrifuge tube and centrifuged for 45 min (100,000 × g, 4 °C). The pHLA com-
plexes were immunoaffinity purified from the cell lysate supernatant using
either the HLA-A*02:01-specific antibody BB7.2 (ATCC HB-82, grown and pur-
ified in-house) or the pan-HLA I antibody W6/32 (ATCC HB-95, grown and
purified in-house) crosslinked to protein A sepharose (antibody to protein ratio of
10 mgml−1) as described in9. Bound complexes were eluted with 5 ml 10% acetic
acid, and the eluted peptides, class I heavy chain and β2-microglobulin (β2m) were
fractionated on a 4.6 mm internal diameter × 100 mm long monolithic reversed-
phase (RP) C18 high-performance liquid chromatography (HPLC) column
(Chromolith SpeedROD, Merck Millipore, Germany) on an ÄKTAmicro™ HPLC
system (GE Healthcare, UK; Unicorn v5.11 software). After loading samples under
mobile phase conditions of 98% buffer A (0.1% v/v trifluoroacetic acid (TFA) in
water) and 2% buffer B (80% v/v acetonitrile (ACN), 0.1% v/v TFA in water),
peptides were enriched using a gradient of buffer A to B running at 1 ml min−1

with gradient conditions of 2–40% B over 4 mins, 40–45% B over 4 min and
45–99% B over 2 min, and collected in 500 μl fractions. Fractions were pooled into
nine peptide-containing pools which were concentrated by vacuum centrifugation
and reconstituted in 2% v/v ACN, 0.1% v/v formic acid (FA) in water. To carry out
retention time prediction in down-stream DIA-MS analyses, 200 fmoles of iRT
peptides were spiked into each fraction pool44. Pooled fractions were sonicated for
10 mins, centrifuged for 10 m at 21,000 × g, and stored at -80 °C until LC-MS/MS
data acquisition.
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Microscale immunoprecipitation for pHLA stability analysis. Peptide thermal
stability was analyzed using a microscale immunoprecipitation protocol modified
from the workflow described previously9. Pellets of 4 × 108 C1R-A*02:01 or C1R-
B*07:02 cells were lysed by cryogenic milling and subsequent resuspension of
homogenized cell material in 10 ml lysis buffer as described above. Cell lysates were
incubated for 45 min at 4 °C with slow end-over-end mixing after which lysates
were cleared by centrifugation at 3700 × g for 10 min at 4 °C. Cleared lysates were
separated into replicates consisting of 5 × 107 cell equivalents in LoBind Eppendorf
tubes, which were then centrifuged for 10 min at 21,000 × g (4 °C) to ensure
complete clearing of each replicate lysate. The cleared lysates were transferred to
new Eppendorf tubes and incubated for 10 min in triplicate at different tempera-
tures (37 °C, 40 °C, 43 °C, 46 °C, 50 °C, 53 °C, 56 °C, 60 °C, 63 °C, 66 °C, 70 °C
or 73 °C), using a benchtop heat block (Benchmark Scientific isoBlock™). Upon
completion of the thermal incubation, samples were placed immediately on ice.
Microscale immunoprecipitation of thermally treated pHLA complexes was then
carried out by mixing cooled lysates with W6/32 antibody (400 μg per replicate)
bound to protein A sepharose, incubating overnight at 4 °C and then centrifuging
through MobiSpin Columns (MoBiTec GmbH, Germany) with inserted filters of 10
μm pore size, with subsequent and extensive washing by addition of PBS. Bound
pHLA complexes were eluted with 300 μl 10% acetic acid and the cell eluate,
consisting of eluted peptides, class I heavy chain, β2m and W6/32 antibody, was
filtered using pre-washed (twice with 450 μl 10% acetic acid) 5 kDa centrifugal filter
units (Ultrafree®-MC-PLHCC, Merck Millipore, Germany). Filter units were
centrifuged at 16,000 × g for 60 min to collect sample flow-through, and filters were
washed with an additional 200 μl 10% acetic acid to ensure that all residual peptides
had passed through the filter. 200 fmoles iRT peptide mixture was spiked into the
samples for downstream retention time prediction and peak normalization. The
filtered peptide solution was purified and buffer exchanged prior to LC-MS/MS
analysis using ZipTip Pipette tips with a C18 bed inserted into a 100 μl tip (Agilent,
OMIX A57003100) and eluted in 30% ACN/0.1% FA. The purified samples
were concentrated by vacuum centrifugation and subsequently reconstituted in
2% v/v ACN, 0.1% v/v FA in water, and stored at -80 °C. Prior to LC-MS/MS
analysis, samples were thawed, sonicated for 10 min, and centrifuged for 10 min
at 21,000 × g.

