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Using metacommunity ecology to understand
environmental metabolomes
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Environmental metabolomes are fundamentally coupled to microbially-linked biogeochemical

processes within ecosystems. However, significant gaps exist in our understanding of their

spatiotemporal organization, limiting our ability to uncover transferrable principles and pre-

dict ecosystem function. We propose that a theoretical paradigm, which integrates concepts

from metacommunity ecology, is necessary to reveal underlying mechanisms governing

metabolomes. We call this synthesis between ecology and metabolomics ‘meta-metabolome

ecology’ and demonstrate its utility using a mass spectrometry dataset. We developed three

relational metabolite dendrograms using molecular properties and putative biochemical

transformations and performed ecological null modeling. Based upon null modeling results,

we show that stochastic processes drove molecular properties while biochemical transfor-

mations were structured deterministically. We further suggest that potentially biochemically

active metabolites were more deterministically assembled than less active metabolites.

Understanding variation in the influences of stochasticity and determinism provides a way to

focus attention on which meta-metabolomes and which parts of meta-metabolomes are most

likely to be important to consider in mechanistic models. We propose that this paradigm will

allow researchers to study the connections between ecological systems and their molecular

processes in previously inaccessible detail.
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Environmental metabolomics enables the investigation of the
metabolic processes and interactions occurring within an
ecosystem and can provide deep insight into ongoing bio-

geochemical cycles1–4. High-resolution mass spectrometric tech-
niques, like Orbitrap-MS, Fourier transform ion cyclotron
resonance MS (FTICR-MS), and ion mobility spectrometry MS
(IMS-MS), among others have allowed researchers to investigate
the individual carbon compounds that constitute natural organic
matter (NOM)1,5–7. As these studies increasingly become spa-
tiotemporally resolved, an investigation of the underlying pro-
cesses driving metabolome variability becomes necessary in order
to develop transitive principles and enhance predictive cap-
abilities across ecosystems. While many metabolomics studies
have used multivariate methods to identify if differences exist
between metabolomes7–12, they have limited capacity to reveal
processes that constrain or promote variation13–15. Initial appli-
cations of ecological theory to NOM have revealed interlinkages
between microbial community dynamics and molecular formula
functional diversity16–18. To better understand the processes
governing metabolome composition, however, we propose a
direct integration of concepts and tools developed in meta-
community ecology, the study of communities across scales19,
with environmental metabolomics. This will allow us to investi-
gate mechanisms underlying spatiotemporal dynamics of meta-
bolites as a conceptual analog to ecological metacommunities,
and uncover transferable principles related to NOM organization.
Our specific goals are to (1) explore the conceptual parallels
between environmental metabolite assemblages and ecological
metacommunities and (2) demonstrate how concepts and ana-
lysis tools from metacommunity ecology can be used to study
environmental metabolites using an example FTICR-MS dataset
from the Columbia River and adjacent riverbed. We demonstrate
that novel insights are revealed by applying metacommunity
ecology theory to environmental metabolomics and contend that
this constitutes the line of inquiry called ‘meta-metabolome
ecology.’ As a parallel to metacommunity ecology, meta-
metabolome ecology is focused on studying multiple metabolite
assemblages connected through spatial processes (e.g., advective
transport).

Ecological communities are assembled through the collective
action of random birth and death events, dispersal of individuals,
deterministic factors, which affect the relative fitness of taxa, and
the evolutionary processes of diversification and extinction20.
Therefore, any community can be assumed to be the outcome of
many different ecological and evolutionary assembly processes
experienced throughout time and space21. Similarly, ecosystem
metabolomes (i.e., assemblages of ‘metabolites’ which are discrete
organic compounds that can be subject to biological activity)
represent the collective outcome of historical processes that have
resulted in the gain, loss, and transformation of individual
metabolites. In our conceptualization, ecosystem metabolomes
are influenced by and comprised of molecules generated within or
transported into a given system. We refer to ecosystem metabo-
lomes connected via spatial processes as ‘meta-metabolomes,’
akin to metacommunities. We suggest the associated set of his-
torical processes shares many parallels with those governing
ecological community assembly.

As with ecological communities, we hypothesize that metabo-
lite assemblages are subject to mixtures of deterministic and
stochastic assembly processes. Deterministic factors which influ-
ence ecological community composition occur due to systematic
differences in birth and death rates among resident taxa (i.e.,
some taxa more successfully produce offspring than others given
some environmental constraint)13,22–24. For example, differential
abilities across taxa to scavenge nutrients can lead to a determi-
nistic change in community structure through time25. Similarly,

individual metabolites within metabolite assemblages will
undergo fluctuations in production rate (analogous to birth rate)
and degradation rate (analogous to death rate), driven by abiotic
or biotic transformations1,4,11,26. Distinct from biological systems,
however, metabolite ‘death’ is inherently coupled to metabolite
‘birth’ as one metabolite is transformed into another. How this
coupling influences our conceptual understanding deserves elu-
cidation beyond what we can examine here. Nonetheless, any
factors that adjust production/degradation rates could lead to a
deterministic shift in the composition of the metabolite assem-
blage. For example, the preference of microorganisms for organic
nitrogen in a nitrogen-limited environment could deterministi-
cally shift metabolite composition such that biogeochemical
hotspots become characterized by nitrogenous metabolites1. The
persistence of low oxidation state organic carbon within anae-
robic environments due to the preferential consumption of more
thermodynamically available compounds represents another
potentially deterministic shift27. Increasingly homogenous DOM
functional diversity derived from marine environments linked to
ongoing degradation could also represent another deterministic
impact17.

Aside from purely deterministic environmental pressures,
dispersal processes can strongly influence ecological community
composition through variations in organismal exchange rates20.
When the rate of exchange between two separated communities is
high, these communities can become more homogeneous with
respect to each other due to ‘mass effects’ (e.g., the flow of
individuals from high to low population size)28–30. Although
metabolites are independently governed by passive movement,
high rates of metabolite exchange (e.g., via advective hydrologic
transport or high rates of vector movement) could conceivably
homogenize assemblages through space. The potential for vectors
(e.g., microbes) to move and influence metabolite dispersal points
to an intriguing interaction between biology and chemistry that
deserves attention beyond the scope of this manuscript, but can
likely be investigated using our framework. At the other extreme,
dispersal rates can be low enough that ecological communities
diverge in composition as a result of stochastic ecological drift
(i.e., random fluctuations in birth and death rates). If there is a
lack of temporally or spatially consistent factors driving variation
in metabolite production/degradation rates, a dynamic similar to
ecological drift should emerge, referred to here as ‘metabolite
drift’ where unstructured compositional deviations occur in
metabolite assembles. For example, if dispersal is limiting and any
thermodynamic or nutritional requirement is too weak, we could
expect a ‘metabolite drift’ signal. Therefore, low exchange rates of
metabolites can lead to outcomes that are conceptually analogous
to dispersal limitation in ecological communities.

Despite the many parallels between ecological communities
and metabolite profiles, there are important differences. For
example, no clear parallels can be drawn between the evolu-
tionary processes influencing ecological communities and
metabolite assemblages. Specifically, the rates of diversification
and extinction which affect the relationship between the regional
and local species pools do not translate to metabolites20. This is
because metabolites cannot reproduce or pass along heritable
traits. For example, while degradation products may have similar
biochemical traits as evidenced by studies measuring DOM
functional diversity16–18, this is not always explicitly true (i.e.,
dephosphorylation, sulfurylation) and doesn’t encapsulate all
synthesis or degradation products. Instead, evolutionary pro-
cesses could exert an indirect effect on the metabolome by acting
upon biological taxa participating in production or degradation
of individual metabolites. While we focus on conceptual parallels
to deterministic and stochastic ecological factors, we can envi-
sion an extension of our framework, which integrates indirect
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evolutionary forces into understanding spatiotemporal dynamics
of ecosystem metabolomes.

