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Machine learning uncovers independently
regulated modules in the Bacillus subtilis
transcriptome
Kevin Rychel 1, Anand V. Sastry 1 & Bernhard O. Palsson 1,2,3✉

The transcriptional regulatory network (TRN) of Bacillus subtilis coordinates cellular functions

of fundamental interest, including metabolism, biofilm formation, and sporulation. Here, we

use unsupervised machine learning to modularize the transcriptome and quantitatively

describe regulatory activity under diverse conditions, creating an unbiased summary of gene

expression. We obtain 83 independently modulated gene sets that explain most of the

variance in expression and demonstrate that 76% of them represent the effects of known

regulators. The TRN structure and its condition-dependent activity uncover putative or

recently discovered roles for at least five regulons, such as a relationship between histidine

utilization and quorum sensing. The TRN also facilitates quantification of population-level

sporulation states. As this TRN covers the majority of the transcriptome and concisely

characterizes the global expression state, it could inform research on nearly every aspect of

transcriptional regulation in B. subtilis.
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Cells interpret dynamic environmental signals to govern
gene expression through a complex transcriptional reg-
ulatory network (TRN). Bacillus subtilis, a model gram-

positive soil and gut bacterium, is one of the most widely studied
species in microbiology, providing a rich background for
understanding its TRN. This generalist organism is a model for
processes such as sporulation1, biofilm formation2, and compe-
tence3—all of which are key to understanding pathogenesis in
other bacteria, such as Staphylococcus aureus and Clostridium
difficile. B. subtilis is also commonly engineered for industrial
production purposes4, which creates demand for practical
knowledge about how it responds to stimuli and alters its gene
expression.

In 2012, Nicolas et al.5, generated a transcriptomic microarray
data set of B. subtilis with 269 expression profiles under 104
conditions, which included growth over time in various media,
carbon source transitions, biofilms, swarming, various nutritional
supplements, a variety of stressors, and a time course for spor-
ulation. The wide scope and high quality of this data set have led
to its broad adoption. It is now the expression compendium
featured on SubtiWiki, an online resource for B. subtilis that is
one of the most widely used and complete databases for any
organism6. SubtiWiki contains detailed biological descriptions
and binding sites for hundreds of transcriptional regulators;
however, binding sites alone cannot explain the condition-specific
transcriptomic responses of bacteria to dynamic environmental
conditions7,8.

Independent component analysis (ICA) is an unsupervised
statistical learning algorithm that was developed to isolate sta-
tistically independent voices from a collection of mixed signals9.
ICA applied to transcriptomic matrices simultaneously computes
independently modulated sets of genes (termed iModulons) and
their corresponding activity levels in each experimental condi-
tion10. iModulons can be interpreted as data-driven regulons,
though they rely on observed expression changes instead of
transcription factor binding sites. The condition-dependent
activity level of iModulons indicates how active the underlying
regulator is. Since the number of iModulons is substantially fewer
than the number of genes, they are a significantly easier way to
analyze systems-level cell behavior.

ICA has been shown to extract biologically relevant tran-
scriptional modules for a variety of transcriptomic datasets,
especially in yeast and human cancer11–15. It was the best out of
42 methods at recovering known co-regulated gene modules in a
comprehensive examination of TRN inference methods16. ICA
also obtained the most robust modules across datasets compared
to similar factorization algorithms17. We previously applied this
approach to a large, high-quality Escherichia coli RNA-seq
compendium and extracted 92 iModulons, two-thirds of which
exhibited high overlap with known regulons10. This analysis
provided many insights into the E. coli TRN, including the
addition of genes to known regulons (validated through ChIP-
exo), bifurcation of the purine synthesis regulon, the character-
ization of new regulons, and identification of clear associations
between regulator mutations and activities. We have also applied
ICA to transcriptomics of evolved strains to understand evolu-
tionary trade-offs and regulatory adaptations in naphthoquinone-
based aerobic respiration18, and to characterize the function of
the transcription factor OxyR, which responds to peroxide19.

Without using ICA, others have attempted to infer the TRN of
B. subtilis. Arietta-Ortiz et al.20 used an “Inferelator” approach
which utilized prior knowledge of the TRN along with tran-
scriptomics (including the Nicolas et al. data) to obtain a global
network, infer activity levels, and predict new TF-gene interac-
tions. In addition, Fadda et al.21 used genomic regulatory motifs
of major regulators to infer a TRN, and Leyn et al.22 combined a

variety of available data types to infer regulons in B. subtilis as
well as 10 related Bacillales species. These approaches have been
valuable for expanding our understanding of the TRN and can be
especially helpful in complex processes like sporulation where
transcriptomics can be supplemented with other data types.
However, prior methods suffer from a bias toward the known
aspects of the TRN, which can pose a barrier for new discovery or
unbiased validation of past data. They are also not as easily
applicable to organisms with very incomplete TRN annotations.
This motivates the development of fully unsupervised approaches
like ICA.