Data acquisition by LC-MS/MS. LC-MS/MS analysis of pHLA eluates was per-
formed on a Q-Exactive Plus Hybrid Quadrupole Orbitrap (Thermo Fisher Sci-
entific) coupled to a Dionex UltiMate 3000 RSLCnano system (Thermo Fisher
Scientific) with data acquisition for the reconstituted fraction pools from large-scale
immunoprecipitations being achieved by DDA-MS, and data acquisition for the
microscale immunoprecipitations concerning pHLA stability being analyzed using
a DIA strategy45,46. Data were acquired using Xcaliber 3.0.63 acquisition software
(Thermo Fisher Scientific). For DDA analysis, 6 μl of each concentrated fraction
pool was loaded onto a Dionex Acclaim PepMap100 200-mm C18 Nano-Trap
Column with 100-μm internal diameter (5-μm particle size, 300-Å pore size) in
buffer A (2% v/v ACN, 0.1% v/v FA in water) at a flow rate of 15 μl min−1. HLA-
B*07:02-associated peptides were separated on a Dionex Acclaim RSLC PepMap
RSLC C18 column (50-cm length, 75-μm internal diameter, 2-μm particle size,
100-Å pore size) and subsequently eluted at a flow rate of 250 nl/min over an
increasing gradient of buffer B (80% v/v ACN, 0.1% v/v FA in water) of 2.5–7.5%
over 3 min, 7.5–37.5% over 120 min, 37.5–42.5% over 3 min, 42.5–99% over 5 min
and 99% over 6 min after which the gradient dropped to 2.5% buffer B over 1 min,
before re-equilibrating at 2.5% for 20 min. Data were collected in positive mode
with an MS1 resolution of 70,000 and scan range 375–1,575 m/z and an MS2
resolution of 17,500 with scan range 200–2,000 m/z. The top 20 ions of charge state
2–5 per cycle were chosen for MS/MS with a dynamic exclusion of 15 s. HLA-
A*02:01-associated peptides were eluted with the same flow rate over an increasing
gradient of buffer B (80% v/v ACN, 0.1% v/v FA in water) of 2.5–7.5% over 1 min,
7.5–35% over 40 min, 35–99% over 5 min, 99% over 6 min, and then dropping to
2.5% buffer B over 1 min and finally re-equilibrating at 2.5% for 20 min. Data were
collected as for HLA-B*07:02-associated peptides; however, with MS1 scan range
375–1,800 m/z and with the top 12 ions per cycle selected for MS/MS.

For DIA analysis, 6 μl of each thermally treated sample replicate was loaded onto
the trap column and eluted from the C18 column at a flow rate of 250 nl min−1 over
the same gradient as above for DDA. The mass spectrometer was operated with an
MS1 resolution of 70,000 and scan range 375-1,575m/z followed by 25 DIA scans
with fixed isolation window size of 24m/z in the range 387.426 to 987.6988m/z at a
resolution of 17,500.

Spectral library generation in PEAKS Studio®. PEAKS Studio® (v.10)20 was used
to process the DDA-MS data from nine fraction pools of HLA-eluted peptides
resulting from immunoprecipitation of 8 × 108 C1R cells9. DDA data files were
imported with Instrument set to Orbitrap, Fragmentation HCD, and no digestion
enzyme. Precursor and fragment mass tolerances of 10 ppm and 0.02 Da, respec-
tively, were selected, and the DDA spectra were searched against the human
UniprotKB database (v2019-08) with iRT peptide sequences used as contaminant
database. Analysis was carried out with oxidation [+15.99] and deamidation
[+0.98] set as variable peptide modifications, with a maximum of three mod-
ifications per peptide. A false discovery rate (FDR), determined based on a target-

decoy database, of 1% was used to generate the HLA-specific spectral libraries in
PEAKS Studio®.

DIA data analysis and spectral library matching in Skyline. Skyline v.4.247 was
used to process the DIA data for all stability treated replicates. Only peptide
sequences of 8–11 amino acid residues in length were included2. The DDA data
from PEAKS Studio® was used to build spectral libraries, and retention time
alignment was carried out by recalibrating iRT standard values relative to the
peptides being added and selecting a time window of 10 min. The DIA isolation
scheme was specified based on isolation windows in the DIA raw files and retention
time filtering included only scans within 10 min of the predicted retention time.
The raw DIA files were imported into Skyline and processed using the HLA-
specific spectral libraries to extract fragment ion peak areas. Due to high com-
plexity of the data, poor peptide transitions were removed. Transitions were
removed based on whether or not they were observed in the 37 °C replicates as this
is the temperature point at which the maximal number of peptides with the
maximal peak areas were expected to be observed. Thus, transitions that did not
have a coeluting peak for all 37 °C replicates were removed as well as peptides for
which the isotopic dot product (idotP) value for all 37 °C samples was blank.

