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Quantifying the influence of mutation detection on
tumour subclonal reconstruction
Lydia Y. Liu 1,2,3,4,5,6,13, Vinayak Bhandari1,13, Adriana Salcedo1,4,5,6,7, Shadrielle M. G. Espiritu7,

Quaid D. Morris 3,8,9,10, Thomas Kislinger1,2 & Paul C. Boutros 1,3,4,5,6,11,12✉

Whole-genome sequencing can be used to estimate subclonal populations in tumours and

this intra-tumoural heterogeneity is linked to clinical outcomes. Many algorithms have been

developed for subclonal reconstruction, but their variabilities and consistencies are largely

unknown. We evaluate sixteen pipelines for reconstructing the evolutionary histories of 293

localized prostate cancers from single samples, and eighteen pipelines for the reconstruction

of 10 tumours with multi-region sampling. We show that predictions of subclonal architecture

and timing of somatic mutations vary extensively across pipelines. Pipelines show consistent

types of biases, with those incorporating SomaticSniper and Battenberg preferentially pre-

dicting homogenous cancer cell populations and those using MuTect tending to predict

multiple populations of cancer cells. Subclonal reconstructions using multi-region sampling

confirm that single-sample reconstructions systematically underestimate intra-tumoural

heterogeneity, predicting on average fewer than half of the cancer cell populations identified

by multi-region sequencing. Overall, these biases suggest caution in interpreting specific

architectures and subclonal variants.
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Understanding tumour heterogeneity and subclonal archi-
tecture is important for the elucidation of the mutational
and evolutionary processes underlying tumorigenesis and

treatment resistance1–4. Many studies of tumour heterogeneity
have focused on small patient cohorts with multi-region
sequencing5–11. This study design allows the reconstruction of
sample trees that illustrate the relationships between multiple
primary and metastatic lesions using shared and private
mutations6,11. Despite their small sample sizes, these studies have
provided remarkable insight, demonstrating multiple subclones
within a single tumour, clonal relationships between primary and
metastatic tumours and evidence for multiple primary tumours
within a single patient. Many studies have further delved into
intra-tumoural heterogeneity and constructed clone trees that
demonstrate the phylogenetic relationship between cancer cell
populations that are shared or unique between lesions5,7,9,12. The
latter analyses not only provide insight to the convergent and
branching evolution of cancer, but also characterize cancer cell
migration and highlight the subclonal complexity within indivi-
dual lesions.

Some studies have applied these techniques to large cohorts of
single-region tumour whole genomes. For example, we recon-
structed the subclonal architectures of 293 localized prostate
cancers using whole-genome sequencing (WGS) of a single region
of the index lesion13. The larger sample sizes of single-region
studies allow the identification of mutational events that are
biased to occur at specific times during tumour development.
Single-region subclonal reconstruction studies have also sug-
gested that patients with less subclonal diversity (e.g. with only a
single detectable population of cancer cells; termed monoclonal)
tend to have superior clinical outcomes compared to those with
more subclonal diversity (e.g. those with highly polyclonal
tumours)13.

A variety of algorithms have been developed to reconstruct the
subclonal architectures of cancers from single-region or multi-
region bulk DNA sequencing data14–21. These algorithms broadly
attempt to infer cancer cell populations based on cancer cell
fractions (the fraction of cancer cells in which each variant is
present) of somatic single nucleotide variants (SNVs) and/or
somatic copy number aberrations (CNAs). Several employ
Bayesian models to cluster mutations, and estimate the number
and prevalence of cancer cell populations15–17,20,22. Some algo-
rithms are further able to infer phylogenetic clone trees, thus
resolving the evolutionary relationship between mutation
clusters15,21. However, there has not been a systematic compar-
ison of the features and consistencies of their reconstructions on a
large dataset. It is thus unclear to what extent these pipelines
agree on large cohorts of real data, whether specific pipelines are
biased towards certain types of reconstructions, and to what
degree reconstruction results are influenced by the somatic
mutation inputs. It is further unclear to what extent single-sample
reconstructions differ from multi-region reconstructions, raising
questions on the magnitude of underestimation present in large-
cohort studies.

To address these gaps in the field, we evaluate pipelines con-
sisting of twenty-two different combinations of well-established
and independent SNV detection tools, subclonal CNA detection
tools and subclonal reconstruction algorithms. Sixteen pipelines
are applied to a set of 293 high-depth tumour-normal pairs13,23

and eighteen are applied to 10 tumours with multi-region
sequencing8,24. Our analyses reveal consistent biases and exten-
sive differences across subclonal reconstruction pipelines in the
prediction of subclonal architecture, identification and timing of
variants and influence on downstream analyses. We also quantify
the extent that single-region reconstructions underestimate intra-
tumoural heterogeneity as compared to reconstructions based on

multiple regions of the tumour. Together, these findings generate
guidance for the community and provide a resource for
improving existing methods and benchmarking new ones.

Results
Overview and summary of pipeline runs. We reconstructed the
subclonal architectures of 293 primary localized prostate tumours
using sixteen pipelines (Fig. 1, Supplementary Data 1–20). Each
patient had WGS of a single region taken from the index lesion
(Methods) that was macro-dissected to >70% tumour cellularity
(mean coverage ± standard deviation [SD]: 63.9 ± 16.7) and WGS
of matched blood reference tissue (mean coverage ± SD: 41.2 ±
9.0), as reported previously13. To investigate the influence of
variant detection on subclonal reconstruction, we detected CNAs
using Battenberg and TITAN7,25 and SNVs using SomaticSniper
and MuTect26,27. We then used the CNAs and SNVs detected by
these tools in factorial combinations as inputs for four widely
used subclonal reconstruction algorithms: PhyloWGS15,
DPClust16, PyClone17 and SciClone20. Each subclonal recon-
struction pipeline was thus composed of three algorithms: a SNV
detection tool, a subclonal CNA detection tool and a subclonal
reconstruction algorithm. Thus “PhyloWGS-comprising pipe-
lines” refers to all pipelines that use PhyloWGS as the subclonal
reconstruction algorithm, in combination with any SNV and
CNA detection tool. All subclonal reconstruction solutions were
subjected to the same post-processing heuristics to minimize bias
(Methods). We further quantified the variability that arises in
subclonal reconstruction from spatially sampling the same
tumour, focusing on ten tumours with multi-region WGS (2–4
regions per tumour, total of 30 regions)8,24. Multi-region WGS
samples were further assessed using FACETS28 for subclonal
CNA detection, and subclonal reconstruction was performed
both with all regions together and with each region individually
using PhyloWGS, PyClone and SciClone.

Across all samples and pipelines, we attempted to execute
5408 subclonal reconstructions. Of these, 4447 (82.2%) success-
fully completed their execution (Supplementary Data 21). Among
pipelines for the single-region subclonal reconstruction of 293
tumours, those using DPClust achieved the lowest failure rates
(mean ± SD: 1.4 ± 1.5%), followed by those using PhyloWGS
(2.2 ± 1.3%), PyClone (16.3 ± 9.8%) and SciClone (41.2 ± 22.4%;
Supplementary Fig. 1A). The primary reasons of failure for
pipelines using DPClust and PhyloWGS were excessive memory
requirements (>250 GB RAM) or runtime (>3 months). Lack of
input SNVs was the largest failure reason for pipelines using
PyClone and SciClone, as PyClone exclusively leverage SNVs
from clonal CNA regions and SciClone utilizes SNVs in copy
number neutral regions. Since we used CNA detection tools that
identified subclonal variation, in some cases insufficient clonal
CNA regions were available. Post-processing heuristics also
contributed to reconstruction failures across pipelines (Methods).