Another discrepancy between ecological communities and
metabolite assemblages exists with species interactions. In some
situations, there is good correspondence. For example, in both
ecological communities and metabolite assemblages, members (i.e.,
biological species or metabolites) will exert indirect and direct
pressures on other members, through interactions like predation of
individuals or the complexation of metabolites, respectively31–33.
However, unlike ecological communities, metabolite assemblages
are incapable of competitive exclusion such that mechanisms of
coexistence do not have direct analogs within metabolite assem-
blages20. Despite these departures from traditional ecological
communities, we believe that our hypothesis that metabolite
assemblages experience stochastic and deterministic processes is
conceptually supported. We assert that examining metabolite pro-
files using metacommunity ecological concepts and tools provides a
perspective on ecosystem metabolites that will enable further con-
ceptual and mechanistic understanding. This knowledge is a critical
element of ongoing efforts to improve process-based predictive
models of ecosystem function (e.g., reactive transport models of
river corridors or soil carbon models) that underlie broader Earth
system function.

Given the similarities between the deterministic and stochastic
processes acting upon ecological communities and metabolite
assemblages, we propose that ecological concepts and tools can be
applied to metabolomes to gain insight into factors governing
meta-metabolome spatiotemporal dynamics. We specifically
attempt to understand the assembly processes governing the
composition of metabolite assemblages because they are directly
analogous to ‘community assembly processes’ governing the
composition of ecological metacommunities. We focus on
applying phylogeny-informed diversity metrics and phylogenetic-
based null models that complement traditional multivariate sta-
tistics by revealing assembly processes13,24,34. The null modeling
approach adapted here for metabolite assemblages has been
shown to provide robust estimates for the relative influences of
different assembly processes13,24,35–38. Due to the absence of
explicit metabolite phylogeny, we use trait-based dendrograms
that represent shared and divergent metabolite properties39. As in
ecological functional trait or phylogenetic α-diversity and β-
diversity analyses, the dendrogram approach provides informa-
tion beyond simple taxonomic (or metabolite) assignments40–42.
We demonstrate how relational dendrograms can be used to
study metabolome α-diversity and β-diversity, and how they can
be used with null model analyses to reveal assembly processes
governing the composition of meta-metabolomes.

Results
An example set of metabolite assemblages and microbial
communities. We use metabolite data from the Columbia River
corridor to provide an example of how to use a dendrogram-
based framework to study the processes influencing metabolite
assemblages. In brief, samples of river water and pore water were
collected on November 19, 2017 from five locations (Supple-
mentary Fig. 1, Supplementary Table 1) along the mainstem
Columbia River in Washington State across a ~1 km transect
running along the shoreline. This part of the Columbia River is
in an arid region, is dam regulated, is predominantly gravel
bedded, experiences significant groundwater-surface water mix-
ing in pore fluids, and has been studied and described
extensively36,43,44. At each location, filtered river water and
subsurface pore water were collected; one replicate of river water
was collected, and three pore water samples were collected from
30 cm depth within a 1 m2 area using 0.25-inch diameter

sampling tubes. Samples were analyzed using FTICR-MS at the
Environmental Molecular Sciences Laboratory using previously
established methods. The raw FTICR-MS data were processed
according to established methods to (1) identify peaks from the
mass spectra that correspond to unique metabolites identified by
their unique mass, (2) calibrate peak/metabolite masses against a
standard set of known metabolites, and (3) assign molecular
formula based on the Compound Identification Algorithm
(CIA)45,46. Further data analyses are described below in the
subsections that use the associated analysis. In addition, water
samples were analyzed for basic geochemical parameters (i.e.,
dissolved organic carbon concentration, specific conductivity,
and major anions and cations). We extracted DNA from the
filters used to collect aqueous samples and characterized asso-
ciated microbial communities using 16 S rRNA gene sequencing
and associated data processing to pick operational taxonomic
units and generate a phylogenetic tree.

Building metabolite dendrograms. Tools and metrics in meta-
community ecology often leverage relational information such as
among-species evolutionary relatedness or functional trait simi-
larities, allowing researchers to reveal the balance among sto-
chastic and deterministic assembly processes23,35,41,42,47,48. While
metabolites do not have genetic sequence information, their
characteristics can be approached in a way that is analogous to
the functional trait approach in ecological analyses39,49. Unlike
multivariate dendrograms typically used within metabolomics
studies (e.g., Tfaily et al. 2018)7, these dendrograms represent
relationships between metabolites and not samples. To this end,
we developed and evaluated three methods of measuring trait-like
relational information between different chemical compounds
using two different information sets: molecular characteristics
and biochemical transformations (Fig. 1, Supplementary Fig. 2,
Supplementary Data 1–3).

First, we generated a molecular characteristics dendrogram
(MCD) which integrates elemental composition (e.g., C-, H-, O-,
N-, S-, P-content) and derived statistics (i.e., aromaticity index,
double-bond equivalents, etc.) similar to principles outlined in
compound classification studies50–56 or in NOM functional
diversity analyses16–18,57. Next, we created a transformation-
based dendrogram (TD) using putative biochemical transforma-
tions identified by aligning mass differences to a database of
known transformations1–3,9,51,58,59 (Supplementary Data 4).
Finally, we made the transformation-weighted characteristics
dendrogram (TWCD), which is a combination of the MCD and
TD (Supplementary Fig. 2). Given each dendrogram method
incorporates FTICR-MS peaks differently, the number of peaks
incorporated into downstream analyses also varies (Fig. 2a,
Supplementary Fig. 3; see Supplement for details). For example,
while the MCD incorporates all assigned molecular formula
(~14% of observed peaks in this dataset), the TD can gain access
to a broader range of peaks because formulas are not required
(~72.5% of observed peaks) (Supplementary Fig. 3). While there
is a discrepancy between these approaches, this is due to
inefficient formula assignment of FTICR-MS data and will vary
from dataset to dataset, and with improved formula assignment
tools60. Detailed differences between these dendrograms are
explored in the Supplement, but each resulted in different
metabolite clustering patterns that help provide deeper insight
into ecosystem assembly. We suggest that while other approaches
to estimating dendrograms from metabolite data exist, the MCD,
TD, and TWCD provide a complementary set of methods that are
useful for studying the spatiotemporal organization of meta-
metabolomes.
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Importantly, data collected using an FTICR-MS will include
information about any ionizable compound, not just those
associated with biological systems61. Despite this potential
limitation, previous studies have demonstrated that this type of
data still contains biogeochemically relevant information1,2,4,16,17.
Therefore, the three dendrograms described above can resolve the
potential relationships between molecular formula based upon a
point of view, which is agnostic to a molecular formula’s source
(MCD), a point of view which encompasses a putative
biochemical point of view (TD), and an integrated view (TWCD).
As with many of the tools described in this manuscript, the lack
of explicit biological information provides two key benefits. First,
it embraces the perspective that there is inherent value in
investigating the processes, which give rise to all molecular
formula, not just those involved in microbiologically mediated
reactions. This allows for evaluation of intrinsic metabolite
assemblage turnover without requiring potentially inaccurate
biological assumptions. Second, it allows for the coupling of
meta-metabolome ecology with other multi-omics data types.
This approach minimizes errors that could occur by assigning the
sources for molecular formula and associated transformations a
priori, and allows understanding to be derived a posteriori
through coupling to additional data types.

A quick note about phylogenetic signals. In order to ensure that
a phylogenetic tree accurately captures the functional trait
information of an ecological system, a test for a phylogenetic
signal must be first performed13,24,62–64. Once a phylogenetic
signal is confirmed, a range of ecological null models can be used
to infer community assembly processes13. Within many ecosys-
tems, this can be measured by calculating one of many phylo-
genetic signal metrics using average trait values63; in microbial
systems where said trait values are not as readily available, esti-
mated niche values are calculated based upon abundance and
environmental data instead13,64. However, when functional trait
dendrograms are used instead of a phylogenetic tree, a phyloge-
netic signal is unnecessary as the trait relationships are already
built into the framework39. Given that the three proposed den-
drograms are closely aligned to functional trait dendrograms (i.e.,

molecular formula properties and putative biochemical relation-
ships)16,17, phylogenetic signal is unnecessary when implement-
ing associated null models.