Pre-processing of thermostability data. MS chromatographic peak areas for the
filtered peptide datasets were normalized based on iRT internal standard peptides
spiked into all samples. Total peak areas A for each peptide were normalized by a
factor f defined as the average of the mean-centered iRT peptide peak areas

Anorm ¼ A
f
; where f ¼ 1

J

X
j

xij
1
I

P
i xij

ð1Þ

where j denotes the iRT peptide and i the replicate at any given matrix position. For
replicates with dotP < 0.8, peak areas were set to 0. The median peak areas for each
time or temperature point in the stability treatment protocol were outlier corrected,
with each corrected peak area being the mean of the median peak area at any given
time or temperature point and the median of peak areas at adjacent points. The
peptide datasets were filtered to remove peptides for which the median dotP of the
37 °C triplicates or the 0 hr triplicates was < 0.8 as well as iRT peptide fragments
and in-house contaminant peptides catalogued over many experimental controls.

Generating thermostability curves. For the temperature-dependent microscale
immunoprecipitation samples, fold-changes in the median value of the normalized,
outlier-corrected peak areas resulting from DIA analysis were computed using the
lowest temperature point (37 °C) as reference. Non-linear least squares were used
to fit logistic sigmoid functions to the peak area fold-changes as a function of
temperature, T

f Tð Þ ¼ 1

1þ es�ðT�TmÞ ð2Þ

where Tm is the transition midpoint for pHLA complex unfolding. The slope of the
curve at the transition midpoint is defined as the first derivative of f(T) for T = Tm,
which when solved shows that slope = –s/4. The value of f(T) for T = 37 °C was
fixed to one for all peptides.

The peptides were filtered to the set with fits satisfying R2 > 0.85. This was
satisfied by 86% of the peptides in the C1R-A*02:01 data and 82% of the peptides
in the C1R-B*07:02 data. Endogenous ligands expressed naturally by parental C1R
cells were identified by intersecting the two datasets. This set was supplemented
with ligands in the C1R background dataset, defined below. The GibbsCluster
algorithm v2.048 was used to cluster data and remove any additional sequences that
were clearly outliers in respect to the HLA-A*02:01 and HLA-B*07:02 motifs,
respectively. This yielded a total of 1,094 peptides and associated thermal stability
curves for HLA-A*02:01 and 1,354 for HLA-B*07:02.

Filtering eluted ligands contained in the spectral library. Eluted ligands were
filtered for overlapping sequences between the HLA-A*02:01 and HLA-B*07:02
datasets and sequences in the stability data, described above. Furthermore, the
eluted ligands were filtered based on known contaminants as well as the established
C1R background, defined below. GibbsCluster v2.048 was employed to flag and
remove spurious ligands. This yielded a total of 8,138 and 8,134 eluted ligands for
HLA-A*02:01 and HLA-B*07:02, respectively.

C1R background and analysis of assay robustness. All post-processed peptides
from the HLA-A*02:01 and HLA-B*07:02 were compiled, and the sequences were
clustered48 to identify motifs characteristic of the HLA-C*04:01 allele, which is
expressed at relatively low levels, and the HLA-B*35:03 allele, expressed at residual
levels, by C1R cells18. Only ligands identified in the C1R background dataset,
comprising ligands in the work by Schittenhelm et al.18 and in-house identified
C1R ligands, were included. HLA-B*35:03 peptides were subsequently removed
from further analysis, as these represented just 73 peptides. In the comparison of
Tm values between the two assays, the likelihood of being an eluted ligand for
outlier peptides was predicted using NetMHCpan-4.011. The distribution of Tm
values for each of the alleles was compared statistically using the Kruskal-Wallis
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test for significance and, as post hoc test, the Mann Whitney test with Bonferroni
adjustment of p-values to correct for multiple comparisons.

Data transformation and artificial neural network training. Analyses to inves-
tigate whether the thermostability data encompassed information that could help
tease apart sequence features that drive peptide stability (i) and improve the pre-
diction of peptide immunogenicity (ii) were carried out by training ANN model
ensembles. The stability (Tm) values were transformed in order to be used as input
for the ANN models as described below.