Given our success with ICA applied to RNA-seq data from a
model gram-negative bacterium, we sought to determine what it
can uncover about a microarray data set from a model gram-
positive bacterium. Though RNA-seq data exists for B. subtilis,
the Nicolas et al. data set has a comparatively wider diversity of
conditions and a more established reputation for data quality. We
have shown that the condition space is more important than the
technology used10,23, which makes this a good choice of data set.
Using the wealth of TRN knowledge available on SubtiWiki, this
analysis uncovers many insights. We determine the main func-
tions and regulators that control a large fraction of the tran-
scriptome, and we characterize the iModulon accuracy in relation
to the known TRN. iModulon activities reveal relationships and
stimuli that have been present in the data but never specifically
investigated; it is therefore a powerful hypothesis-generating tool.
We specifically present five unexpected iModulon activations and
hypotheses about their mechanisms. We characterize sporulation,
which led us to the identification of three major transcriptomic
stages in the process, including iModulons for the known sigma
factor cascade. Finally, we present three transcriptional units with
a little prior characterization that warrant further study.

Results
Independent component analysis reveals the structure of the B.
subtilis transcriptome. We performed ICA on the Nicolas et al.5,
data set (see “Methods” section, Supplementary Data 1 and 2)
and obtained 83 robust iModulons (Supplementary Data 3–6).
These 83 iModulons constitute the statistically independent gene
expression signals found across the conditions used in the gen-
eration of this data. Together, they contain 36.25% of the genome
and explain 72% of the variance in gene expression (Supple-
mentary Methods, Supplementary Fig. 1b). The distribution of
the number of genes in each iModulon follows a power law,
similar to the power law for the connectivity of TFs in literature
regulatory networks24,25 (Supplementary Fig. 2a, b).

Unlike regulons, which are sets of co-regulated genes based on
a variety of experimental results in the literature, iModulons are
derived solely from the measured transcriptome through an
unbiased method (Fig. 1a). However, the known regulon
structure of the TRN is largely recapitulated by the iModulons.
63 of the 83 iModulons were successfully mapped to a known
regulator, and an additional 3 are likely to be co-regulated by
unknown mechanisms. The iModulon-derived TRN covers 2235
gene/iModulon relationships, of which 1536 are known gene/
regulator interactions and 699 are new (Supplementary Data 8).
Our TRN structure contained seven iModulons that exhibited
perfect overlap with annotated regulons and whose activity levels
match expectations, such as MalR (Supplementary Note 1,
Supplementary Fig. 3). This illustrates that independent signals
such as transcription factor binding, which dictate gene
expression, lead to observable signals in the TRN from condition
to condition, and ICA was able to identify them. Graphical
summaries of all iModulons, including their gene sets, activities,
overlap with regulons, and upstream motifs (Supplementary Note
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7, Supplementary Data 10) are presented in Supplementary
Data 6 and online at imodulondb.org26.

iModulons are given a short name, usually based on their
enriched regulator. If multiple regulators control an iModulon,
their names are separated by “+” to indicate the intersection of
the regulons, or “/” to indicate the union of the regulons. In some
cases, a different name was chosen based on the primary
regulator, gene prefix, or most representative gene in the set
(Supplementary Data 7).

The relationship between iModulons and regulators can be
characterized by two measures: (1) precision (the fraction of
iModulon genes captured by the enriched regulon) and (2) recall
(the fraction of the regulon contained in the iModulon) (Fig. 1b).
These two measures can be used to classify iModulons into six
groups (Fig. 1c). (1) The well-matched group (n= 26) has
precision and recall greater than 0.65. It includes several regulons
with local regulators that are associated with specific metabolites.
(2) The subset iModulons (n= 22) exhibit high precision and low