Multi-region reconstructions with pipelines using PhyloWGS
had the lowest failure rates on the 10 tumours evaluated (mean
failure rate ± SD: 5.0 ± 5.5%), followed by PyClone (45.0 ± 26.6%)
and SciClone (93.3 ± 10.7%; Supplementary Fig. 1B). Reasons of
failure for pipelines using PhyloWGS include lack of shared
CNAs between samples from the same tumour and prediction of
poly-tumour architectures (i.e. multiple independent primary
tumours; Methods). PyClone leverages SNVs in clonal CNA
regions that are shared between all samples from the same
tumour for multi-region reconstructions and had higher failure
rates. Due to similar requirements for SciClone that all SNVs be
in copy number neutral regions and shared between all samples
from the tumour, multi-region reconstructions using SciClone
only succeeded in four cases overall and were excluded from
further multi-region reconstruction analyses.
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Consistency of subclonal architecture reconstruction. To eval-
uate subclonal reconstruction solutions for 293 single-region
tumours, we first compared tumour cellularity (sometimes called
“tumour purity”) estimates across subclonal reconstruction pipe-
lines. Cellularity estimates from CNA detection tools are inputs to
PhyloWGS, PyClone and DPClust, and as expected, the predicted
cellularity from pipelines using these algorithms correlated with
those from the CNA detection tool used (TITAN: 0.212–0.623,
Battenberg: 0.588–0.876, Spearman’s ρ; Fig. 2a, b). By contrast,
SciClone predicts sample cellularity using orthogonal evidence
(VAF of SNVs in copy number neutral regions). SciClone-estimated
cellularity in pipelines using SomaticSniper correlated better with
estimates from CNA detection tools (SomaticSniper-TITAN-Sci-
Closne vs. TITAN: 0.363, SomaticSniper-Battenberg-SciClone vs.
Battenberg: 0.670, Spearman’s ρ) than did pipelines using MuTect
(MuTect-TITAN-SciClone vs. TITAN: 0.035, MuTect-Battenberg-
SciClone vs. Battenberg: 0.348, Spearman’s ρ). This suggests that the
VAFs of SNVs detected by MuTect have biased subclone cellular

prevalence estimates. Pipeline-estimated cellularity by pipelines
using PhyloWGS, PyClone and DPClust also dropped dramatically
in correlation with CNA detection tool estimated cellularity once
the latter reached 0.75 (TITAN: −0.478–(−)0.163, Battenberg:
−0.396–(−)0.021, Spearman’s ρ). This appears to lead to the
anecdotal observation that high cellularity results from both Bat-
tenberg and TITAN could reflect unsuccessful CNA detection, and
should be interpreted with caution and perhaps supported by
orthogonal evidence. Finally, Battenberg- and TITAN-estimated
cellularities showed poor correlation with each other (0.235,
Spearman’s ρ). As a result, in 12/12 pipelines using either Phy-
loWGS, PyClone or DPClust, changing the CNA detection tool
influenced cellularity estimates more than changing the SNV
detection tool.

We next assessed if subclonal reconstruction pipelines differed
in the number of subclones they predict. For each of the 293
tumours evaluated, up to 16 subclonal reconstruction pipelines
were successfully executed, with a median of 14 successful
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Fig. 1 Subclonal reconstruction workflow and pipeline construction. Raw sequencing data from the tumour and normal samples were aligned against the
hg19 build of the human genome using bwa-aln and GATK. Somatic SNVs were detected using SomaticSniper and MuTect and annotated for function.
Somatic CNAs were detected using TITAN, Battenberg and FACETS and filtered. All single-region tumour samples had their subclonal architectures
reconstructed using sixteen pipelines combining one of SomaticSniper and MuTect, one of Battenberg and TITAN, and one of PyClone, PhyloWGS, DPClust
and SciClone. For tumours with samples from multiple regions, reconstructions of subclonal architectures were performed by considering each individual
region alone and by considering samples from all regions together using eighteen pipelines. SNV, single nucleotide variant; CNA, copy number aberration;
WGS, whole-genome sequencing.
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executions (25th quantile [Q1]: 12, 75th quantile [Q3]: 16).
Across samples, a median of 7/16 pipelines agreed on the number
of subclones predicted (Q1: 6; Q3: 8). The median tumour was
predicted to harbor one to three subclones across pipelines (lower
range Q1: 1, Q3: 1; upper ranger Q1: 3, Q3: 5), and two
randomly-selected successfully executed pipelines would differ by
1.1 ± 1.3 (mean ± SD) in their predicted number of subclones
across samples. These variabilities reflect substantial differences
between subclonal reconstruction pipelines. Further, no pair of
subclonal reconstruction algorithms consistently produced more
similar results across mutation detection tool combinations.
Pipelines using SomaticSniper for SNV detection achieved higher
levels of agreement across subclonal reconstruction algorithms.
All successfully executed algorithms estimated the same number
of subclones in 59.8% of samples in pipelines using SomaticSniper
and Battenberg, and in 29.3% of samples in pipelines using
SomaticSniper and TITAN, though the agreements were largely
driven by concordant monoclonal reconstructions (Fig. 3a, b).
Pipelines using MuTect had much lower levels of agreement
across subclonal reconstruction algorithms in pipelines using the
same mutation detection tool combination (MuTect-Battenberg:
21.5%, MuTect-TITAN: 12.4%; Fig. 3c, d), although these results

suggest pipelines using SomaticSniper may systematically under-
estimate subclonal complexity.

To better understand the contribution of mutation detection
tools to the discordance in predicted subclonal architectures across
pipelines, we compared clonality solutions between pipelines using
the same subclonal reconstruction algorithm across mutation
detection tool combinations. There are strong interactions
between mutation detection tools; for example, predictions by
the SomaticSniper-Battenberg-PhyloWGS pipeline agreed poorly
with predictions made by other pipelines using PhyloWGS
(Supplementary Fig. 2A). Agreement was highest between the
two pipelines using MuTect due to the high number of polyclonal
solutions. This overall trend was replicated in pipelines using
PyClone, where the SomaticSniper-Battenberg-PyClone pipeline
had high agreement with the SomaticSniper-TITAN-PyClone
pipeline but differed from pipelines using MuTect (Supplementary
Fig. 2B). DPClust-comprising pipelines using MuTect also
predicted high numbers of polyclonal architectures and showed
low agreements with other pipelines (Supplementary Fig. 2C).
Finally, results were similar for pipelines using SciClone, with
pipelines using the same SNV detection tools achieving the highest
agreement (Supplementary Fig. 2D).
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and mutation detection tool combinations using TITAN include SomaticSniper-TITAN and MuTect-TITAN. Samples are ordered by cellularity estimates by
the CNA detection tool. The horizontal line indicates cellularity 0.75. CNA, copy number aberration. TITAN: n= 293 biologically independent samples;
SomaticSniper-TITAN-PhyloWGS: n= 289; SomaticSniper-TITAN-PyClone: n= 221; SomaticSniper-TITAN-DPClust: n= 293; SomaticSniper-TITAN-
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0.75: n= 47; SomaticSniper-Battenberg-PhyloWGS: n= 44; SomaticSniper-Battenberg-PyClone: n= 38; SomaticSniper-Battenberg-DPClust: n= 47;
SomaticSniper-Battenberg-SciClone: n= 18; MuTect-Battenberg-PhyloWGS: n= 42; MuTect-Battenberg-PyClone: n= 37; MuTect-Battenberg-DPClust:
n= 46; MuTect-Battenberg-SciClone: n= 40.
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As PhyloWGS is the only one of the four subclonal
reconstruction algorithms evaluated that predicts the evolutionary
relationship between subclones, we compared the phylogenetic
clone trees for each sample as predicted by PhyloWGS-comprising
pipelines (Supplementary Fig. 3A). The most frequently predicted
polyclonal architecture was the biclonal tree, accounting for
69.8 ± 25.4% (mean ± SD) of polyclonal solutions across pipelines.
As multiple phylogenetic clone trees can be inferred from the
same data2,29, we evaluated prediction stability across the 2500
Markov chain Monte Carlo (MCMC) iterations of PhyloWGS
after burn-in (Supplementary Fig. 3B–E). Most samples alternated
between 1.9 ± 1.2 (mean ± SD) solutions. In 100% of the cases with
an alternative phylogeny, the solution alternated at least once
between phylogenetic clone trees with different numbers of
subclones. Further, when PhyloWGS wavered between solutions
that only differed in tree structures (not number of subclones),
two alternatives dominated (2.1 ± 0.3, mean ± SD). These data
suggest that the uncertainty in phylogenetic clone tree reconstruc-
tion comes from the combination of uncertainty from estimating
subclone number and resolving their evolutionary relationships.

Taking the consensus across mutation detection tools is a
common approach for increasing confidence in mutation
detection30. We evaluated how subclonal architectures predicted
by PhyloWGS-comprising pipelines change when using the union
and intersection of detected mutations (Methods). MuTect
detected significantly more unique SNVs than SomaticSniper
(medianUnique SNVs, MuTect= 5,330, medianUnique SNVs, SomaticSniper=
623, p < 2.2 × 10−16, Wilcoxon signed-rank test; Supplementary
Fig. 4A). CNAs detected by TITAN and Battenberg were also
substantially imbalanced, with a median of 50.2% and 1.2% of the
covered genome having uniquely detected CNAs across samples,
respectively (p < 2.2 × 10−16, Wilcoxon signed-rank test; Supple-
mentary Fig. 4B). The pipeline using the union of SNVs and the

intersect of CNAs predicted clonality with similar skew to the
pipeline using the union of both SNVs and CNAs, and the
pipeline using the intersection of SNVs and union of CNAs
predicted clonality with similar balance to the pipeline using the
intersect of both SNVs and CNAs (Supplementary Fig. 4C–F).
This is consistent with our observation that pipeline predictions
of complex polyclonal phylogenies using PhyloWGS are primarily
driven by large numbers of SNVs detected by MuTect, and
complexity in CNAs has a smaller influence on the delineation of
cancer cell populations.