Using metabolite dendrograms to study metabolite diversity
and assembly processes. From a practical perspective, the three
dendrograms provide a foundation for studying metabolite
assemblages with ecological tools that traditionally use phyloge-
netic or functional trait data. For example, below we show how
metabolomes can be studied using metrics associated with rich-
ness (Faith’s PD, UniFrac), overall divergence (MPD), and
nearest neighbor divergence (MNTD)42,47,48,65. As a parallel to
ecological analyses, these metrics can be used to study the spatial
and temporal organization of meta-metabolomes.

Many ecological studies track trait dynamics or utilize identity-
based (i.e., taxonomic) analyses such as Bray–Curtis dissimilarity
to infer ongoing ecosystem processes66,67. There are, however,
exciting opportunities to go further by using additional tools from
metacommunity ecology that are designed to infer and quantify
assembly processes. Null models represent one set of tools that
provide additional insight and complement traditional α-diversity
and β-diversity analyses. By applying commonly used phyloge-
netic null models, we can investigate the processes responsible for
structuring metabolite assemblages. First, to assess whether α-
diversity was more or less structured than would be expected by
random chance, we calculated both the net relatedness index
(NRI) and nearest taxon index (NTI), which are z-scores
quantifying deviation from null models for MPD and MNTD
respectively23,65. For both these metrics, positive values indicate
clustering within the dendrogram while negative values signify
overdispersion65.

Ranging from cold weather adaptation in forests68, labile
carbon degradation in bacterial communities69, or host range/soil
adaptations in root-associated mycobiomes70, these metrics have
revealed patterns in phylogenetic trait conservation through
different phylogenetic lineages71. Despite examining different
ecosystems and scales, a common framework enabled researchers
to develop consistent conceptual conclusions. In turn, these null
models should provide a similar framework for metabolite
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assemblages, with varied interpretations dependent upon the
dendrogram. For example, overdispersion observed on the MCD
might suggest broadly distributed thermodynamic properties
while it could indicate biochemically disconnected peaks on the
TD. Such analyses will allow researchers to ask and answer
questions regarding the development of meta-metabolomes.

To further explore the ecological assembly processes structur-
ing metabolite profiles, we calculated the β-nearest taxon index
(βNTI; detailed extensively in Stegen et al. 2012, 2015). This
metric compares the observed β-mean nearest taxon distance
(βMNTD) between two communities to a null expectation
generated by breaking observed dendrogram associations. While
typically informed using abundance data, this null model still
produces useful information with presence/absence data. When a
comparison between two ecological communities significantly

deviates from the null expectation (indicated by |βNTI | > 2), we
infer that some deterministic process is responsible for the
observed pattern. These deterministic processes can be further
separated into those which drive a divergence between commu-
nities, termed ‘variable selection’ (indicated by βNTI > 2), and
those which drive a convergence between communities, termed
‘homogeneous selection’ (indicated by βNTI <−2). In a biological
context, for example, these processes could result in a microbial
community being driven toward a common configuration due to
homogenous selection resulting from primary succession within
soil, or being driven toward divergent compositions due to
variable selection resulting from varied organic matter62. If the
pairwise comparison instead mirrors the null expectation
(indicated by |βNTI | < 2), we infer that stochastic processes
drive observed differences. These stochastic processes can be
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further distinguished using an identity-based (“taxonomic”) null
model, like Raup–Crick, which is able to disentangle dispersal
limitation from homogenizing dispersal (i.e., mass effects) when
used in conjunction with βNTI.

Previous studies that combined βNTI and Raup–Crick
have revealed significant variation in the relative influences of
different community assembly processes among systems. This
previous work spans a broad range of systems such as the
subsurface9,24,35,37, soils3,62,72,73, human microbiome74, mar-
ine75. Other studies76,77 have applied these methods in cross-
ecosystem analyses to understand common pressures. While each
of these studies posed distinct questions, they are united by an
emphasis on understanding the relative contributions of different
assembly processes and linking assembly processes to other
system features (e.g., redox conditions, succession, abiotic
dynamics, ecosystem function, human society, etc.). Having a
common conceptual grounding across studies provides an
opportunity to investigate assembly processes affecting metabolite
assemblages, and to develop theory that applies across and within
ecosystems and spatiotemporal scales. Moreover, this common
theory can be used to study ecological communities (e.g.,
microbes) and the metabolites they transform using the same
framework, as previously performed with bacteria and viruses78.
The degree of coordination between assembly processes can be
subsequently related to microbial processes, DOM components,
and environmental factors to reveal variables important to
convergent and divergent assembly, in turn providing insight
into those factors underlying biogeochemistry. These significant
ecosystem variables can then be used to inform the mechanistic
models that represent organisms and metabolites within dynamic
ecosystems (e.g., reactive transport models).

Example use of the dendrogram-based framework. We use data
from the Columbia River corridor to provide an example of how
to use the dendrogram-based framework to study the processes
influencing metabolite assemblages. Samples were collected from
different environments (i.e., river water and subsurface pore
water) but in a system with significant hydrologic connectivity
between these environments79. We use the FTICR-MS data dis-
cussed earlier to explore within-assemblage diversity (i.e., α-
diversity) and between-assemblage compositional differences (i.e.,
β-diversity). These analyses are pursued with and without
dendrogram-based quantification to compare insights between
traditional approaches and dendrogram-enabled analyses. In
addition, we primarily use dendrogram-based null modeling (e.g.,
βNTI) to investigate assembly processes, though we later combine
it with dendrogram-free null modeling (e.g., Raup–Crick) to
expand our conclusions. We expect that the distinct river water
and pore water environments will lead to deterministic signatures
associated with variable selection when comparing metabolomes
across these environments. This expectation is due to differential
NOM processing capabilities between surface and pore water,
previously observed in our field system1,2,36. We further expect to
observe some contribution from homogenizing dispersal due to
significant hydrologic connectivity, and thus metabolite mixing,
within and across surface and pore water in the field system36,43.
In addition, we show how null model outcomes associated with
metabolite assemblages can be related to null model outcomes
associated with microbial communities. This provides an
opportunity to evaluate the degree to which assembly processes
are coordinated between microbial communities and the meta-
bolites they produce and consume. This represents a conceptual
unification across ecological communities, the resources they
depend on, and the influences they have over environmental
systems. It is important to recognize that the sample set used here

is for demonstration purposes and is therefore relatively small to
facilitate straightforward interpretation. We expect different
analysis outcomes when the methods developed here are applied
to other sample sets and other environmental systems.

Metabolome α-diversity is deterministically organized. Many
metabolomic studies employ common multivariate statistics (e.g.,
ordinations) to determine whether differences exist between
samples or sample groups7,8,12. While this can provide useful
insights into similarities between samples, these methods do not
incorporate among-metabolite relational information. Just as in
ecological metacommunities, integrating relational information
(e.g., phylogenetic or functional trait relationships) expands the
breadth of inquiries one can pursue. The dendrogram-based
approach developed here allows relationally informed α-diversity
metrics to be applied to metabolite assemblages and can be used
to investigate patterns driven by shared molecular characteristics
and biochemical transformations.