recall. They contain only part of their enriched regulon, perhaps
because the regulon is very large and only the genes with the most
transcriptional changes are captured. This group contains global
metabolic regulators such as CcpA and CodY, as well as the stress
sigma factors. (3) A third group, deemed unknown-containing
(n= 4), has low precision but high recall. These iModulons
contain some co-regulated genes along with unannotated genes
which may have as-yet-undiscovered relationships to the
enriched regulators (Supplementary Data 8), or at least be co-
stimulated by the conditions in the data set. (4) The remaining
enriched iModulons are called the closest match (n= 11) because
neither their precision nor recall met the cutoff, but the grouping
had statistically significant enrichment levels and appropriate
activity profiles. The difference in gene membership between
these iModulons and their regulons provide excellent targets for
discovery. The iModulons with no enrichments comprise the last
two groups: (5) new regulons (n= 3) are likely to be real regulons
with unexplored transcriptional mechanisms, while (6) the
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Fig. 1 Independent component analysis (ICA) extracts regulatory signals from a compendium of transcriptomic data. a Given a matrix of gene
expression data, X (Supplementary Data 2), ICA identifies independently modulated sets of genes (iModulons) in the transcriptome which are linked to
genes through the matrix M (Supplementary Data 3). Three iModulons are symbolically represented; the red iModulon consists of four genes, and the
green and blue iModulons consist of five genes. The condition-dependent activities of the iModulons are stored in matrix A (Supplementary Data 4). The
bar chart indicates the activity levels of the iModulons under different conditions, where the colors indicate different experiments. The three matrices are
related as X=M*A. b Graphical representation of the definitions of precision and recall of a given iModulon and the corresponding regulon (example
numbers are shown). c Scatter plot of precision and recall of the enrichments for the 63 (out of 83) iModulons that were matched to a regulon. Histograms
in the margins demonstrate the high precision of most enrichments (see Supplementary Data 7, Supplementary Fig. 1c for more details). d Donut chart of
iModulon functions. The outermost ring lists specific functions and the center ring lists broad functions, with the number of iModulons in the broad
category shown in white. The innermost ring shows the regulon confidence quadrant of the corresponding iModulon, as defined in c. e, f An example
iModulon that was enriched for FadR. e Venn diagram of the FadR iModulon genes and the FadR regulon (non-coding RNAs have been omitted). f Activity
level found in a row of A for four experiments (separated by vertical gray lines) from the data set. Activity levels increase during growth in the absence of
glucose (M9 media, gray; LB media, light brown), remain low during growth in the presence of glucose (dark green, dark brown), and spike upon glucose
(Glc) starvation (green). “Exp”, “Tran” and “Stat” refer to exponential, transition, and stationary phase, respectively. See Supplementary Data 1 for detailed
growth conditions.
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remaining uncharacterized iModulons were likely to be noise due
to large variance within conditions or the fact that they contain
one or fewer genes.

Functional categorization of iModulons provides a systems-
level perspective on the transcriptome (Fig. 1d). Metabolic needs
account for approximately one-third of the iModulons, while
comparatively fewer iModulons deal with stressors, lifestyle
choices such as biofilm formation and sporulation, and mobile
genetic elements like prophages. Some iModulons have multiple
biological functions, such as one which synthesizes both
nicotinamide and biotin. These iModulons may result from co-
stimulation of the different functions by all conditions probed in
the data set (e.g., both nicotinamide and biotin synthesis were
always stimulated together by minimal media, so the algorithm
could not separate them into unique signals).

The FadR iModulon provides an example of the information
encoded by the iModulon gene membership (Fig. 1e) and
activities (Fig. 1f). All genes within this iModulon are regulated by
FadR, so this enrichment has 100% precision. Three genes that
are annotated as belonging to the FadR regulon were not captured
in the iModulon—lcfA, rpoE, and fadM. However, all three have
additional regulation separate from that of FadR27,28, which may
lead them to have a divergent expression from the rest of the
iModulon. The activity levels (Fig. 1f) reflect expectations: FadR
genes are repressed by FadR in the presence of long-chain acyl-
coA, and FadR itself is repressed by CcpA in the presence of
fructose-1,6-bisphosphate28, which causes the expression to rise
as nutrients (specifically sugars and fats) are depleted, and to be
particularly strong immediately following glucose exhaustion. As
this example illustrates, the precision and recall are sensitive to
developments in regulon annotations; they improve as regulon
annotations become more complete (Supplementary Note 8)29.

iModulons generate hypotheses. iModulon activities can often
be explained by prior knowledge, as was the case with FadR.
However, they can also present surprising relationships that lead
to the generation of hypotheses or strengthen arguments for
recently proposed mechanisms. In the subsequent sections, we list
five such examples, and more are provided in the Supplementary
Notes (Supplementary Notes 3–5).