Considering the strong influence of SNV detection tools on the
number of subclones predicted, we investigated the VAFs and
trinucleotide profiles of SNVs detected by MuTect and SomaticS-
niper. Across all 293 WGS tumour-normal pairs, MuTect-unique
SNVs had significantly lower VAFs than those detected only by
SomaticSniper or by both tools (medianVAF, MuTect-Unique= 9.8%,
medianVAF, SomaticSniper-Unique= 24.0%, medianVAF, Intersect=
28.3%; both p < 2.2 × 10−16, Mann–Whitney U-test; Fig. 4a). This
supports the finding that the prediction of a higher number of
cancer cell populations is associated with higher numbers of input
SNVs with ranging VAFs15. SNVs detected by both tools exhibited
a trinucleotide profile characterized by Np[C > T]G mutations,
while a higher proportion of SomaticSniper-unique SNVs were
T > C and MuTect-unique SNVs were characterized by a high
proportion of C > A mutations, especially C[C > A]G and T[C > A]
G (Fig. 4b–d). This is suggestive of error profiles related to
sequencing or alignment artefacts31. As all SNVs detected by
SomaticSniper and MuTect were subjected to allow- and deny-list
filtering13,23 prior to subclonal reconstruction (Methods), we also
evaluated the effect of filtering on VAFs and trinucleotide profiles.
In general, filtering removed low-VAF SNVs, but minimally
influenced trinucleotide mutational profiles (Supplementary
Fig. 5A–E).
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Consistency of mutation clonality prediction. One goal of
subclonal reconstruction is to time when individual mutations
occurred during tumour evolution. We therefore compared clonal
and subclonal SNV identification for the same set of 293 WGS
samples across sixteen pipelines for subclonal reconstruction. As
expected from the different types of SNVs leveraged for subclonal
reconstruction, algorithms were highly discordant in the numbers
of SNVs identified as clonal or subclonal. In samples where the
subclonal reconstruction algorithm was successfully executed
across all four mutation detection tool combinations, DPClust
used and timed the most SNVs on average (2941 ± 3929, mean ±
SD; Fig. 5a), followed by PhyloWGS (2473 ± 1662, Fig. 5b),
PyClone (1738 ± 1580, Fig. 5c) and SciClone (178 ± 480, Fig. 5d).
As expected from the influence of MuTect on the prediction of
subclonal clusters, its use was associated with the identification of
an order of magnitude more subclonal SNVs, but similar num-
bers of clonal SNVs as with use of SomaticSniper.

To further evaluate how mutation detection tools affect the
timing of SNVs, we calculated the Jaccard index of clonal SNVs
identified between all pipeline pairs using the same subclonal
reconstruction algorithm, and the same for subclonal SNVs
(Fig. 5e). In PhyloWGS-comprising pipelines, clonal SNV
identifications were in high agreement (mean Jaccard index ±
SD: 44.6 ± 30.2%) but subclonal SNV identifications were
significantly less so (10.0 ± 22.4%; p < 2.2 × 10−16, Wilcoxon

signed-rank test), particularly between pipelines using different
SNV detection tools. The results were similar for other algo-
rithms: DPClust (clonal Jaccard index: 46.3 ± 33.2%, mean ± SD;
subclonal: 15.4 ± 27.5%), PyClone (clonal: 38.0 ± 32.2%; subclo-
nal: 9.6 ± 21.6%) and SciClone (clonal: 33.3 ± 31.5%; subclonal:
14.8 ± 29.3%). Overall, we observe diversity in SNV profiles and
clonality predictions across pipelines, with extensive diversity in
subclonal SNV profiles associated with mutation detection tools.

To better understand how subclonal reconstruction algorithms
differ in their prediction of SNV clonality, we next focused on
SNVs identified as clonal across all pipelines using the same
mutation detection tool combination. For each sample, we
assessed the overlap in clonal SNVs identified by each pipeline
and found only a small percentage of SNVs per sample that
were unanimously identified as clonal: SomaticSniper-TITAN:
2.0 ± 5.8%, SomaticSniper-Battenberg: 3.8 ± 8.0%, MuTect-
TITAN: 0.5 ± 2.0%, MuTect-Battenberg: 1.0 ± 3.1% (mean ± SD;
Supplementary Fig. 6A–D). Nevertheless, most SNVs were
identified as clonal by more than one algorithm (SomaticSni-
per-TITAN: 77.4 ± 25.2%, SomaticSniper-Battenberg: 91.9 ±
17.8%, MuTect-TITAN: 48.3 ± 30.9%, MuTect-Battenberg:
71.9 ± 28.5%). Pipelines using Battenberg were characterized by
large overlaps in clonal SNV identifications between PhyloWGS,
DPClust and PyClone (SomaticSniper-Battenberg: 63.2 ± 34.3%,
MuTect-Battenberg: 46.2 ± 33.5%). Pipelines using TITAN were
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characterized by modest overlaps between these three, but
stronger overlap between PhyloWGS and DPClust (SomaticSni-
per-TITAN: 42.9 ± 35.4%, MuTect-TITAN: 27.1 ± 26.1%). Given
the lack of correlation between subclonal reconstruction algo-
rithms in estimating the number of subclones present in a sample,
this could suggest that disagreements between subclonal recon-
struction algorithms mostly fall in defining the subclonal
populations.

We also evaluated the influence of mutation detection tools on
clonal and subclonal CNA identification. We focused on
PhyloWGS, as it was the only algorithm considered here that
co-clusters SNVs and CNAs. Previous work on this cohort using
the SomaticSniper-TITAN-PhyloWGS pipeline identified four
clonal CNA subtypes and three subclonal CNA subtypes13, so we
first evaluated their robustness across pipelines. In general, clonal
subtypes were more robust to pipeline changes, while subclonal
subtypes were less so (Supplementary Fig. 7A, B, Supplementary
Data 22–33). Pipelines employing the same CNA detection tool
also had more similar profiles then those using different ones.

We next assessed the agreement of these pipelines in their
identification of clonal and subclonal CNAs. We calculated the
Jaccard index of the identification of 1.0Mbp genomic bins with
CNAs between pipeline pairs, where the direction of aberration
(i.e. gain vs. loss) must match to be considered as an agreement.
We found significantly greater agreement for clonal CNAs
compared to subclonal CNAs across all pipeline pairs (mean
clonal Jaccard index ± SD: 50.5 ± 21.1%, subclonal Jaccard: 15.6 ±
21.8%; all p < 2.2 × 10−16, Wilcoxon signed-rank test; Supplemen-
tary Fig. 7C). Pipelines using the same CNA detection tool tended
to agree, although divergence was expected because the recon-
structed clonality of CNA segments can be influenced by the VAFs
of SNVs in the segment. By contrast, pipelines with different CNA
detection tools had less clonal and little subclonal agreement.
Thus, for both SNVs and CNAs, clonal mutational landscapes
were relatively invariant to pipeline but subclonal ones were not.

Impact of reconstruction variability on downstream analyses.
Given these differences in SNV and CNA clonality prediction
across pipelines, we sought to understand how they might
influence the timing of mutations in cancer driver genes. These
genes are of particular relevance as they can be actionable as
predictive or prognostic biomarkers. We examined the clonality
of mutations in five genes driven by recurrent somatic SNVs
(ATM, FOXA1, MED12, SPOP and TP53) and eight driven by
recurrent somatic CNAs (CDH1, CDKN1B, CHD1, MYC, NKX3-
1, PTEN, RB1 and TP53) in localized prostate cancer13,23.
Focusing on PhyloWGS-comprising pipelines, these driver events
were overwhelmingly predicted to occur early (i.e. clonally)
during tumour evolution, with 87.2 ± 16.8% (mean ± SD) of SNV
and 91.5 ± 6.4% of CNA driver mutations identified as clonal
across pipelines (Supplementary Fig. 8A, B). There was also broad
consensus in these predictions: when a clonal SNV was identified
in a specific driver gene and sample by any single pipeline, all four
pipelines identified a clonal SNV in that driver gene in the same
sample in 39.5 ± 22.5% of cases (mean ± SD). CNAs showed even
higher consensus (50.4 ± 14.8%; Supplementary Fig. 8C). One
outlier was MED12, where there was disagreement across pipe-
lines with the same SNV detection tools: since MED12 is located
on the X chromosome and Battenberg does not generate copy
number status for regions of uncertainty and the sex chromo-
somes, its mutations were disregarded during subclonal recon-
struction because PhyloWGS only considers SNVs with
overlapping copy number status.