Dendrogram Diversity (DD), directly analogous to Faith’s
Phylogenetic Diversity47, is a relationally informed metric that
quantifies the total dendrogram branch length occupied by a
given metabolome. Higher values indicate metabolomes that span
a broader range of molecular properties (MCD), that span more
broadly across the biochemical transformation network (TD), or
both (TWCD). The TWCD values for DD were significantly
higher for pore water than river water, but the MCD- and TD-
based DD did not differ between pore and river water (Fig. 2b).
Two additional α-diversity metrics, mean pairwise distance
(MPD) and mean nearest taxonomic distance (MNTD), revealed
that pore water and river water metabolites share similar
dendrogram topologies (i.e., compounds within a given group
have similar branch lengths to other compounds) (Fig. 2c, d).

These dendrogram-based α-diversity metrics indicate that pore
water metabolites are slightly more diverse in that they span a
broader range of molecular properties. However, pore and river
water metabolites are equally diverse with respect to potential
biochemical transformation connections. This highlights that
multiple dimensions of diversity exist within ecosystem metabo-
lomes, each providing a different window into metabolome
organization. The combination of dendrogram-free (e.g., number
of unique metabolites) and dendrogram-based (e.g., DD) analyses
provides an approach to investigate more dimensions of
metabolome diversity than would be possible otherwise. Rather
than focusing purely on between-group differences in molecular
stoichiometry or other properties (e.g., thermodynamics), rela-
tionally informed α-diversity metrics allow questions related to
the organization of metabolite assemblages to be assessed. For
example, “How consistent are metabolite richness and DD?” or
“How do DD values obtained from MCDs compare to those from
TDs across systems?” can now be interrogated. Answering these
questions will help reveal which abiotic or biotic features drive
molecular formula and biochemical variability across different
spatiotemporal scales and help highlight which DOM compo-
nents should be included in mechanistic models. General
patterns, which emerge from cross-system analyses, could point
to transferable principles that could be integrated into mechan-
istic models linking metabolite chemistry to microbial and
biogeochemical function.

To go beyond direct characterization of α-diversity, null
modeling is often used in ecology to evaluate whether community
structure deviates from a stochastic expectation80. A broad range
of informative null model analyses can be used when a
phylogenetic or relational dendrogram is available. In addition,
α-diversity phylogenetic null models provide opportunities to
evaluate questions not accessible via analyses that do not use
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relational information. Outcomes can be used in a variety of ways,
such as revealing whether a given community is phylogenetically
over- or under-dispersed23,42,65. Common null models like net
relatedness index (NRI) or nearest taxon index (NTI) can be
extended to metabolite assemblages using one or more metabolite
dendrograms. Analogous to applying these methods to ecological
communities, the degree of tip- (NTI) or deeper-level (NRI)
clustering or overdispersion in metabolite assemblages can be
quantified.

Both NRI and NTI revealed that the pore water and river water
metabolite assemblages had significantly more clustering than
would be expected by random chance as indicated by high
positive values (Fig. 3). This was consistent across all three
dendrograms and indicates an important influence of determi-
nistic assembly processes that constrain the composition of
metabolite assemblages. Furthermore, river water metabolites had
greater clustering than pore water in every analysis aside from the
MCD- and TD-based NTI (Fig. 3). Interpreted in concert with the
α-diversity patterns discussed above, the null model results
suggest that the decreased TWCD-based DD within river water
metabolites (relative to pore water) is driven by an increased
amount of clustering at both the tip-level (NTI) and across deeper
relationships (NRI). Greater clustering in the TWCD indicates
the presence of finer-level metabolite groups that are highly
similar to each other in terms of their molecular properties and
shared biochemical transformations.

Examining metabolite assemblages through the lens of
community ecology provides opportunities to generate concep-
tual outcomes that would be challenging with traditional
multivariate analyses. Here, α-diversity analyses revealed both
pore and surface water were deterministically organized despite
divergent mechanisms (Fig. 3). More specifically, pore water
metabolites were moreover-dispersed than the river water
metabolites according to every NRI and one NTI analysis. This
demonstrates that a systematic driver causes pore water
metabolites (1) to span a broader range of molecular properties
and (2) be separated by a larger number of biochemical
transformations. Such differences in the molecular properties
and biochemical transformation networks topologies between

pore and river water indicates that different localized processes
influence metabolite assemblages across the river corridor
ecosystem. This suggests a need to understand variation in the
mechanisms that underlie metabolome assembly processes. To
this end, additional insights can be gained by taking further
advantage of the conceptual unification of metabolomics and
metacommunity ecology to evaluate the processes influencing
variation in metabolome composition (i.e., β-diversity).

Stochastic molecular properties and deterministic biochem-
istry. As a complement to α-diversity, β-diversity is commonly
evaluated to capture multivariate differences among ecological
communities. Previous studies have also used dendrogram-free β-
diversity metrics (e.g., Jaccard) to study differences among
metabolite assemblages4,9,11. As with α-diversity, these metrics
can be extended by utilizing relational information provided by a
phylogeny or dendrogram23,24,42,48. This additional relational
information enables quantitative evaluation of relative influences
of stochastic and deterministic assembly processes influencing
spatiotemporal variation in the composition of ecological com-
munities or metabolite assemblages.

While quantitative evaluations of stochasticity and determin-
ism are common within community ecology, they have not been
pursued within metabolomics. Such analyses open conceptual
domains focused on the processes causing spatiotemporal
variation in metabolomes. For example, while it is well known
that stochastic processes work in concert with deterministic
processes to influence spatiotemporal variation in ecological
communities81, it is unknown whether stochastic processes have
any significant influence over spatiotemporal variation in
metabolite assemblages. Given the strong influence of metabolite
assemblages over biogeochemical function1,2,9,16, stochastic
influences are likely to alter biogeochemical function in
potentially unpredictable ways82. Furthermore, given that eco-
system metabolites are both resources for and products of
microbial metabolism, strong influences of stochasticity over
metabolomes may cascade into microbial community assembly or
indicate highly variable microbial metabolic processes at spatial
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scales below the sample volume. These examples only represent
some types of scientific inquiry that can be opened up by
examining spatial and/or temporal variation in metabolome
composition (i.e., β-diversity) through the lens of meta-
community ecology.

To study metabolome β-diversity, we examined both
dendrogram-free and dendrogram-based metrics to provide
the deepest conceptual insights. Using a dendrogram-free
approach, β-diversity results from our dataset revealed greater
differences than the α-diversity analyses. A Jaccard-based
principal coordinate analysis (PCoA) revealed the existence of
two clusters, with a PERMANOVA analysis revealing signifi-
cant difference between surface and pore water (Pseudo-F: 1.48,
p value: 0.018; Fig. 4a). Incorporating relational information
provided by the metabolite dendrograms resulted in the
emergence of more defined clusters while maintaining sig-
nificant differences. Here, relational information was integrated
using unweighted UniFrac, which compares the number of
shared and unshared branch lengths between two assem-
blages48. Three discrete clusters, which were not observed in
Jaccard-based analysis emerged, when using either the MCD or
TWCD, but not the TD (Fig. 4). This highlights the deeper level
of information provided when considering the molecular and

biochemical relationships among metabolites, similar to the use
of phylogenetic or functional trait information, and indicates
that molecular properties are conserved within particular sets of
metabolite assemblages. We infer that there are consistent
biotic and/or abiotic processes acting to constrain molecular
properties across subsets of metabolite assemblages, but not the
biochemical transformations. UniFrac analyses, however, are
not capable of identifying the relative contributions of
stochastic and deterministic processes, which can instead by
parsed out through the use of null models.