Ethanol may stimulate tryptophan synthesis. The tryptophan
synthesis iModulon (trpEDCFB) was strongly activated under
ethanol stress (Fig. 2a), a response that has not been previously
documented in bacteria. This iModulon is regulated by the trp
attenuation protein (TRAP), which represses its genes in the
presence of tryptophan30. Therefore, this activation indicates that
ethanol is probably depleting intracellular tryptophan con-
centrations. Exploring the tryptophan synthesis pathway reveals a
hypothetical mechanism for this depletion: flux from the pre-
cursor chorismate may be redirected to replenish folate that has
been damaged by ethanol oxidation byproducts31 (Supplementary
Fig. 5a). If this hypothesis is accurate, it may inform research on
the tryptophan deficiency and neurotransmitter metabolism
problems observed in human alcoholic patients32,33, especially
given that B. subtilis is an important folate producer in the gut
microbiome34,35.

Histidine may be utilized by quorums. The HutP iModulon for
histidine utilization (hutHUIGM) is controlled by an anti-
terminator that derepresses it in the presence of excess histidine,
as well as by the master regulators CcpA and CodY; therefore, its
activation indicates that histidine is plentiful while other amino
acids are not and that carbon sources are poor36. Surprisingly, it
was by far most strongly activated in confluent biofilms and
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Fig. 2 iModulons provide a range of insights. Error bars: mean ± standard
deviation; black dots indicate separate samples; vertical gray lines separate
different experiments in the data set. Unless otherwise stated, “Other”
category includes all conditions except sporulation and those shown, with
the number of samples included in parentheses. a Tryptophan synthesis
(TRAP) iModulon activity, which is unexpectedly elevated by ethanol
(Supplementary Fig. 5a). The experiment was carried out in Belitsky
minimal medium (BMM). The “Other” category excludes carbon source
transition experiments, in which this iModulon exhibits technical noise.
b Histidine utilization (HutP) iModulon activity, which is strongest in
quorum conditions. c LexA iModulon activity is elevated by DNA damage
(mitomycin and peroxide) and in swarming (Supplementary Fig. 5b).
d Pulcherrimin (PchR) iModulon activity increases when growth is expected
to slow, especially in the stationary phase in rich (LB) media containing
glucose (Glc). “Exp”, “Tran” and “Stat” refer to exponential, transition, and
stationary phase, respectively. e Venn diagram of gene presence in the
PhoP+SigA regulon and related iModulons. Numbers indicate the amount
of genes or non-coding RNAs in each subset. Although the iModulons are
significantly enriched for the intersection of the PhoP and SigA regulons,
they have been named PhoP-1 and PhoP-2 for simplicity. f, g Bar graphs of
PhoP iModulon activity demonstrating the use of PhoP-1 for early biofilm
growth (“Colony” refers to individual colonies on a plate after 16 h) and
PhoP-2 for extreme phosphate starvation (“Low Phos” indicates phosphate
starvation for 3 h).
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swarming cells (Fig. 2b). Independent colonies from the same
experiment do not exhibit activation, which leads us to rule out
the media composition as the reason for these activity levels. The
connection between these lifestyle conditions and histidine
metabolism has not been studied in B. subtilis, but it has been
observed in A. baumannii, where histidine degradation was
shown to be upregulated in proteomic studies of biofilms, and
histidine supplementation stimulated increased biofilm produc-
tion37. Two recent studies discovered that biofilm-inhibiting
antimicrobials worked by suppressing histidine synthesis in Sta-
phylococcus xylosus38,39. One proposed mechanism implicated the
production of extracellular DNA, which is an important com-
ponent of both A. baumannii and B. subtilis biofilms40. Given
that this iModulon is also activated by swarming cells, an alter-
native hypothesis may be that HutP is involved with quorum
sensing or surfactant production: both activating conditions have
a quorum and high surfactant production, while independent
colonies do not.

DNA damage may stimulate swarming. The LexA iModulon
regulates the SOS response for DNA protection and repair. It is
strongly activated by three conditions (Fig. 2c). LexA stimulation
by mitomycin and hydrogen peroxide is expected since those
conditions damage DNA41,42. Unexpectedly, this iModulon is
also activated in swarming cells despite a lack of DNA damaging
agents in that condition. We propose a potential mechanism for
this activation: recent research has indicated that certain cells in a
culture will tend to accumulate reactive oxygen species and DNA
damage. Those cells will produce Sda (a developmental check-
point protein) and form a subpopulation separate from those that
produce biofilm43. The LexA+, biofilm− population would no
longer be producing EpsE, which catalyzes a step in the biofilm
synthesis process and also suppresses swarming44. In addition,
this connection may be mediated by interactions between RecA
and CheW, which have been observed in Salmonella enterica45.
Therefore, we predict that DNA damage encourages swarming
motility based on iModulon activation and this mechanism
(Supplementary Fig. 5b).