We then evaluated how CNA clonality predictions would affect
the identification of genes as significantly differentially mutated

clonally vs. subclonally. Within each pipeline we determined
whether each 1.0 Mbp genomic bin had different proportions of
gains and losses clonally and subclonally (FDR < 0.05, Pearson’s
χ2 Test, clonal: loss, neutral, gain vs. subclonal: loss, neutral, gain;
Methods). The number of genes in regions with CNAs occurring
statistically more frequently early or late differed dramatically
across PhyloWGS-comprising pipelines (MuTect-TITAN: 5344;
SomaticSniper-TITAN: 5198; MuTect-Battenberg: 1498; Soma-
ticSniper-Battenberg: 339). A consensus set of 339 genes showed
a bias in timing in all pipelines as preferentially mutated clonally
(Supplementary Fig. 9A, Supplementary Data 34–37). These
genes were enriched for TP53-based regulation of death receptors,
TRAIL signaling and natural killer cell mediated cytotoxicity
(FDR < 0.05; Supplementary Fig. 9B).

To evaluate whether pipeline differences could influence the
accuracy of biomarkers, we focused on biochemical relapse after
definitive local therapy. Previous work has identified clonality to
be prognostic in this setting, both independently and when
combined with an established multi-modal (CNA, SNV, SV and
methylation) gene-specific biomarker13,23. Discretization by
clonality (monoclonal vs. polyclonal) only stratified patients by
outcome in the SomaticSniper-TITAN-PhyloWGS pipeline (p=
0.004, log-rank test; Supplementary Fig. 10A), but not any other
(all p > 0.05, log-rank test; Supplementary Fig. 10B–P). The
unified biomarker integrating clonality and a multi-modal
biomarker achieved prognostic value in more pipelines (p < 0.05
in 14/16 models, log-rank test; Supplementary Fig. 11A–P), with
concordant trends across all pipelines. Thus, the prognostic effect
size of clonality in prostate cancer is smaller than the
technological effect size in this cohort, with a clinical signal
smaller than technical variance. As a result, the translational
potential of clonality in localized prostate cancer is improved
when it is integrated with complementary gene-specific biomar-
ker information.

Comparing reconstructions using single and multiple regions.
Our analyses of a large cohort of single-sample reconstructions
highlight large inter-pipeline differences in the determination of
subclonal architecture and prediction of mutation clonality. To
better relate these results to the ground truth, we focused on a set
of ten localized prostate cancers where samples from multiple
regions of the tumour were available (30 genomes in total, ran-
ging from 2 to 4 per patient). These data allowed us to directly
compare single-region to multi-region reconstructions using
PhyloWGS and PyClone, providing an estimate of the extent to
which the former underestimates true clonal complexity.

We first quantified the differences in the number of subclones
predicted from single-region and multi-region reconstructions of
the ten tumours (Supplementary Data 38-49). Multi-region
reconstructions predicted more subclones than single-region
reconstructions in pipelines using PhyloWGS: 4.6 ± 2.4 (mean ±
SD) subclones were predicted with multi-region reconstructions
while 2.0 ± 0.9 subclones were predicted with single-region
reconstructions (Fig. 6a). This difference was not seen in pipelines
using PyClone (multi-region reconstructions: 2.2 ± 1.7, single-
region reconstructions: 2.3 ± 2.0), likely due to the constraint that
only mutations present in all samples are used for multi-region
reconstruction (Fig. 6b). These data suggest that the typical
single-sample reconstruction identifies fewer than half of the
subclones present in the tumour, and this could very well be a
lower-bound estimate because of the limited sequencing depth
and spatial sampling of this cohort. On the other hand, multi-
sample reconstructions also predicted significantly more sub-
clones within the index lesion sample compared to single-sample
reconstruction of the index lesion alone in pipelines using
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PhyloWGS (mean number of subclones in index lesion from
multi-region reconstruction ± SD: 2.6 ± 1.5, from single-region
reconstruction: 1.9 ± 0.9; p= 2.4 × 10−4, Wilcoxon signed-rank
test; Supplementary Fig. 12A), but not those using PyClone
(multi-region reconstruction mean ± SD: 2.2 ± 1.7, single-region
reconstruction: 2.5 ± 2.5; p ≈ 1, Wilcoxon signed-rank test;
Supplementary Fig. 12B). Together this suggests that single-
region reconstructions are limited by spatial sampling from fully
resolving the intra-tumoural heterogeneity of both the overall
tumour and the sampled region, for example due to cases where
subclones appear with the same CCF and are thus indistinguish-
able from single-region reconstructions alone32.

We next sought to determine the extent of variability in SNV
clonality predictions between single-region and multi-region
reconstructions. We identified SNVs that were predicted be the
same clonality (clonal or subclonal) in both single- and multi-
region reconstructions (‘Match in Multi and Single’). For SNVs
with mismatched clonality, we further categorized them as clonal
in multi-region reconstruction and subclonal in single-region
reconstruction (‘Clonal in Multi-region’) or vice versa (‘Subclonal
in Multi-Region’), or SNVs that were uniquely considered in
single-region reconstructions (‘Unique in Single-region’) or

multi-region reconstructions (‘Unique in Multi-region’). The last
category of SNVs is unique to PhyloWGS as it is able to consider
SNVs unique to individual samples for multi-region analysis.
SNV clonality predictions matched less than half the time for
pipelines using PhyloWGS (32.2 ± 24.5%, mean ± SD; Fig. 7a).
Pipelines using PyClone achieved modestly higher clonality
agreement, perhaps due to the smaller number of subclones
predicted in multi-region reconstructions and the lack of multi-
region unique SNVs (38.6 ± 25.4%; Fig. 7b). Mismatched SNVs
tended to be clonal in single-region reconstructions and subclonal
in multi-region reconstructions, as expected. Consistent with
simulations33 and previous observations, multi-region recon-
structions are able to better define subclonal populations of cells
by identifying and disambiguating those missed or merged by
single-region sampling.

We also examined the agreement between single-region and
multi-region reconstruction CNA clonality predictions in pipe-
lines using PhyloWGS (Supplementary Fig. 13). Agreements were
similarly variable, with less than half of CNAs matching in
clonality between the single- and multi-region reconstructions
and extensive variance across samples and pipelines (35.2 ±
31.5%, mean ± SD). As with SNVs, mismatches mostly involved
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clonal CNAs in single-region reconstructions that were identified
as subclonal in multi-region reconstructions.

To better understand this sampling bias, we analyzed how well
the clonal population of the index lesion from single-region
reconstruction represents the clonal population of the entire
tumour. In PhyloWGS-comprising pipelines, multi-region recon-
struction often showed that SNVs identified as clonal in the index
lesion were actually subclonal (Supplementary Fig. 14A). Never-
theless, the majority of single-region clonal SNVs were truly
clonal in multi-region reconstruction (66.6 ± 29.8%, mean ± SD).
As before, pipelines using PyClone showed much higher
agreement (91.4 ± 23.3%), likely because of the large number of
excluded SNVs (Supplementary Fig. 14B). A similar analysis of
subclonal SNVs showed that, as expected, only a small proportion
of subclonal SNVs defined by single-region reconstructions of the
index lesion was clonal in multi-region reconstructions in
pipelines using PhyloWGS and MuTect (12.2 ± 17.5%, mean ±
SD). In contrast, multi-region reconstruction pipelines using
PhyloWGS and SomaticSniper predicted many subclonal SNVs
from single-region reconstructions as clonal (55.2 ± 40.3%). This

highlights a potential limitation of multi-region subclonal
reconstruction algorithms with a need for shared SNVs or CNAs.

Discussion
It is difficult to benchmark the accuracy of subclonal recon-
struction methodologies since a robust gold-standard experi-
mental dataset does not yet exist. Simulation frameworks are of
great value, but might not fully recapitulate the error profiles and
signal-biases of real data34. To evaluate the technological varia-
bility in estimating aspects of subclonal architecture, we evaluated
293 tumours using sixteen pipelines. These data provide an
experimental lower-bound on the algorithmic variability of
tumour subclonal reconstruction in a large high-depth whole-
genome sequencing cohort, at least for a single cancer type and
stage. We complement these data by assessing eighteen subclonal
reconstruction pipelines across a set of 10 multi-region tumours
to estimate the degree to which single-sample reconstructions
underestimate clonal complexity the full tumour.