Similar to α-diversity, using relational information (e.g.,
phylogenies or dendrograms) with β-diversity null modeling
can reveal the relative influences of stochastic and deterministic
processes over spatiotemporal variation in the composition of
ecological communities and metabolite assemblages. Given that
phylogenetic analyses of microbial communities often use the
beta nearest taxon index (βNTI) null model2,3,38, we used it here
to study metabolite assemblages. We encourage follow-on studies
to explore patterns that emerge from different null modeling
approaches applied to meta-metabolomes, as different metrics ask
different questions, provide different pieces of information within
the broader reality of a given system, and can therefore be used
together to provide deeper inferences.
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As reviewed above, βNTI is a pairwise metric and is estimated
by quantifying the difference between the observed beta mean
nearest taxon distance (βMNTD) and βMNTD expected under
stochastic assembly. If a given pair of metabolite assemblages are
significantly more different from each other than would be
expected under stochastic assembly (indicated by βNTI > 2), we
infer that deterministic processes have caused divergence in
metabolome composition. This situation is referred to as ‘variable
selection’ in the ecological literature. In contrast, if a pair of
metabolite assemblages are more similar to each other than
expected (indicated by βNTI <−2), we infer that that determi-
nistic processes have constrained the composition of those
assemblages to be similar. This situation is referred to as
‘homogenous selection’ in the ecological literature. Lastly, if
differences between a pair of metabolite assemblages do not
deviate significantly from the stochastic expectation (|βNTI | < 2),
we infer that stochastic processes (i.e., mixing, unstructured/
inconsistent gains/losses of metabolites, etc.) are primarily
responsible for the observed differences in metabolite assem-
blages. We note that other β-diversity null models could be used
to study metabolite assemblages in conjunction with βNTI to
reveal additional insights.

Applying the βNTI null model to our dataset revealed that a
mixture of homogenous selection, stochastic processes, and
variable selection structured spatiotemporal variation in metabo-
lite assemblages (Fig. 5a). The influences of these assembly
processes differed sharply between molecular property and
biochemical transformation-based relationships. βNTI associated
with the MCD or TWCD demonstrated that all three structuring
processes influenced metabolite assemblages, though stochastic
processes and variable selection dominated (Fig. 5a). Compara-
tively, most TD-based βNTI values were >2, indicating that
variation in the topologies of metabolite biochemical transforma-
tion networks were predominantly governed by variable selection.
As such, the molecular properties in both the pore and river water
samples were governed primarily by stochastic processes while
the organization of biochemical transformations were determi-
nistic (Fig. 5a).

Changing scales leads to additional insights accessible only
through null modeling based on relational information. A
powerful aspect of null modeling is that one can evaluate the
relative influences of stochastic and deterministic influences at
different scales19,25,83. For example, one can reduce the spatial
scale of analysis to study processes causing variation in compo-
sition within a given environmental condition and compare that
to assembly processes operating at larger scales (i.e., across
environments). Here we take advantage of this scale dependence
to study how inferred assembly processes change when con-
straining analyses within pore or surface water. This provides
important insights as there can be processes that drive variation
within a given part of an ecosystem that are not responsible for
variation across ecosystem components25. To the best of our
knowledge, ecological null modeling is the only robust approach
to reveal scale dependence in assembly processes24,35.

Our null modeling analyses within pore or surface water
indicate that different assembly processes operate within each
compartment of the river corridor ecosystem to influence
metabolite properties, but not biochemical relationships (Fig. 5b).
Within pore water, the molecular properties of metabolite
assemblages were predominantly governed by variable selection
and had higher average βNTI values than the surface water (p
value: 0.002–0.004). Previous work has shown that increases in
βNTI are due to increasingly strong variable selection35,62. We
therefore infer that across sampled pore water locations there was
a greater divergence in localized deterministic processes, relative
to surface water. For example, previous work in the study system
showed that dynamic (and spatially variable) groundwater-
surface water mixing primed microbial respiration2. This is one
mechanism among many that could lead to deterministically
organized spatiotemporal variation across pore water metabolite
assemblages. In contrast, within surface water, the molecular
properties of metabolite assemblages were predominantly influ-
enced by stochastic processes. This indicates a potentially strong
influence of spatial processes within the surface water, such as
significant mixing of metabolite assemblages across the sampled
locations.
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While assembly processes influencing molecular properties
were scale dependent, variable selection consistently governed
variation in biochemical relationships suggesting each metabolite
assemblage in pore or surface water had a distinct transformation
network topology. We infer that even when the molecular
properties of metabolite assemblages are influenced by stochastic
processes (e.g., mixing), the associated biochemical transforma-
tions are distinct due to localized processing (e.g., enzymatic
degradation) and generation (e.g., metabolite excretion) of
organic molecules. By combining the results across scales, we
revealed that significant variation within pore water metabolite
assemblage assembly processes was not substantial enough to
cause deterministic divergence in the molecular properties of
surface and pore water metabolite assemblages when analyzed
together.

Scale dependence in assembly processes points to a key
challenge for representing the properties of metabolite assem-
blages within predictive models (e.g., integrated hydro-
biogeochemical reactive transport models)84,85. Such models will
need to grapple with when, where, and how to represent detailed
mechanisms governing spatiotemporal variation in metabolite
assemblages. For example, while the molecular properties of pore
water metabolite assemblages diverged from each other due to
variation in deterministic processes, it is not clear that variation
in those processes is strong enough to warrant representation in
predictive models. In contrast, the localized processes appear to
strongly influence biochemical transformations at all scales,
pointing to the need for representation of associated mechanisms.

As pointed to above, the inferences revealed here through at-scale
and between-scale null modeling represent only a few of the
conceptual insights that can be gleaned by studying metabolite
assemblages through the lens of meta-community ecology. One can
parse metabolite assemblages into different kinds of groups based
upon elemental composition (e.g., looking at only N containing
compounds), thermodynamic properties, or activity within a
biochemical network and evaluate variation in assembly processes
across these groups. As a demonstration of how insights can be
gained by studying assembly processes across metabolite groups, we
next examine stochastic and deterministic assembly processes within
putatively more or less biochemically active metabolite groups.

Metabolites across the activity continuum are essential to the
deterministic organization of biochemical transformation
networks. Metabolites were parsed into putatively more or less
biochemically active groups to evaluate whether these groups
experience differential assembly processes. This was accom-
plished by separating those metabolites which were involved in
no transformations (less active group) from those which were
involved in a comparatively large number (>40) of putative bio-
chemical transformations (more active group). The cutoff of 40
transformations was based on a clear decrease in number of
transformations above 40 (Supplementary Fig. 4), although this is
an arbitrary threshold. While these groupings are not definitive in
terms of relative biochemical activity due to being based on an
inexhaustive transformation list and a lack of biological mea-
surements, they allow for demonstration and preliminary inves-
tigation into whether assembly processes vary significantly across
metabolites that are more or less biochemically connected. One
may expect that more biochemically connected metabolites are
also more active and thus more deterministically organized due to
the greater potential for influences of spatial processes (e.g.,
advective mixing) over less active metabolites.

Null modeling results from this analysis revealed that
putatively more active metabolites experienced stronger determi-
nistic influences. The βNTI results from the MCD and TCWD

demonstrate that the more active metabolites were influenced by
variable selection while the inactive metabolites were stochasti-
cally organized (Fig. 6). This suggests distinct underlying
mechanisms governing the composition of more vs. less active
metabolites. The TD-based null modeling, however, showed
strong influences of stochastic processes over both more and less
active metabolites. This is in direct contrast to the complete
metabolite profiles where variable selection drove among-
assemblage differences in biochemical relationships (Fig. 5).
Given that the TD is based upon all possible transformations
within a given dataset rather than only those observed in any one
sample, the contrasting outcomes suggest that metabolites with
relatively few transformation-based connections to other meta-
bolites are key to localized, deterministic organization of
biochemical transformations. As such, metabolites across the
whole continuum of activity (and connectivity) levels are likely
critical to the overall biogeochemical function of the system. Once
combined with techniques that assess ecosystem function (i.e.,
enzyme measurements, respiration rates, omics techniques), this
type of analysis will become even more informative. Beyond
comparing assembly across scales, this framework provides an
opportunity to study microbial communities and the ecosystem
metabolites they interact with using the same conceptual
foundation. For example, one can evaluate the degree to which
there is coordination in the assembly processes influencing
microbial communities and associated metabolite assemblages.