An iron chelator may signal the stationary phase. The PchR
iModulon produces, extrudes, and imports pulcherrimin, an iron
chelator46. Over all of the exponential to stationary phase growth
experiments, we observe increases in PchR activation (Fig. 2d).
We also see PchR activation in late-stage biofilm, glucose
exhaustion, and phosphate starvation experiments. These results
agree with a recent study that found pulcherrimin to be an
important intercellular signal for the stationary phase that also
helps exclude competing bacteria from established biofilms47. The
regulation mechanisms of iModulons like this one can be the
subject of future research.

Phosphate limitation stimulates tiers of regulation. The PhoP
regulon controls phosphate homeostasis. It appears as two
separate iModulons (Fig. 2e–g). PhoP-1 encodes high-affinity
phosphate uptake transporters. Phosphate is used to produce
(and is effectively stored in) teichoic acid, which is a major
component of the cell wall. As a colony grows, it must uptake
phosphate to produce more cell walls—indeed, teichoic acid
intermediates are the major stimulus for PhoP activity48. It is
therefore unsurprising that PhoP-1 is strongly activated in
independent colonies, which are exponentially growing in close
quarters with low local free phosphate concentrations. PhoP-2
contains PhoP-1 as well as 13 other genes which encode more
extreme phosphate recovery strategies: phoABD, which salvages
phosphate monoesters but produces reactive alcohols, glpQ,

which degrades extracellular teichoic acid, and tuaBCDEFGH,
which replaces teichoic acid with phosphate-free teichuronic acid.
PhoP-2 is only active under phosphate starvation, consistent with
the extreme strategy it encodes. Perhaps the affinities of the
promoters of the PhoP-2 specific genes are lower than that of the
PhoP-1 genes, which could lead to this graded response.

Six iModulons capture the major transcriptional steps of spor-
ulation. The data set we analyzed contained an eight-hour spor-
ulation time course, which yielded six major sporulation iModulons
that were activated sequentially over the first 6 h (Fig. 3a). The
identification of these gene sets by ICA indicates coherent expres-
sion across the transcriptome, and more dramatic transcriptional
variation compared to excluded genes. The conclusions drawn from
these iModulons are limited by the complexity of sporulation1,49

and the stochasticity of its onset50. Because of this, we observe many
genes shared between consecutive iModulons (Supplementary Fig.
8a). Nonetheless, the following analysis demonstrates that they still
provide valuable information, including identifying 20 unchar-
acterized proteins whose annotations did not previously reflect a
putative relationship to sporulation (Supplementary Fig. 8b, Sup-
plementary Data 11).

The gene sets and regulators of the sporulation iModulons
roughly match the known sporulation progression (Supplemen-
tary Fig. 8e–h). The Spo0A iModulon contains mostly genes
known to be activated by high levels of Spo0A~P, including the
sigma factors for upcoming sporulation steps, chromosome
preparation machinery, and septal wall formation. It is rapidly
activated between hours 1 and 2 of the time course. Next, the SigE
iModulon carries out functions in the mother cell for engulfment
of the forespore. After SigE, a dual SigE/G iModulon is activated,
which regulates early spore coat formation by both the mother
and forespore cells. The SigG iModulon follows; it contains
germination receptors, metabolic enzymes, and stress resistance
genes. Finally, the SigK regulon is split into two iModulons with
functions including coat maturation and mother cell lysis. The
difference between the two SigK iModulons may partially be
explained by the action of the TF GerE, which represses members
of SigK-1 and activates a large fraction of SigK-2 (Supplementary
Fig. 8c, d). This is consistent with the known temporal regulation
of the SigK regulon51. Notably, SigF is the only absent sigma
factor; we believe it was not identified because its genes are
expressed simultaneously with the SigE, SigG, and SigE/G
iModulons, and because many SigF genes are also under SigG
control52. Nonetheless, these functions and regulators largely
match expectations based on literature, providing an a priori
validation of the set of known sporulation steps.

The activity levels of the sporulation iModulons can be viewed
as markers of progress through sporulation: high Spo0A activity
indicates that new spores are forming, and high SigK-2 indicates
that some spores are completing the process. Therefore, we can
understand how far along other conditions are based on their
sporulation activity levels (Fig. 3b–e). Most conditions have a
very low level of activation, but the “glutamate + succinate” and
pyruvate supplements to minimal media conditions both have
elevated expression across all sporulation iModulons, which
indicates that the poor carbon sources in these conditions
stimulated sporulation (Fig. 3c). Indeed, pyruvate has been shown
to regulate sporulation53,54. Some other conditions appear to have
made it partway through the process: confluent biofilms, the
stationary phase in minimal media, and growth at cold
temperature all reached the third of six steps. This is appropriate
for these conditions based on previous studies55–57 (Fig. 3d).