Subclonal reconstruction algorithms differ substantially in their
prediction of subclonal architecture across all mutation detection
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Fig. 7 SNV clonality predictions differ between single- and multi-region reconstructions. Comparison of the clonality of SNVs identified by single-region
and multi-region reconstructions by pipelines using a PhyloWGS and b PyClone. Each stacked bar represents a single-region and covariate bar color
indicates the identity of the sample. Missing bars indicated failed reconstructions, either single- or multi-region. SNVs were grouped into five categories by
color of stacked bar plot: ‘Match in Multi and Single’ if the SNV was predicted to be the same clonality in single- and multi-region reconstructions, ‘Clonal in
Multi-region’ if the SNV was clonal in multi-region reconstruction but subclonal in single-region reconstruction, and ‘Subclonal in Multi-region’ if vice versa.
If a SNV was only analyzed in single-region reconstruction, it was ‘Unique in Single-region’, while SNVs only analyzed in multi-region reconstruction were
‘Unique in Multi-region’. SomaticSniper-TITAN-PhyloWGS: n= 30 biologically independent samples; SomaticSniper-FACETS-PhyloWGS: n= 24;
SomaticSniper-Battenberg-PhyloWGS: n= 28; MuTect-TITAN-PhyloWGS: n= 30; MuTect-FACETS-PhyloWGS: n= 24; MuTect-Battenberg-PhyloWGS:
n= 28. SomaticSniper-TITAN-PyClone: n= 2; SomaticSniper-FACETS-PyClone: n= 18; SomaticSniper-Battenberg-PyClone: n= 13; MuTect-TITAN-
PyClone: n= 15; MuTect-FACETS-PyClone: n= 25; MuTect-Battenberg-PyClone: n= 19. Source data are provided as a Source Data file.
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tool combinations, with no pair of algorithms consistently
achieving similar results in cellularity estimates, prediction of
subclone number and assignment of mutation clonality. While
the subclonal CNA detection tool used mostly influenced cellu-
larity estimates but no other aspects of subclonal architecture,
large differences were driven by changing the SNV detection
approach. Differences between SNV detection tools led to major
divergences in subclonal reconstruction: pipelines using MuTect
found extensive subclonal diversity, at least partly due to the
greater number of low-VAF mutations detected. SNV detection
benchmarking efforts31 could aid in the further characterization
of the error profiles of SNV detection tools and optimize para-
meter tuning to improve subclonal reconstruction. Future studies
might benefit from merging multiple subclonal reconstruction
pipelines, for example to provide a potential envelope of upper
and lower bounds on different features of the reconstruction.

The potential translational and clinical impact of these technical
variabilities is considerable. For example, technological differences
between analysis pipelines were larger than the effect size of the
association between evolutionary complexity and patient survival.
This suggests that estimates of technical variability should be
provided for analyses dependent on subclonal architecture, such as
in studies mapping evolutionary and migration trajectories
between primary and metastatic tumours. Studies identifying
clonal and especially subclonal driver mutations should be inter-
preted with such variability estimates as reference since subclonal
mutational landscapes were found to be especially vulnerable to
pipelines changes when clonal ones were less so. Articulating how
these algorithmic differences relate to the clinical effect size will
greatly improve interpretability of these types of data.

Future studies also need to carefully consider the failure rates
of different reconstruction algorithms, as algorithms leveraging
clonal or neutral copy number regions might not be suitable for
tumour types characterized by large numbers of CNAs and might
call for specific CNA detection strategies. Computational failures
are problematic for clinical applications and, in combination with
the substantive computational requirements that scale with the
number of mutations, could be problematic for cancer types
characterized by a high mutational burden.

Our evaluation of subclonal reconstruction using data from
spatially distinct regions of tumours found that reconstructions
relying on a single sample systematically underestimated the
number of subclones in a tumour. Input constraints and non-
exhaustive sequencing depth and spatial sampling in multi-region
reconstructions also suggest that the current level of under-
estimation is only the lower-bound. This is in-line with previous
work in kidney cancer6,11. These data also agree with previous
work showing the distinct mutational profiles of prostate cancer
samples from spatially distinct regions of the same tumour8 and
reinforces the hypothesis that sufficient sampling will uncover
multiple subclones in nearly all cancers. It also suggests that
strategies for robust multi-region-aware subclonal mutation
detection would be a significant benefit to subclonal reconstruc-
tion analyses.

Larger datasets are necessary to better evaluate the perfor-
mance of subclonal reconstruction methodologies. While simu-
lated data is valuable34, single-cell sequencing datasets will likely
significantly improve the evaluation of ground truth for subclonal
reconstruction algorithms in patient samples. In the meantime,
this work involving a large clinical cohort will aid in refining
subclonal reconstruction methods and provide guidance for
evaluating the subclonal architecture of cancer samples.

Methods
Patient cohort. We aggregated a retrospective cohort of localized prostate tumours
with patient consent and Research Ethics Board approval from published datasets,

with whole-genome sequencing of tumour samples and matched blood-based
normal samples13,23,24,35–38. The cohort includes 293 patients with tumour samples
from the index lesion and 10 patients with multiple samples from intraductal
carcinoma and juxtaposed adjacent invasive carcinoma. All tumour samples in this
study were obtained with patient informed consent, with approvals by the Uni-
versity Health Network Institutional Research Ethics Board, the Centre Hospitalier
Universitaire de Québec Institutional Research Ethics Board and the University of
California Los Angeles Institutional Research Ethics Board, and following ICGC
guidelines. For patients receiving radiotherapy, the index tumour was identified on
transrectal ultrasound and sampled by needle biopsy (TRUS-Bx) and was deemed
the largest focus of disease that was confirmed pathologically. A fresh-frozen needle
core ultrasound-guided biopsy to this index lesion was obtained for macro-
dissection. For patients receiving surgery, the index tumour was identified mac-
roscopically by a GU expert pathologist at the point of surgery and later sampled
and biobanked. A fresh-frozen tissue specimen from the index lesion was then
obtained from macro-dissection. Details of the patient cohort have been described
previously13,24.

We focused on patients with clinical intermediate-risk disease as defined by
NCCN, with intermediate-risk factors (T2b or T2c disease, ISUP Grade Group 2 or
3 or pre-treatment prostate specific antigen (PSA) serum levels between 10 and
20 ng/mL). All patients received either precision image-guided radiotherapy or
radical prostatectomy with no randomization or classification and were hormone-
naive at time of therapy. Four patients in the multi-region sequencing cohort
carried germline BRCA2 mutations and had formalin-fixed paraffin-embedded
tissues instead of fresh-frozen (CPCG9001, CPCG9002, CPCG9003, CPCG9005).
Sample regions suitable for macro-dissection (tumour cellularity >70%) were
marked by genitourinary pathologists and manually macro-dissected, followed by
DNA extraction and sequencing.

Whole-genome sequencing data analysis. Protocols for whole-genome
sequencing data generation and processing have been previously described13,23,24.
Briefly, raw sequencing reads from the tumour and normal samples were aligned
against human reference genome build hg19 using bwa-aln (v0.5.7)39. Lane-level
BAMs from the same library were merged and duplicates were marked using picard
(v1.92). Local realignment and base quality recalibration were performed together
for tumour/normal pairs using GATK (v.2.4.9)40. Tumour and normal sample-
level BAMs were extracted separately, had headers corrected with SAMtools
(v0.1.9)41 and were indexed with picard (v1.107). ContEst (v1.0.24530)42 was used
to estimate lane-level and sample-level sample mix-up and lane-level cross-indi-
vidual contamination on all sequences, with no significant contaminated detected.