Microbial and metabolomic assembly are not coordinated.
Microbial communities are a primary driver of ecosystem meta-
bolite transformations and significantly impact rates of organic
matter production and degradation1,26,86,87. In turn, there are
likely to be dynamic feedbacks between metabolite assemblages
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and microbial communities1,9. In order to approximate the extent
of these interactions, we examined the relationship between the
assembly processes acting upon microbial communities and
metabolite assemblages. Given the potential for feedbacks, we
expect that the relative influences of assembly processes govern-
ing microbial communities will correlate with the assembly pro-
cesses influencing metabolite assemblages. For example, if the
microbial community shifts due deterministic processes, we
expect that associated metabolite assemblages will also shift
deterministically if metabolite assemblages are governed by
microbial composition and/or the same environmental factors
influencing microbes. However, if microbes and metabolites are
governed by different factors, deterministic assembly of one may
not translate into deterministic assembly of the other.

Examining the microbial data in isolation reveals that river
corridor communities were equally influenced by variable
selection and stochastic processes (~43% of among-community
variation in composition was due to each process). These relative
influences mirror those estimated for the metabolite assemblages
when using the MCD (~41% variable selection; ~46% stochastic).
However, once the βNTI values associated with microbes and
metabolomes were directly compared to each other using a
Spearman-based Mantel correlation their apparent correspon-
dence disappeared. Specifically, the Mantel statistic suggested
there was no relationship (Mantel r: 0.223, p value: 0.135).

While the lack of association of assembly processes between
microbes and metabolites is inconsistent with our hypothesis, it
points to complex factors influencing both metabolites and
microbes. For example, while microbes are one part of the river
corridor system that can influence metabolite composition, there
are numerous other factors (e.g., vegetation, mineralogy, subsur-
face hydrology, photooxidation) that likely impact metabolite
assemblages26,86,88–90. These nonmicrobial processes likely alter
metabolite assemblages in a way that is not reflected in microbial
community composition88,90. In addition, metabolite assemblages
may change faster than microbial community composition,
whereby there may be a closer association between metabolite
assemblages and expressed metabolisms (e.g., metatranscrip-
tomes) and/or relative changes in activity (e.g., relative rRNA
content across taxa). Given that βNTI is inherently scale
dependent due to its pairwise nature, analyses might require a
change in scale to obtain the desired results. Lastly, these data do
not indicate a lack of interaction between microbial communities
and metabolite assemblages; instead, they suggest that microbial
communities and metabolite assemblages may be driven by
distinct sets of processes. In this context, individual molecular
formula metrics or NOM functional diversity could provide
complementary information regarding interactions16. By com-
bining this framework with various omics techniques, we could
begin to assess metabolic contributions to divergent assembly
processes.

The degree to which there are associations between metabolite
assemblages and various features of microbial communities is
likely to vary through space and time. We posit that insights can
be gained by studying the degree to which assembly processes are
coordinated between metabolite assemblages and microbial
communities. For example, a strong association between assembly
processes influencing metabolites and community composition
could indicate a relatively stable system with similar time scales of
change for metabolites and microbial composition. Alternatively,
strong associations between assembly processes influencing
metabolites and expressed microbial metabolism, but not
microbial composition, could indicate fast metabolite dynamics
coordinated with rapid changes in microbial metabolism despite
relatively slow changes in microbial composition. It will be
fascinating to explore the associations among assembly processes

influencing metabolites and microbial communities and how
those associations vary across environmental systems in future
studies. By disentangling when, where, and how meta-
metabolomes and microbial communities are driven by similar
and divergent assembly processes, we will be able to incorporate
the underlying driving abiotic and biotic forces into biogeochem-
ical models.

Discussion
Here we have presented a conceptual paradigm in which meta-
bolite assemblages are treated as analogs to ecological commu-
nities and consider this to formalize the subdiscipline of ‘meta-
metabolome ecology.’ While the analogy is not complete (e.g.,
metabolites do not evolve like biological species), there are
numerous conceptual parallels that allow one to ask questions
about environmental metabolites by applying ecology-inspired
analyses to metabolite assemblages. We contend that the out-
comes of these analyses provide deeper understanding of bio-
chemical and biogeochemical dynamics. For example, identifying
when, where, and why metabolite assemblages are governed by
deterministic or stochastic processes offers information about key
drivers that may be incorporated into predictive biogeochemical
models. This presents exciting opportunities given the integral
role of metabolites in emergent biogeochemical function1,2,9. For
example, not all features of meta-metabolomes can or should be
used in mechanistic models. Understanding assembly processes
allows attention to be placed on the meta-metabolomes and parts
of meta-metabolomes that are most important to capture in
mechanistic models. Throughout the analyses discussed above, we
have highlighted numerous insights that would have been chal-
lenging to uncover with traditional multivariate analyses (e.g.,
quantifying variation in stochastic and deterministic assembly
processes impacting meta-metabolomes). We anticipate further
development of the conceptual, theoretical, and methodological
unification initiated here between meta-community ecology and
metabolite assemblages.

While we focused heavily on dendrogram-based null models,
there are other immediate opportunities to advance under-
standing by combining dendrogram-based and dendrogram-free
null models. This approach has been pioneered in microbial
ecology to parse out the relative influences of variable selection,
homogeneous selection, dispersal limitation (combined with
drift), and homogenizing dispersal (i.e., mass effects)35,64,78,81.
More specifically, this is pursued by combining the βNTI null
model with the identity-based Raup–Crick null model. Using this
approach to refine the assembly processes influencing metabolite
assemblages based upon the MCD revealed that variable selection,
homogeneous selection, dispersal limitation (combined with
drift), and homogenizing dispersal were responsible for 41.4%,
12.9%, 1%, and 39.5% of variation in pore and surface water
meta-metabolomes, respectively. This demonstrates that just as in
ecological systems, spatial processes can have significant influ-
ences over meta-metabolomes. To fully incorporate metabolites
into predictive hydro-biogeochemical models, both selection-
based and spatial processes will need to be considered.

Environmental metabolomics has significantly improved our
understanding of ecosystem function and biogeochemical
cycles1,2,9. By studying meta-metabolomes as analogs to meta-
communities, we aim to deepen understanding of the factors
influencing the spatial and temporal organization of metabolites
within environmental systems. While our demonstration dataset
was derived from a river corridor system, the conceptual and
methodological framework used here can be applied to any sys-
tem (e.g., soils, marine, human gut, etc.) and implemented with
data collected using other high-resolution mass spectrometry
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instruments (e.g., TOFMS, Obritrap-MS, IMS-MS). More
importantly, this paradigm can be combined with various omics
techniques (e.g., metagenomics, metatranscriptomics, metapro-
teomics) to broaden the relationships between meta-metabolome
assembly and microbial activity. We anticipate further develop-
ment of concepts, theory, and methods that deepen the analogy
between metacommunities and meta-metabolomes, but that also
diverge from this analogy when needed (e.g., metabolites are not
competitively excluded). Application of the framework initiated
here to a broad range of ecosystems will provide opportunities to
elucidate key principles that are generalizable and that can be
used to advance our capacity to predict system dynamics.

Methods
Sample collection. River and pore water samples were collected from the
Columbia River in Washington State along a ~1 km transect along the shoreline.
Supplementary Fig. 1 shows the spatial location of these sites, which were along the
mainstem of the river in southeast Washington State (Supplementary Table 1). In
general, the field system is a gravel bedded river with a thin strip of riparian
vegetation, though both of these features were variable across the sampling loca-
tions. The field site has been extensively studied and described in previous
publications;36,43,44 we point the reader to these previous publications for addi-
tional details. At each location, one replicate of river water was collected, and three
pore water samples were collected and filtered using a 0.2 μm Sterivex filters
(MilliporeSigma, MA, USA). Pore water replicates were collected from 30 cm depth
within a 1 m2 area using 0.25-inch diameter sampling tubes (MHE Products, MI,
USA). Filters were stored at −80 °C until DNA could be extracted while water
samples were stored at −20 °C until they could be used for further analysis.