(i) Binding motifs of highly and lowly stable binders were identified through
ANN training using only the peptide sequences for which stability data was
obtained to train the models. Tm value transformation to train the ANN
ensembles was carried out such that stability measurements were rescaled to
the interval [0;1], ensuring clustering around 0 and 1. First, all values were
normalized

Tm norm ¼ f Tmð Þ ¼ Tm �minimum Tmð Þ
maximum Tmð Þ �minimum Tmð Þ ð3Þ

Then, the normalized Tm values, Tm_norm, were transformed to lie a distance
of 3 times the median Tm value from the median, with values < 0, changed to
0, and values > 1, changed to 1

Tm trans ¼ f Tm normð Þ ¼ Tm norm þ 3 � Tm norm �medianðTm normÞð Þ ð4Þ
ANN networks were trained with 60, 80, and 100 hidden neurons for 150
epochs using an adapted NNAlign approach with insertions and
deletions10,49,50. Data were randomly partitioned into 5 partitions, and
ANN ensembles were trained using 5-fold nested cross-validation50 yielding
20 ANN models for each network architecture. The model for each subset of
partitions yielding the best performance based on mean squared error
(MSE) on the test set, was included in the final network ensemble. The
model was used to predict the stability of >8,000 HLA-specific eluted ligands
which were pre-processed and filtered, as described above. Sequence motifs
were generated using Seq2Logo-2.151.

(ii) ANN ensembles were trained using the peptide sequences for which stability
data were obtained and their transformed Tm values as positive input
(denoted ‘Stability Predictor’). The transformation was carried out using a
linear normalization approach.

f Tmð Þ ¼ 0:5 �
Tm �minimum Tmall

� �

maximum Tmall

� �
�minimum Tmall

� �þ 0:5 ð5Þ

A negative complement to the positive training data was randomly sampled
from the human Uniprot-Swissprot database (v2019-04) and assigned a target
value of 0. Peptide sampling was carried out in a length-balanced manner, i.e. for
each length k, 10×n peptides were sampled, where n indicates the number of
ligands of length k. We trained ANN ensembles using the adapted NNAlign
approach described in (i). Network ensembles were trained with 40, 60, and 80
hidden neurons, respectively, and for 200 epochs. Peptide data were partitioned
into five subsets using a clustering approach modified from52 to minimize the
similarity between training and test data. As above, training using 5-fold nested
cross-validation yielded 20 ANN models for each network architecture, and the
final network ensemble consisted of models with the lowest MSE. The final Stability
Predictor constituted ensembles of 60 trained networks each. The predictor was
evaluated using a positive dataset of cancer neoepitopes curated from the literature
by Blaha et al.6 which were given the target value 1 and a negative dataset
consisting of cancer peptides confirmed to be negative in ELISPOT or multimer/
tetramer assays with >10 subjects tested, retrieved from the IEDB (2019-12). This
yielded 26 positive immunogenic neoepitopes and 20 non-immunogenic cancer
peptides for HLA-A*02:01. The performance measures used to evaluate the
Stability Predictor were AUC (ROC), average precision (AP), positive predictive
value (PPV) at 30% recall, and precision in top 10. Model performance was
compared to NetMHCpan v4.011, MixMHCpred v2.0.234, and MHCFlurry v2.012.
To compare immunogenic and non-immunogenic peptides, a two-sided,
independent samples t test was used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Mass spectrometry proteomics data, PEAKS Studio® search results, and Skyline Report
files have been deposited in ProteomeXchange Consortium via the PRIDE53 partner
repository under accession code PXD017824 (C1R-A*02:01 and C1R-B*07:02 DDA LC-
MS/MS; https://www.ebi.ac.uk/pride/archive/projects/PXD017824) and PXD017839
(C1R-A*02:01 and C1R-B*07:02 DIA LC-MS/MS for thermal stability experiments and
the experiments used to determine complete ablation of peptide recovery at high
temperature; https://www.ebi.ac.uk/pride/archive/projects/PXD017839). All other data
are available in the article and supplementary information files or from the

corresponding authors upon reasonable request. Source data are provided with
this paper.

Code availability
Code for training the HLA-A*02:01 thermostability ANN model was developed using
NNAlign10,49,50. For re-training of the stability predictor described in this work, we refer
to the NNAlign webserver http://www.cbs.dtu.dk/services/NNAlign-2.0/. All training
settings are described in the Methods, and the data used to train the predictor are
available as Supplementary Data. Any additional code is available from the
corresponding authors upon reasonable request.
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