With one exception, the progression from one sporulation
iModulon to the next is cumulative: we do not see strong
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activation of step 2 unless step 1 is active, and so on. This agrees
with prior observations58. The only exception to this rule is
elevated SigG activity by cells in anaerobic conditions (Fig. 3e).
This connection is also evident from gene presence: a flavohe-
moglobin required for anaerobic growth, hmp, is part of the
iModulon despite no known connection to SigG. Previous studies
have also acknowledged that some SigG-dependent genes are
required for anaerobic survival59. However, it is known that

ectopic activation of SigG is limited by negative feedback60,61 and
unlikely to occur in vegetative cells62. We, therefore, propose
further experiments to determine the role of SigG-dependent
genes in anaerobiosis.

Changes in iModulon activity reveal global transcriptional
shifts during sporulation. In complex processes such as spor-
ulation, the entire cellular transcriptome undergoes system-wide
changes beyond those directly related to the process at hand.
While much effort has been put into understanding metabolic
changes at the onset of sporulation1,56,58, metabolic, and lifestyle-
related regulatory activity are difficult to summarize concisely
with previous methods. Because ICA provides a simple method
for tracking transcriptome-wide changes, we analyzed activity
level fluctuations for the sporulation time course (Fig. 4). Three
major stages are involved: a self-preserving metabolic response to
amino acid starvation in the first hour, a community-wide life-
style reallocation in the second hour, and progression through
sporulation in the remaining time points.

In the first hour, many amino acid synthesis iModulons
(tryptophan, cysteine, arginine, leucine, and threonine) and one
amino acid utilization iModulon (histidine) are rapidly activated.
This is likely the result of amino acid starvation by the
sporulation media, which derepresses these iModulons through
transcription factors including CodY. CodY also derepresses the
fructosamine consumption iModulon63 at this time. The AbrB
iModulon is derepressed; it responds to nutrient limitation
through a variety of functions, including cannibalism64, that
herald the stationary phase and prolong entry into sporulation.

In the second hour, Spo0A is strongly activated in a process
that has been widely studied; this marks the onset of sporula-
tion65. Also, the histidine utilization of the first hour is
compensated by histidine synthesis in the second hour. Zinc,
an important cofactor for sporulation proteins66,67, is taken up.
Various colony, biofilm, and antimicrobial iModulons are
activated to support the forming spores (DegU, ComA, Eps,
Alb). ComK, the competence iModulon, is expressed as an
alternative response to starvation. ComK’s brief activation at this
time point is consistent with the short competence window
observed before commitment to sporulation3. We also observe
the activation of resD, which is typically associated with anaerobic
conditions68,69, and Rex, which regulates overflow metabolism,
providing interesting connections to the potential anaerobic
activity of SigG discussed in the previous section.

As sporulation continues, fewer non-sporulation iModulons
are activated. The notable exceptions are AcoR and FruR, which
are both activated around the fourth hour. Both acetoin and

Fig. 3 Six iModulons (named for their enriched regulators) mark progress
through sporulation. a Heatmap color indicates the change in iModulon
activity over the previous hour. b–e Line plots of the sporulation
progression for selected conditions, with thick lines indicating mean activity
and thin lines indicating individual samples. Activity levels were divided by
the standard deviation. The black line surrounded by a shaded gray region is
the average of all conditions not shown in any plot ± standard deviation
(n= 200 samples). b Three time points of sporulation, showing Spo0A
activation at sporulation onset (2 h, green), cumulative expression up to the
fourth step (SigG) for an intermediate time point (4 h, orange), and
expression of all stages at 8 h (red). c Minimal media supplemented with
these carbon sources leads to expression of all sporulation iModulons.
d Three conditions reached the intermediate steps of sporulation.
e Anaerobic conditions exhibit unusual activity. “Aerobic” is the control
condition.
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polymeric fructose function as extracellular energy stores70,71, so
perhaps they are used at this stage to provide a final energy source
for the completion of sporulation. Overall, these results
demonstrate an application of ICA for observing transcriptome-
wide changes and lay out the major population dynamics and
metabolic changes that underscore spore formation.