DNA extraction, sequencing, and processing. DNA was extracted from Sterviex
filters using a Powersoil DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad,
CA). In order to generate 16 S rRNA gene data, the V4 region of 16 S rRNA genes
was amplified and sequenced using the universal bacterial/archaeal primer set 515
F/806 R on an Illumina MiSeq instrument at Argonne National Laboratory
according to the Earth Microbiome Project standard protocol91. Resulting 16 S
rRNA amplicon sequences were analyzed using the open access ‘hundo’ pipeline92.
Adapters were trimmed, low quality reads (i.e., length < 100 bp, quality score > 10),
and contaminant sequences were filtered using BBDuk2 from the BBTools pack-
age93. Reads passing the quality filter were then clustered at 97% into de novo
operational taxonomic units (OTUs) using VSEARCH with a minimum merge
length of 150 bp and a minimum sequence abundance of 294. Simultaneously,
chimeric sequences were removed through de novo prediction and reference-based
identification. Following clustering, BLAST was used to align sequences to the
SILVA nr SSU reference database95,96 and taxonomy was assigned based upon the
CREST lowest common ancestor classifier97. Sequences were aligned using Clustal
Omega98 and a phylogenetic tree was generated using FastTree 2.099.

FTICR-MS sample preparation and data collection/preprocessing. Fourier
Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) was used for
the ultrahigh resolution characterization of dissolved organic matter (DOM) within
each sample. Filtered river and pore water samples were acidified to pH 2 with 85%
phosphoric acid and extracted with PPL cartridges (Bond Elut), following Dittmar
et al. (e.g., solid-phase extraction)100. High-resolution mass spectra of the DOM
were collected using a 12 Tesla (12 T) Bruker SolariX Fourier transform ion
cyclotron resonance mass spectrometer (Bruker, SolariX, Billerica, MA) located at
the Environmental Molecular Sciences Laboratory in Richland, WA. Samples were
directly injected into the instrument using a custom automated direct infusion cart
that performed two offline blanks between each sample. The FTICR-MS was
outfitted with a standard electrospray ionization (ESI) source, and data was
acquired in negative mode with the needle voltage set to +4.4 kV, resolution was
220 K at 481.185m/z. One hundred 44 scans were co-added for each sample and
internally calibrated using organic matter homologous series separated by 14 Da
(–CH2 groups). The mass measurement accuracy was typically within 1 ppm for
singly charged ions across a broad m/z range (100–900m/z). The FTMS peak
picker module in the BrukerDaltonik Data Analysis software (version 4.2) was used
to convert raw spectra to a list of m/z values with a signal-to-noise ratio (S/N)
threshold set to 7 and absolute intensity threshold to the default value of 100.
Formularity46, an in-house software, was used to assign chemical formulae fol-
lowing the Compound Identification Algorithm45 and to align peaks with a 0.5
ppm threshold. Chemical formulae were assigned based on the following criteria
following established methods: S/N > 7, and mass measurement error < 0.5 ppm,
taking into consideration the presence of C, H, O, N, S, and P and excluding other
elements1,2,4,7.

The R package ftmsRanalysis101 was used to remove peaks that either were
outside the desired m/z range (200–900m/z) or had an isotopic signature, calculate
derived statistics (Kendrick defect, double-bond equivalent, aromaticity index,
nominal oxidation state of carbon, standard Gibb’s Free Energy of carbon

oxidation), and organize the data53–56. Given that charge competition renders peak
intensities less informative across systems102, all analyses were conducted using
binary presence/absence values rather than peak intensities with the absence of a
peak defined as being below the limit of detection. In the end, 3162 of 22,029 peaks
were assigned a molecular formula (Supplementary Fig. 3).

Metabolite dendrogram estimation. Three different metabolite dendrograms
were generated: the molecular characteristics dendrogram (MCD), transformation-
based dendrograms (TD), and transformation-weighted characteristics dendro-
gram (TWCD). Using the derived statistics calculated above (e.g., elemental
composition, double-bond equivalents, modified aromaticity index, and Kendrick’s
defect), we can compare the potential molecular similarities between identified
chemical formulae as in compound classification studies50–52. Multivariate simi-
larities were evaluated by measuring the Euclidean distance between chemical
formulae (vegdist, vegan package v2.5-6)103. These Euclidean distances were then
used to perform a UPGMA hierarchical cluster analysis (hclust, ‘average’ method,
stats package). Given that the MCD requires assigned molecular formula, all 3162
assigned peaks were included with this method (Supplementary Fig. 3).

Unlike the MCD, the TD estimates molecular similarity by inferring potential
biochemical transformations based upon ultrahigh mass resolution differences
between identified metabolites1,3,9,58,59. For example, if the mass difference
between two metabolites was 18.0343, that would putatively indicate a loss or gain
of an ammonium group, while a mass difference of 103.0092 would putatively
indicate loss or gain of a cysteine. This calculation is enabled by the ultrahigh mass
resolution of FTICR-MS data; given this resolution, using a transformation
database (Supplementary Data 4), we considered any between-metabolite mass
difference within 1 ppm of the expected mass of a transformation to be a match.
Using these pairwise mass differences and transformation associations, we
generated a transformation network in which nodes represent individual
metabolites and edges are identified transformations. Relationships between
metabolites were determined by selecting the largest cluster of interconnected
nodes (discarding any node outside this cluster) and measuring the stepwise
distance between each pair of metabolites (i.e., the minimum number of
transformations required to connect one metabolite to another metabolite within
the largest cluster of the biochemical transformation network). These pairwise
distances were then standardized between 0 and 1. A UPGMA hierarchical cluster
analysis (hclust, ‘average’ method, stats package) was then used to convert these
distances into a dendrogram. The lack of required molecular formula enables this
method to access a broader range of peaks than the other two methods (15979),
though few peaks still have molecular formula information (Supplementary Fig. 3).

The TWCD is a composite dendrogram requiring partial creation of both the
MCD and TD. First, a Euclidean molecular characteristics distance matrix must be
created based upon the elemental composition and derived statistics (i.e., double-
bond equivalents, etc.). Next, the standardized stepwise transformation distance
matrix (i.e., values between 0 and 1) must be generated based upon the
transformation analysis described above. Using simple matrix multiplication, the
molecular characteristics matrix is combined with the standardized transformation
matrix. In effect, this results in a matrix where realized molecular characteristic
differences are down-weighted. The TWCD is the generated by performing a
UPGMA hierarchical clustering analysis on this transformation-weighted,
molecular characteristics distance matrix. Given that not all peaks have both
transformations and assigned molecular formula, the TWCD features the fewest
number of incorporated peaks (2384; Supplementary Fig. 3)

α- and β-diversity analyses. Taxonomic richness was calculated by counting the
total number of metabolites in each sample. Numerous dendrogram-based (i.e.,
phylogenetic) α-diversity measurements were also utilized within this study and are
more completely detailed within Tucker et al. (2016). In brief, three dendrogram-
based α-diversity metrics were utilized: Faith’s Phylogenetic Diversity (PD; here,
referred to as Dendrogram Diversity or DD)47, mean pairwise diversity (MPD)65,
and mean nearest taxon distance (MNTD)65. Faith’s PD (or DD) is a richness
measurement that sums the total length of dendrogram branches that connect
taxon:

PD orDD ¼
X
b2B

Lb

where b is a given branch with a larger set of branches B and Lb is the length of
branch b. MPD is a metric, which determines the average dendrogram distance
between taxon:

MPD ¼
P

ij dij
SðS� 1Þ

where dij is the distance between taxon i and taxon j and S is the total number of
species within the community. Lastly, MNTD is a metric, which determines the
average dendrogram distance between nearest neighbors (i.e., the next closest taxon
on the dendrogram):

MNTD ¼ 1
S

X
i

dimin
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where di min is the shortest distance from taxon i to all other taxon. Faith’s PD was
calculated using the pd function in the picante R package (v1.8)104 while MNTD
and MPD were measured using the generic.metrics function in the pez R package
(v1.2-0)105. These metrics were calculated using each of the three dendrograms.