Tumour somatic mutation assessment. We detected subclonal copy number
aberrations from whole-genome sequencing data using Battenberg (v2.2.6)7,
TITAN (v1.11.0)25 and FACETS (v0.5.14)28. First, Battenberg (v2.2.6) was installed
with underlying ASCAT (v2.5)43 using the installation and running wrapper
cgpBattenberg (v3.1.0). Required reference files were downloaded as instructed in
https://github.com/Wedge-Oxford/battenberg and further required data files were
generated as instructed in https://github.com/cancerit/cgpBattenberg. An ignore
file was created for the genome assembly hg19 to exclude all chromosomes not in
1-22. Battenberg (v2.2.6) was run with -gender of XY for male patients and -t of 14
to run using 14 threads, and otherwise default parameters. The resulting primary
solution was subjected to manual refitting in situations meeting the following
criteria: (1) the solution involved a high copy number segment with high BAF and
low logR, indicating an unrecognized homozygous loss event, (2) nearly all copy
number aberrations were subclonal, (3) there were unreasonably high copy num-
bers up to infinity. Refitting was performed until the concerns for refitting were
resolved or for three attempts after which the original solution was accepted. The
CNAs obtained from the primary solution, along with tumour cellularity and
ploidy were used for further analysis. We have described subclonal copy number
analysis using TITAN (v1.11.0) previously in detail13. Briefly, TITAN (v1.11.0) was
run through the Kronos (v1.12.0)44 pipeline for whole-genome sequence pre-
processing and subclonal copy number assessment. GC and mappability files for
bias correction were prepared using HMMcopy (v0.1.1) and bowtie (v2.2.6)45 on
the hg19 reference genome. Heterogeneous positions in the sequence data were
identified by MutationSeq (v4.3.7)46 using known dbSNP sites from GATK
(v2.4.9). For each whole-genome sequence, TITAN (v1.11.0) made predictions of
the existence of one to five subclones based on the given input numClusters and the
solution with the lowest S_Dbw validity index25 was used to obtain the cellularity,
ploidy and subclonal CNAs for downstream analysis. Finally, to prepare inputs for
subclonal copy number assessment by FACETS (v0.5.14), the accompanying snp-
pileup (v434b5ce) algorithm was installed with underlying htslib (v1.9)41. A SNP
location VCF file was downloaded as instructed for hg19 with SNP version b151
and human genome build version GrCh37p13 from ftp://ftp.ncbi.nlm.nih.gov/snp/
organisms/human_9606_b151_GRCh37p13/VCF/00-common_all.vcf.gz, and snp-
pileup (v434b5ce) was run using developer recommended parameters (-g -q15
-Q20 -P100 -r25,0). All FACETS (v0.5.14) runs used the seed 1234 and default
parameters for all steps, except for procSample where the developer recommended
parameter cval= 150 was used.

We used MuTect (v1.1.4)27 and SomaticSniper (v1.0.2)26 for the detection of
somatic single nucleotide variants from whole-genome sequencing data. MuTect
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was run to obtain candidate SNVs with dbSNP13847, COSMIC (v66)48 and default
parameters except the -tumor_lod option (tumor limit of detection). The
-tumor_lod option was set to 10 to increase the stringency of detection. Outputs
that contained REJECT were filtered out and the remaining SNVs were used for
downstream analysis. Details for SomaticSniper (v1.0.2) variant detection have
been described previously23. In short, SomaticSniper (v1.0.2) was used to identify
candidate SNVs with default parameters except the -q option (mapping quality
threshold), which was set to 1 as per developer recommendation. Candidate SNVs
were filtered through standard and LOH filtering using a pileup indel file generated
on the sequence data using SAMtools (v0.1.9)41, bam-readcount filtering and false
positive filtering. Only high confidence somatic SNVs obtained from the high
confidence filter using default parameters were used for further analysis, as per
developer recommendations. We further performed annotation and filtering on all
SNVs, with full details given previously13. In brief, SNVs obtained by MuTect
(v1.1.4) and SomaticSniper (v1.0.2) were annotated with associated genes and
functions by ANNOVAR (v2015-06-17)49 using RefGene, subjected to deny-list
filtering to remove known germline contaminants and sequencing artifacts and
allow-list filtering through COSMIC (v70)48. This was done before downstream
subclonal reconstruction. SNVs were further subjected to filtering to remove SNVs
not at callable bases (where callable bases are those with ≥17× coverage for the
tumour and ≥10× coverage for the normal).

Subclonal reconstruction pipeline construction. We define a subclonal recon-
struction pipeline as comprised of a SNV detection tool, a CNA detection tool and
a subclonal reconstruction algorithm. A pipeline is said to be using or comprising
of a tool and/or an algorithm when the tool/algorithm is incorporated as one step
of the pipeline.

For single-region reconstruction, the SNV detection tools SomaticSniper
(v1.0.2) and MuTect (v1.1.4), the CNA detection tools Battenberg (v2.2.6) and
TITAN (v1.11.0), and the subclonal reconstruction algorithms PhyloWGS
(v3b75ba9), PyClone (v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) were
combined in factorial combinations to construct 16 pipelines. Subclonal
reconstruction was run on the cohort of 293 tumours with index lesion sequencing
for single-region subclonal reconstruction.

For multi-region reconstruction, the SNV detection tools SomaticSniper
(v1.0.2) and MuTect (v1.1.4), the CNA detection tools Battenberg (v2.2.6), TITAN
(v1.11.0) and FACETS (v0.5.14), and the subclonal reconstruction algorithms
PhyloWGS (v3b75ba9), PyClone (v0.13.0) and SciClone (v1.0.7) were combined in
factorial combinations to construct 18 pipelines. For the 10 tumours with multi-
region sequencing, each individual sequencing sample (total 30, 2–4 samples per
tumour) was first subjected to single-region subclonal reconstruction using the 18
pipelines, followed by multi-region subclonal reconstruction using the 18 pipelines
where all regions of a tumour were provided as input.

Subclonal reconstruction of tumours using PhyloWGS. We used the cnv-int
branch of PhyloWGS (https://github.com/morrislab/phylowgs/tree/cnvint, com-
mit: 3b75ba9c40cfb27ef38013b08f9e089fa4efa0c0)15 for the reconstruction of
tumour phylogenies, as described previously13. Briefly, subclonal CNA segments
and cellularity inputs were parsed using the provided parse_cnvs.py script (the
parse_cnvs.py was custom augmented to process inputs from FACETS [v0.5.14])
and filtered to remove any segments shorter than 10 kbp. The create_-
phylowgs_inputs.py script was used to generate PhyloWGS (v3b75ba9) inputs for
each sample. All default parameters were used, including limiting the number of
SNVs considered to 5000 for the interest of runtime, to launch reconstructions
using evolve.py. Multi-region subclonal reconstruction was performed by provid-
ing all regions belonging to the same tumour as input for the reconstruction and
the procedure was otherwise identical to the single-region reconstructions.

The best phylogenetic clone tree for each run and the CNAs and SNVs
associated with each subclone in that structure were determined by parsing the
output JSON files for the tree with the largest log likelihood value. In addition to
the best tree structure, the output JSON file was also parsed for all predicted tree
structures as ordered by log likelihood values to assess the change in predictions
across the 2500 Markov chain Monte Carlo iterations. Only samples with a total of
2500 complete MCMC iterations were considered, and samples with poly-tumour
or overly complex intermediate clone tree structures that were never the final
solution for any sample were excluded.

Subclonal reconstruction of tumours using PyClone. We used PyClone
(v0.13.0)17 for single- and multi-region mutation clustering. A mutation input
file was created for each sample by obtaining the tumour reference and variant
read counts for each SNV from input VCFs and annotating them with the clonal
major and minor copy numbers for the position from CNA inputs. Since
PyClone (v0.13.0) leverages SNVs in clonal CNA regions, all SNVs in subclonal
CNA regions were not considered. SNVs in regions without copy number
information were also discarded, and the normal copy number was set to 2 for
autosomes and 1 for chromosomes X and Y. The mutation input file, along with
tumour cellularity as predicted by the subclonal CNA detection tool were used as
inputs for the run_analysis_pipeline to launch PyClone (v0.13.0)17, using 12345
as the seed for all runs. Notably, since PyClone (v0.13.0) was originally

developed for deep sequencing (>100×) data, the developer recommended set-
ting the “density” parameter to “pyclone_binomial” to account for character-
istics of whole-genome sequencing data. The number of Markov chain Monte
Carlo iterations was also set to 100,000, with 1000 burn-ins. Otherwise default
parameters were used. PyClone (v0.13.0) outputted ‘cellular prevalence’ as
defined by the authors as ‘the proportion of tumor cells harboring a mutation’
fits the definition of cancer cell fraction for this study, and cellular prevalence as
defined in this study was calculated by multiplying the outputted ‘cellular pre-
valence’ with purity estimates from the respective CNA detection tool. Multi-
region reconstructions using PyClone (v0.13.0) were launched by including all
mutation input files and tumour cellularities prepared for single-region recon-
structions as outlined above for all samples of a tumour as input to run_ana-
lysis_pipeline. Cellular prevalence as defined in this study were similarly
obtained from ‘cellular prevalence’ as outputted by PyClone (v0.13.0) by indi-
vidually adjusting for the tumour contents for each sample of the tumour.