Some poorly characterized iModulons may perform important
functions. Given the vast number of uncharacterized genes in
bacterial genomes, ICA can help to narrow the search for new
and important regulons by identifying groups of genes with
transcriptional co-regulation (Supplementary Data 5, Supple-
mentary Data 8) and their corresponding activity levels. We have
identified three iModulons that warrant further study. The first,
the ndhF-ybcCFHI operon, may be involved in heat shock and
germination (Fig. 5a, Supplementary Note 6). Another, the
yrkEFHI operon, contains putative sulfur carriers that are very
likely to assist in the cellular response to diamide stress (Fig. 5b
and Supplementary Note 6).

Also, the WapA iModulon contains several uncharacterized
genes that may be co-regulated by YvrHb, DegU, and WalR and
participate in a unique, recently discovered interspecies competi-
tion mechanism72. This system protrudes fibers from the cell wall
to deliver the WapA tRNase to enemy bacteria, potentially
compromising cell wall integrity for greater nutrient availability.
We observe activation of this iModulon under starvation

conditions and repression under cell wall stress (Fig. 5c),
consistent with its putative function.

The other uncharacterized iModulons which are not likely to
be noise are prophage elements, whose regulatory mechanisms
and effect on phenotype warrant further study. See Supplemen-
tary Data 8 for their gene sets, Supplementary Data 9 for
summaries of their activating conditions, and Supplementary
Data 6 for graphical summaries.

Discussion
Here, we decomposed the existing, high-quality B. subtilis
expression data set5 using ICA. This decomposition identified 83
iModulons in the transcriptome whose overall activity can explain
72% of the variance in gene expression across the wide variety of
conditions used to generate the data set. Sixty-six of the iMo-
dulons correspond to specific biological functions or transcrip-
tional regulators. We analyzed the gene sets and activity levels of
the iModulons and presented findings that either agree with
existing knowledge or generate hypotheses that could be tested in
future studies. The remaining 17 iModulons are independent
signals with no coherent biological meaning.
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Fig. 5 The activity levels of uncharacterized iModulons agree with their
putative functions. Bars and lines indicate means, black dots indicate
individual samples, and error bars indicate one standard deviation. The
“Other” category includes all conditions except the ones in the plot, with
the number of samples included in parentheses. Vertical gray lines separate
different experiments in the data set. a The activity levels of the Ybc
iModulon indicate that it may be a response to heat shock or germination.
The Belitsky minimal media (BMM) control occurs at 37 °C. b The activity
levels of the Yrk iModulon (putative sulfur carriers) suggest that it is a
response to diamide. The three conditions on the right were taken from LB
cultures 10min after exposure to the labeled stressor. c The activity levels
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exhaustion and the three growth phases of M9 media) and suppression by
osmotic stress, both in the short (light blue time course) and long term
(bars). “Exp”, “Tran”, and “Stat” refer to exponential, transition, and
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Through the application of ICA, we were able to identify well-
studied gene sets with high accuracy (such as the MalR and FadR
iModulons), and uncover insights that suggest candidate under-
lying mechanisms. We discovered unexpected relationships
between stress, metabolism, and lifestyle: ethanol appears to sti-
mulate tryptophan synthesis, histidine utilization may be a fea-
ture of quorum sensing, DNA damage may induce swarming, and
the iron chelator pulcherrimin could help to signal the stationary
phase. The tiered response to phosphate limitation was captured
as two separate iModulons, which may provide evidence for
variable promoter affinity across the known regulon. ICA accu-
rately decomposed sporulation into a small set of steps which
allow sporulation progress to be tracked; this revealed unex-
plained, unusual activity for SigG in anaerobic conditions. The
global transcriptional response to sporulation in metabolism and
lifestyle governance was summarized concisely in three stages by
iModulon activities. Finally, three iModulons contain mostly
uncharacterized gene sets, which represent a promising area for
further research. Overall, we have demonstrated that ICA pro-
duces biologically relevant iModulons with hypothesis-generating
capability from microarray data in this model gram-positive
organism.

The iModulon genes and activity profile data (Supplementary
Data 3–5), along with graphical summaries (Supplementary
Data 6) are available for examination by microbiologists with
specific interests about functions in B. subtilis that are not detailed
in this article. We also have an online resource, imodulondb.org,
where users can search and browse all iModulons from this data
set and view them with interactive dashboards26. Code for our
analysis pipeline is maintained on github (https://github.com/
SBRG/precise-db). There is a strong potential for protein iden-
tification, transcription factor discovery, metabolic network
insights, function assignment, and mechanism elucidation
derived from this iModulon structure of the TRN.