Taxonomic β-diversity was visualized by generating a Jaccard dissimilarity-
based principal coordinate analysis (PCoA; pcoa, ape package v5.3). Using each of
the dendrograms, dendrogram-based (i.e., phylogenetic) beta-diversity was
calculated using the unweighted UniFrac metric (GUniFrac, GUniFrac package
v1.1)106. UniFrac results were visualized using a PCoA (pcoa, ape package v5.3)107.
In order to determine whether or not significant differences existed between groups
using both the Jaccard and UniFrac distances, we performed PERMANOVA
analyses (adonis, vegan package v2.5-6).

α- and β-diversity ecological null modeling. Both α- and β-diversity based null
modeling was performed throughout this study. In order to assess whether α-
diversity was more or less structured than would be expected by random chance,
both net relatedness index (NRI) and nearest taxon index (NTI) were
calculated22,23,65. NRI is the null model variant of MPD and measures the degree of
dispersal across the entire dendrogram, while NTI is the null model variant of
MNTD and identifies tip-level clustering. For each of these null model calculations,
999 randomized metabolite assemblages were generated through tip shuffling. The
finalized index was then calculated:

NRI ¼ �1
MPDobs �MPDnull

MPDsd

� �

NTI ¼ �1
MNTDobs �MNTDnull

MNTDsd

� �

where MPDobs and MNTDobs are the observed α-diversity values, MPDnull and
MNTDnull are the average α-diversity values derived from the null assemblages, and
MPDsd and MNTDsd are the standard deviations of α-diversity values from the null
assemblages. Both NTI and NRI can be interpreted similarly; positive values sug-
gest phylogenetic clustering while negative values indicate phylogenetic
overdispersion65.

β-diversity null modeling was performed to investigate whether metabolite
assemblages were significantly more or less similar than would be expected by
random chance alone and to assess whether assemblages were deterministically or
stochastically assembled. To explore these ecological assembly processes, we first
calculated the dendrogram-based β-nearest taxon index (βNTI) for each possible
pairwise comparison according to 10. First, β-mean nearest taxon index (βMNTD)
for the observed metabolite assemblages must be calculated in order to estimate
dendrogram-based turnover:

βMTND ¼
Pnk

ik¼1 fik min dikjm

� �
þPnm

im¼1 fim min dimjk

� �
2

where fik is the relative abundance of metabolite i in community k, nk is the

number of metabolites in community k, and min dikjm

� �
is the minimum

dendrogram distance between metabolite i in community k and metabolite j in
community m. This metric was calculated using the comdistnt function
(abundance.weighted= FALSE) in the picante R package (v1.8)104. Similar to the
NRI and NTI calculations, 999 randomized communities were generated by
shuffling the tips of the dendrogram. βMNTD was then determined for each of
these null communities and βNTI was calculated:

βNTI ¼ �1
βMTNDobs � βMTNDnull

βMTNDsd

� �

where βMTNDobs is observed βMNTD for the observed assemblages, βMTNDnull is
the average βMNTD for the null communities, and βMTNDsd is the standard
deviation of βMTNDnull values.

In order to compare the different dendrogram estimation methods, we
independently calculated βNTI values for each of the three metabolite dendrograms
(e.g., MCD, TD, and TWCD). Microbial βNTI values were generated using the 16 S
rRNA gene amplicon phylogenetic tree. We also calculated Resulting βNTI values
help examine phylogenetic turnover across samples, providing insight into the
ongoing deterministic and stochastic ecological assembly processes occurring within
the system. If a |βNTI | value is greater than 2, deterministic processes explain the
observed assemblage differences; if a |βNTI | value is less than 2, stochastic processes
are responsible for assemblage differences. Stochastic processes are those which are
more random in nature and typically arise from dispersal-based events. Deterministic
processes are those which are driven by environmental filtering, pushing assemblages
to either be more or less similar than expected by random chance Deterministic
processes could be further broken down into variable selection if βNTI is greater than
2, and homogenous selection if βNTI is less than −2. Variable selection occurs when
the environment drives assemblages to be significantly divergent, as observed when
distinct geochemistry supports different microbial communities38. In contrast,
homogeneous selection occurs when some common pressure push communities
toward a similar configuration as has been observed in microbial communities
experiencing salt stress in a soil succession system62. Correlations between microbial

and metabolite βNTI values were performed by averaging the βNTI values for a given
assemblage and relating them within a sample.

In addition to the dendrogram-based βNTI, we distinguished stochastic
processes by using the identity-based Raup–Crick (RC)24,35. Using 9999 iterations
per pairwise comparison, null communities were probabilistically generated based
upon observed metabolite assemblages and presence/absence-based Bray–Curis
(i.e., Sørensen) dissimilarities were calculated. The null distribution of these
dissimilarity values was then compared to the observed Bray–Curtis value in order
to measure the deviation from the null expectation. These deviations were then
standardized to vary between −1 and 1, resulting in the finalized RC metric. If a |
RC | value is greater than 0.95, the turnover between the compared assemblages
was the result of either dispersal limitation or homogenizing dispersal. Dispersal
limitation (RC > 0.95) occurs when assemblages are unable to mix resulting in
significant ecological drift. Conversely, homogeneous dispersal (RC <−0.95)
occurs when environments drive substantial mixing resulting in assemblages that
are more similar than random chance alone. However, if a |RC | value is less than
0.95, the assemblages were as different as would be expected by random chance
because no single process is able to dominate (i.e., weak selection and weak
dispersal). Under these ‘undominated’ circumstances, no single assembly process is
capable of dominating. Significant differences in distributions of both βNTI and RC
values across surface and pore water classifications were identified using
Mann–Whitney U tests (wilcox.test, stats package).

Metabolite activity comparisons. In order to identify putatively more active
metabolites, we leveraged potential biochemical transformation information col-
lected during the generation of the transformation-based dendrogram (TD). Spe-
cifically, we counted the number of transformations associated with each individual
metabolite and arbitrarily decided that metabolites involved in more than 40
transformations were considered ‘active.’ This number was selected because it was
the first instance where only 1 peak had a given number of transformations
associated with it (Supplementary Fig. 4). Conversely, metabolites involved in no
transformations were considered ‘inactive.’ Given that our transformation database
is not exhaustive and that our active cutoff is fairly arbitrary, we caution that these
classifications are not generalizable but serve as a sufficient exercise to demonstrate
the potential utility of our framework. Using these two metabolite subassemblages
(e.g., active and inactive), we calculated βNTI for all three of the metabolite den-
drograms by pruning the dendrograms to match the data.

Plot generation. All boxplots, pie charts, and standard bar charts were generated
using ggplot2108. Dendrograms and their associated bar charts were visualized
using ggtree109.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Microbial 16 S rRNA gene sequencing data are accessible from NCBI via the Bioproject
number PRJNA576070, Biosample numbers SAMN16450882 through SAMN16450904.
Peak-picked, unaligned FTICR-MS data are accessible on ESS-DIVE at https://data.ess-
dive.lbl.gov/view/doi:10.15485/1675028110. The aligned FTICR-MS data report used in
this study is available on GitHub at https://github.com/danczakre/Meta-
Metabolome_Ecology.

Code availability
All scripts used throughout the manuscript and more generalizable scripts are available
on GitHub at https://github.com/danczakre/Meta-Metabolome_Ecology.
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