Subclonal reconstruction of tumours using DPClust. We used DPClust (v2.2.5)16

for single-region subclonal reconstruction. DPClust (v2.2.5) was run using the dpc.R
pipeline available via the DPClust SMC-HET Docker (https://github.com/Wedge-
Oxford/dpclust_smchet_docker, commit a1ef254), using also dpclust3p (v1.0.6). The
pipeline was customized to process inputs from SomaticSniper (v.1.0.2) and TITAN
(v1.11.0). The inputs for each tumour sample were the VCF file provided by the SNV
detection tool, and subclonal copy number, cellularity, ploidy, and purity as predicted
by the subclonal CNA detection tool, using 12345 as the seed and otherwise default
parameters. The results in the subchallenge1C.txt output file were taken as the
mutation clustering solution to obtain the number of subclones predicted by DPClust
and their cellular prevalences (v2.2.5)16. Results in the subchallenge2A.txt output file
were taken to define the mutation composition of each cluster.

Subclonal reconstruction of tumours using SciClone. We used SciClone (v1.0.7)20

for single- and multi-region subclonal reconstruction. Input VCFs were used to cal-
culate variant allele frequencies (in percentage) and CNA inputs were used to determine
regions with loss of heterozygosity. Only SNVs in clonally copy number neutral
(major= 1, minor= 1) regions with no subclonal CNAs were considered by SciClone
(v1.0.7) and all samples were run using default parameters. Multi-region reconstruc-
tions using SciClone (v1.0.7) were run by including inputs for all samples of a tumour.
Mutation clusters defined by SciClone (v1.0.7) were characterized using variant allele
frequencies, and their VAFs were multiplied by a factor of 2 to convert to cellular
prevalence as defined in this study.

Post processing of subclonal reconstruction solutions. Since subclones in
PhyloWGS (v3b75ba9) trees are numbered based on cellular prevalence instead of
evolutionary relationship, trees were transformed to consistent representations to
allow comparison across cohorts following two rules: (1) trees are left-heavy, (2) all
nodes at a particular tree depth must have numbers greater than that of nodes at
lower tree depths, with the root node (normal cell population) starting at 0. Fur-
ther, pruning of nodes was performed following the heuristic that each node must
have at least 5 SNVs or 5 CNAs and a minimum cellular prevalence of 10%,
creating a subclonal diversity lower bound for each tumour13. A node was pruned
and merged with its sibling if their cellular prevalence difference was ≤ 2% and if
both were driven purely by SNVs (had ≤ 5 CNAs). A node was merged with its
parent node if their cellular prevalence difference was ≤2%. When PhyloWGS
(v3b75ba9) produced a poly-tumour solution for the best consensus tree, the
algorithm was re-run up to 12 times with different random number generator seeds
after which the final poly-tumour solution was accepted and considered to be a
reconstruction failure. The seeds were applied in the following order: 12345,
123456, 1234567, 12345678, 123456789, 246810, 493620, 987240, 1974480,
3948960, 7897920 and 15795840. In the event PhyloWGS (v3b75ba9) failed to
produce a solution due to reconstruction failures or excessive runtime (>3 months),
the sample was excluded from analysis for that pipeline.

PyClone (v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) identified subclonal
populations were pruned using similar heuristic as that for PhyloWGS (v3b75ba9).
Specifically, for each tumour sample, a mutation cluster was pruned if it had fewer
than five supporting SNVs or a cellular prevalence below 10% if it is the clonal
cluster or below 2% if it is a subclonal cluster. If there were less than five total
mutations (SNVs) assigned to clusters in a sample, or if all clusters had cellular
prevalence of below 10%, a failed reconstruction was designated to the sample.
Otherwise pruned clusters were merged with their nearest neighbor in cellular
prevalence, and the weighted mean of cellular prevalence was assigned to the
merged node. Moreover, two clusters were merged if they differed in cellular
prevalence by ≤2%. Finally, mutation clusters were ordered by decreasing cellular
prevalence and renumbered accordingly, and the cluster with the highest cellular
prevalence was treated as the clonal cluster and its cellular prevalence taken as the
cellularity estimated by the pipeline. This was a conservative approach as the
detection of multiple primary tumours is challenging from single-sample subclonal
reconstruction13.

Union and intersection of mutation detection tools. We obtained the union and
intersection of raw SNVs by SomaticSniper (v1.0.2) and MuTect (v1.1.4) for each
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tumour sample using vcf-isec of vcftools (v0.1.15). The union and intersection sets
of SNVs were then annotated and filtered with the same method as described above
before being used in subsequent analysis13. For the comparison of characteristics
between SNVs detected by MuTect (v1.1.4) and SomaticSniper (v1.0.2), all SNVs
detected by each tool across all 293 index lesion samples were pooled to assess their
VAFs and trinucleotide contexts. SNVs were grouped as intersect if detected by
both tools, or as MuTect-unique or SomaticSniper-unique, both pre- and post-
filtering. The effect of filtering was assessed by comparing SNVs retained after
filtering (‘SomaticSniper’ and ‘MuTect’) with those removed by it (‘Removed
SomaticSniper’ and ‘Removed MuTect’). Trinucleotide context profiles for each
group of SNVs were normalized by the expected number of each trinucleotide
across the hg19 genome.

We determined the union and intersection of CNAs detected by TITAN
(v1.11.0) and Battenberg (v2.2.6), first parsed using parse_cnvs.py script of
PhyloWGS (v3b75ba9) for consistent formatting, on a per base-pair basis. The
intersection of CNAs, based on genomic coordinates and major and minor copy
number, was determined using the GenomicRanges (v1.28.6)50 package in R
(v3.2.5). Regions with disagreeing copy number were identified using bedtools
(v2.27.1)51 and bedr (v1.0.6)52. A region is defined to have a tool-unique CNA if
one tool detected a copy number aberration for the region while the other
identified it as copy number neutral (major and minor copy number of 1, both
clonally and subclonally). Regions were both algorithms detected different copy
number aberrations were classified as disagreements. The union set of CNAs thus
contained the intersection of CNAs and CNAs unique to either tool, and regions of
disagreement were excluded as there was no natural way to resolve discrepancies.
In contrast to TITAN, when a region is determined to have a subclonal aberration,
Battenberg (v2.2.6) produces two entries, a clonal and subclonal copy number for
each genomic region. These regions were labelled Battenberg-unique for its clear
delineation of subclonal CNAs. However, the TITAN (v.1.11.0) copy number
aberration result for the region (if any) is used in the union of CNAs to avoid
conflicting CNAs in the same region, as one cannot combine clonal Battenberg
(v2.2.6) results with TITAN (v1.11.0) aberrations. The union and intersection set of
CNAs were further filtered to remove any segments under 10 Kbp.

Four pipeline combinations using PhyloWGS (v3b75ba9) and the intersection
and union of SNVs and CNAs were executed on 293 single-region samples. The
script create_phylowgs_inputs.py was used to combine intersect and union of
SNVs and CNAs as inputs for PhyloWGS (v3b75ba9), where no cellularity estimate
was provided as there was no obvious way to derive that for the intersect and union
of CNAs. The pipelines were run with otherwise identical procedure as single-
region reconstructions with PhyloWGS (v3b75ba9).

Clonality classification. We classified the phylogenetic clone trees outputted by
PhyloWGS (v3b75ba9) and mutation clustering results outputted by PyClone
(v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) as monoclonal or polyclonal
based on the number of subclones they predicted. Solutions where only one sub-
clone was predicted were termed monoclonal. In monoclonal reconstructions, the
only subclone detected is then termed the clonal node. Solutions where more than
one subclone was predicted were termed polyclonal. In polyclonal reconstructions,
the subclone with the highest cellular prevalence was deemed clonal, and the rest of
the subclones were subclonal. In situations where PhyloWGS (v3b75ba9) outputted
phylogenies showing a normal root node with more than one direct child, the clone
tree was termed poly-tumour, suggestive of multiple independent primary
tumours. These were excluded from downstream analysis because the recon-
struction of these phylogenies, especially from single sequencing samples, is
challenging13.

CNA and SNV mutations were classified as clonal or subclonal based on their
node assignment in the best PhyloWGS (v3b75ba9) consensus clone tree and
PyClone (v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) mutation clusters. The
mutations that define the clonal node were classified as clonal mutations, while all
others were classified as subclonal mutations. The cancer cell fraction (CCF) of
mutations was calculated by dividing the cellular prevalence of the node that the
mutation belonged to by the predicted cellularity of the tumour sample.

Analysis of single-nucleotide variants. We compared the four pipelines using
each subclonal reconstruction algorithm for their inference of clonal and subclonal
SNVs. In each pairwise comparison, for each sample we noted the clonal SNV set
identified by each algorithm and calculated the Jaccard index between the two sets.
The analysis was performed separately for clonal and subclonal SNVs.