As with all machine learning approaches, the results from ICA
improve as it is provided with more high-quality data10. Future
research may append unique conditions to this data set and
observe the changes to the set of iModulons it finds. Perhaps
multi-purpose iModulons will be divided into their biologically
accurate building blocks, the noise will be removed, and new
regulons will emerge as the signal-to-noise ratio improves. With
enough additional data, ICA could potentially characterize the
entire TRN in great detail, a goal that has been the subject of
research for over half a century. Ultimately, this could be the
foundation for a comprehensive, quantitative, irreducible TRN.

Methods
Data acquisition and preprocessing. We obtained normalized, log2-transformed
tiling microarray expression values from Nicolas et al.5 (GEO accession number
GSE27219), which span 5875 transcribed regions (4292 coding sequences and 1632
previously unannotated RNAs) and 269 sample profiles (104 conditions). The
strain used, BSB1, is a prototrophic derivative of the popular laboratory strain, 168.
Three samples (S3_3, G+ S_1, and Mt0_2) were removed so that the Pearson R
correlation between biological replicates was no <0.9, except in the case of spor-
ulation hour 8, where n= 2 and R= 0.89 (Supplementary Fig. 1a). To obtain more
easily interpretable activity levels, we centered the data by subtracting the mean in
the M9 exponential growth condition from all gene values. This is consistent with
our prior work in E. coli, where a similar condition was chosen for this purpose. All
activities are therefore relative to a known, consistent baseline condition.

Independent component analysis. Independent component analysis decomposes
a transcriptomic matrix (X, Supplementary Data 2) into independent components
(M, Supplementary Data 3) and their condition-specific activities (A, Supple-
mentary Data 4):

X ¼ M � A: ð1Þ
ICA was performed as described in Supplementary Methods. Note that the M

matrix was previously called S10; it has been changed to avoid confusion with other
nomenclature. See Supplementary Methods.

We normalized each component in the M matrix such that the maximum
absolute gene weight was 1. We performed the inverse normalization on the A
matrix to conserve the same values. Therefore, each unit in A is equivalent to a unit
log change in expression if the iModulon were to contain only one gene.

Thresholds were applied to the columns in theM matrix to acquire gene sets for
each iModulon (Supplementary Methods).

Regulator enrichment. Regulon information was obtained from SubtiWiki6. For
each iModulon, we obtained all regulators that regulate any gene in their gene sets.
We also used all combinations of regulators, denoted by “+” between regulator
names, to capture regulons with more than one regulator. For each of those
individual regulators and regulator combinations, we obtained a regulon set, a list
of all genes that share that regulation. Next, we computed p-values for each reg-
ulon’s overlap with the iModulon gene set using the two-sided Fisher’s exact test
(FDR < 10−5)73,74. We also computed F1 scores, which are the harmonic averages
of precision and recall.

After the sensitivity analysis (Supplementary Methods) determined the
appropriate cutoff, significant enrichments for each iModulon were then manually
curated (Supplementary Data 7). In most cases, the most significant enrichment
was chosen. Some iModulons appeared to be a combination of two or more
significantly enriched regulons, so their assigned regulator was a union of both,
denoted by “/” between regulator names.

Our regulator enrichments have very high precision and recall scores, but they
have an inherent bias because the threshold for iModulon membership was chosen
to maximize them. Our method of selecting the threshold improves with the
completeness of the TRN annotations (Supplementary Fig. 2d), and would be
ineffective for an organism with a very incomplete TRN. We could work around
that limitation with approaches using other gene groupings, such as functional,
category, or motif enrichments, or by developing approaches that compare
iModulons across organisms, such as comparing iModulon size distributions, or
leveraging homology with model organisms.

Differential activation analysis. We fit a log-normal distribution to the differ-
ences in iModulon activities between biological replicates for each iModulon. For a
single comparison, we computed the absolute value of the difference in the mean
iModulon activity and compared it against the iModulon’s log-normal distribution
to determine a p-value. We performed this comparison (two-tailed) for a given pair
of conditions across all iModulons at once and designated significance as FDR <
0.01.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary Information Files). The original data set is from Nicolas, et al.5

(GEO accession number GSE27219; Supplementary Data 1 and 2 from http://genome.
jouy.inra.fr/basysbio/bsubtranscriptome/). Interactive online dashboards for all
iModulons and all data are available at https://imodulondb.org under the data set name
“B. subtilis”.

Code availability
Code for our analysis pipeline is maintained on GitHub (https://github.com/SBRG/
precise-db)75.
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