Analysis of copy number aberrations. We further filtered the CNAs identified by
PhyloWGS using OncoScan data for samples with the data available, removing the
identified CNAs that did not overlap any OncoScan CNAs13. For samples without
OncoScan data, CNAs outputted by PhyloWGS (v3b75ba9) were filtered to retain
only those across genomic locations with recurrence of CNAs in OncoScan-filtered
samples, with 10 being the established empirical recurrence threshold13. Bins of
1.0 Mbp were created across the genome to characterize the copy number profiles
for each sample and were assigned the copy number of overlapping genomic
segments, either neutral or mutated. Regions not considered by PhyloWGS

(v3b75ba9) due to lack of information were assumed to have the normal copy
number of two. Profiles were created separately for clonal and subclonal CNAs. We
further used previously identified clonal and subclonal subtypes to cluster sam-
ples13. Samples that were assigned a subclonal subtype in the SomaticSniper-
TITAN pipeline13 but had no subclonal populations detected in another pipeline
were excluded from subclonal subtype analysis for that pipeline. Samples that had
no subclonal populations detected in the SomaticSniper-TITAN pipeline and were
therefore never assigned to a subclonal subtype were not considered in any sub-
clonal subtype analysis. For each pipeline, we used the copy number profiles of all
samples with available data to generate average subtype-specific clonal and sub-
clonal CNA profiles of localized prostate cancer, with standard deviation.

We compared the CNA profiles identified by the four PhyloWGS-comprising
pipelines by assessing the difference in clonal and subclonal CNAs between
pipeline pairs. For each sample, a clonal CNA set was generated from pipeline
results, where the direction of the CNA is taken into account. For example, if a
sample was identified with a clonal gain in genomic bin 1 and a clonal loss in
genomic bin 2, it would have the clonal CNA set +1, −2. The Jaccard index of
clonal and subclonal CNA sets for each sample were calculated between all
pipeline pairs.

We identified CNAs that were differentially altered clonally and subclonally.
Using 1.0 Mbp bins across the genome, we aggregated the number of samples with
and without a CNA overlapping each 1.0 Mbp stretch, with gains and losses
considered separately. Clonal and subclonal CNAs were annotated separately, and
only samples with polyclonal phylogenies were considered, since they have both
clonal and subclonal components. Pearson’s χ2 test was used with multiple testing
correction (FDR ≤ 0.05) to define the bins that were significantly enriched for
clonal or subclonal CNAs that were gain or loss. CNAs in these bins were thus
considered significantly differentially altered, with a predisposition to occur
clonally or subclonally as a gain or a loss. Genes affected by differentially altered
CNAs were annotated using RefSeq, and the lists of genes considered to have CNA
biases by the four pipelines were compared for overlap.

We performed pathway enrichment analysis on the genes that were identified
by all four PhyloWGS-comprising pipelines as affected by CNAs biased clonally or
subclonally. Using all default parameters of gprofiler2 (v0.1.9) in R (v3.5.3)53,
statistically significant pathways from Gene Ontology (Biological Process,
Molecular Function and Cellular Component), KEGG and Reactome were
computed, with no electronic GO annotations. We discarded pathways that
involved >350 or <5 genes post FDR correction. Cytoscape (v3.4.0) was used to
visualize significant pathways54. Since all genes identified as significantly
differentially altered were biased to be altered clonally, we defined these pathways
as differentially altered clonally.

Driver mutation analysis. We gathered a list of known prostate cancer driver
genes based on previous large sequencing studies13,23. The known CNA-affected
driver genes considered were MYC, TP53, NKX3-1, RB1, CDKN1B, CHD1, PTEN
and CDH1. The known SNV-affected driver genes considered were ATM, MED12,
FOXA1, SPOP and TP53. PhyloWGS-comprising pipelines identified CNAs over-
lapping CNA-affected driver genes and SNVs that occurred in SNV-affected driver
genes. These were defined to be driver CNAs and driver SNVs, respectively. A
sample was considered to have a consensus driver mutation, CNA or SNV, if the
mutation was identified with the same clonality by all four PhyloWGS-comprising
pipelines.

Driver SNVs and CNAs of each sample were categorized by the number of
PhyloWGS-comprising pipelines they were identified in. Since four PhyloWGS-
comprising pipelines were used, in each sample driver SNVs and CNAs could be
identified in all four pipelines, three pipelines, two pipelines or one pipeline.
Proportions of each category were calculated by dividing the number of samples in
that category by the sum of samples assigned to all categories for the driver SNV or
CNA. The analysis was done separately for clonal and subclonal mutations, such
that the category of the driver SNVs or CNAs in a sample was defined by the most
frequent identification of the clonality. For example, if a driver SNV in a sample
was identified as clonal by two pipelines, subclonal by one pipeline and wildtype by
the last pipeline, it would be counted in both category two for the clonal analysis
and in category one for the subclonal analysis.

Biomarker survival analysis. We assessed the utility of clonality (monoclonal vs.
polyclonal) as a biomarker in all sixteen pipelines used for single-region subclonal
reconstruction of 293 samples. Tumours were grouped by clonality and the two
groups were compared using a log-rank test for differences in outcome. Tumours
were also grouped by integrating the previously defined multi-modal biomarker23

(groups patients into low risk and high-risk) and clonality, creating unified groups
(unified-low: monoclonal low-risk, unified-intermediate: monoclonal high-risk or
polyclonal low-risk, unified-high: polyclonal high-risk)13 that were compared using
a log-rank test. Primary outcome as time to biochemical recurrence (BCR) was
described in detail previously13. In brief, BCR was defined as PSA rise of ≥2.0 ng/mL
above the nadir for radiotherapy patients and two-consecutive postsurgery PSA
measurements >0.2 ng/mL (backdated to the date of first increase in PSA) for
surgery patients. If a surgery patient had a post-operative PSA ≥ 0.2 ng/mL this
was considered primary treatment failure. After salvage radiation therapy, if PSA
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continued to rise, BCR was backdated to the first PSA measurement >0.2 ng/mL,
but if not then then this was not considered a BCR. Salvage therapy (hormone
therapy or chemotherapy) was considered a BCR.

Comparing reconstruction using single and multiple regions. For each of the 10
tumours with multi-region sequencing, we compared the subclonal reconstruction
solutions from each single region with the solutions obtained from subclonal
reconstruction using all tumour regions. In addition to number of subclones
predicted, we compared SNV and CNA clonality predictions between single- and
multi-region reconstructions. For all SNVs that were identified in a single-region or
its corresponding multi-region reconstruction, we calculated the proportion of
SNVs in each of the following categories:

(1) Multi- and single-region match: same SNV clonality in single- and multi-
region.

(2) Clonal in multi-region: SNV identified in both single- and multi-region
reconstructions, but SNV is clonal in multi-region and subclonal in single-
region.

(3) Subclonal in multi-region: SNV identified in both single- and multi-region
reconstructions, but SNV is subclonal in multi-region and clonal in single-
region.

(4) Unique in single-region: SNV only present in single-region reconstruction.
(5) Unique in multi-region: SNV only present in multi-region reconstruction.

Similarly, all CNAs that were identified in a single-region reconstruction or its
matching multi-region reconstruction were assigned to categories defined in a
similar fashion. Additional separation was added for CNAs to distinguish between
clonal and subclonal predictions.

Data visualization and reporting. Data was visualized using the R statistical
environment (v3.2.5 or v3.5.3), and performed using the lattice (v0.20-34), latti-
ceExtra (v0.6-28), VennDiagram (v1.6.21)55 and BPG (v5.3.4)56 packages. All
boxplots show the median (center line), upper and lower quartiles (box limits), and
whiskers extend to the minimum and maximum values within 1.5 times the
interquartile range (Tukey boxplots). Figures were compiled in Inkscape (v0.91).
Standard deviation of the sample mean was reported for point estimates. All sta-
tistical tests were two-sided.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Published data analyzed in this study, publicly available with appropriate Data Access
Compliance Office authorization, include: WGS Data—Baca et al., 2013: dbGaP,
phs000447.v1.p135. WGS Data—Berger et al., 2011: dbGaP, phs000330.v1.p136. WGS
Data—CPC-GENE Espiritu et al., 2018: EGA, EGAD0000100109413. WGS Data—CPC-
GENE Fraser et al., 2017: EGA, EGAD0000100109423. WGS Data—CPC-GENE Taylor
et al., 2017: EGA, EGAD0000100273924. WGS Data—The Cancer Genome Atlas Research
Network, 2015: https://portal.gdc.cancer.gov/projects/TCGA-PRAD37. WGS Data—
Weischenfeldt et al., 2013: EGA, EGAS0000100040038. Data supporting the conclusions of
this article is included within it and its additional files, and at: ICGC Data Portal under the
project PRAD-CA, available with appropriate ICGC Data Access Compliance Office
approval. Source data are provided with this paper.
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