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Uniform spatial pooling explains topographic
organization and deviation from receptive-field
scale invariance in primate V1
Y. Chen1,2,3, H. Ko1,3, B. V. Zemelman2,4, E. Seidemann1,2,3 & I. Nauhaus 1,2,3✉

Receptive field (RF) size and preferred spatial frequency (SF) vary greatly across the primary

visual cortex (V1), increasing in a scale invariant fashion with eccentricity. Recent studies

reveal that preferred SF also forms a fine-scale periodic map. A fundamental open question is

how local variability in preferred SF is tied to the overall spatial RF. Here, we use two-photon

imaging to simultaneously measure maps of RF size, phase selectivity, SF bandwidth, and

orientation bandwidth—all of which were found to be topographically organized and correlate

with preferred SF. Each of these newly characterized inter-map relationships strongly deviate

from scale invariance, yet reveal a common motif—they are all accounted for by a model with

uniform spatial pooling from scale invariant inputs. Our results and model provide novel and

quantitative understanding of the output from V1 to downstream circuits.
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Primary visual cortex (V1) is responsive to image features at
widely varying spatial scales, which can be quantified by
measuring each neuron’s receptive field (RF) size and

spatial frequency (SF) tuning. Studies have shown that variation
in spatial tuning exists at both a global and local level of orga-
nization across the V1 sheet. The global organization of RF size
and SF tuning has been characterized with relatively coarse
electrode sampling—as one moves further from the foveal
representation, RFs scale up in degrees of scene coverage to
account for a reduction in sampling density (i.e. magnification
factor)1–3. Modeling this global trend of RFs as univariate scaling,
or “scale invariant”, aligns with the graded resolution of inputs
from the retina4–6. Next, studies also show substantial local var-
iation in SF tuning for a given eccentricity. More specifically, local
variability of preferred SF is organized into periodic clustering,
with a spatial period that matches orientation preference7–14, thus
placing it inside the V1 “hypercolumn”2 of about 1 mm. Local
maps of preferred SF can be presumed to ride on top of the more
global eccentricity-dependent gradient of preferred SF. The
question remains as to whether V1 RFs scale in proportion to
preferred SF, within the hypercolumn, thus predicting other
locally periodic maps of RF size and SF bandwidth. A general
model of the spatial RF within the macaque V1 hypercolumn,
which can only be constrained by dense sampling of neuronal
responses at this local scale, is needed to identify V1’s coverage of
the visual scene at each location2,15,16.

Given the accuracy of scale invariance at describing the global
architecture, along with its pervasiveness as a V1 model in gen-
eral, it serves as a valuable reference point in characterizing
spatial RFs in the local architecture. If scale invariance holds
locally, then the periodic preferred SF maps12 predict the map-
ping of other scale parameters, such as SF bandwidth and RF size,
but not others, such as orientation selectivity and phase selec-
tivity. Some electrode studies that limit recordings to a range of
eccentricities suggest that local V1 maps are not scale invariant.
For instance, within parafoveal V1, spatial scale parameters are
not always proportional10,17–21, and features of orientation tun-
ing and SF tuning are often correlated21,22. Importantly, these
studies reveal that at a minimum, constrained modeling of V1’s
local deviation from scale invariance requires measurement of
both spectral (e.g. Fourier) and spatial domains of the RF, along
with identification of “simple” and “complex” populations17,23,24.
At the same time, we still lack a comprehensive model of
deviations from scale invariance within the hypercolumn, which
requires densely sampled measurements.

We performed two-photon imaging of the genetically-encoded
calcium indicator GCaMP6f25–27 in anesthetized macaque V1 to
simultaneously measure preferred SF, RF width, SF bandwidth,
orientation bandwidth, and phase selectivity. All of the measured
parameters showed significant clustering at close cortical dis-
tances. Scale invariance predicts that the relationship between
preferred SF maps and the other parameters is either independent
(viz. orientation and phase selectivity) or proportional (viz. RF
width and SF bandwidth), yet this was a poor predictor of the
data in every case. Next, we showed that the architecture in
superficial V1 can instead be described using a model that inte-
grates over a population of scale invariant RFs, which we refer to
as “pooled scale invariance”. Our results and model provide a
quantitative account, and deeper understanding, of the organi-
zation of V1 and its outputs to extrastriate cortex.

Results
Defining the model of scale invariant V1 RFs. A persistent
theme of this study is comparing superficial V1 tuning to models
of RF scale invariance. In general, the term “scale invariance”

indicates that shape does not change with scale. Therefore, a scale
invariant model of V1 RFs implies that the aspect ratio (length/
width) of the RF boundary is constant, as is the number of ON/
OFF subfields inside the RF boundary; e.g. see the two cartoon
RFs along the solid blue diagonal line in Fig. 1a. Constraints
imposed by scale invariance on V1 RFs can be conveniently
formalized in a Gabor model. First, the width of the Gaussian
envelope, σx,si (°), is inversely proportional to the sine wave car-
rier frequency, fo (cyc/°): σx,si(fo)= 1/(πfo). We also define fo as
the “preferred” or “peak” SF of a neuron’s SF tuning curve. This
constraint states that there is one cycle of fo inside πσx,si. The use
of π as the proportionality constant is based on previous studies
of primate and cat V1 simple cells18,28–30, which indicates 2–3
ON–OFF subfields. π is also consistent with a difference-of-
Gaussians (where σ1/σ2 = 2) or second derivative-of-Gaussian,
which are commonly used models of V1 RFs. In turn, all
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Fig. 1 Illustration of scale invariance. a RF width (y-axis) is inversely
proportional to fo (x-axis) in a model of scale invariance. Points that are
common to any of the five blue diagonal lines are part of a scale invariant
family. Four example Gabor’s are shown at the four locations indicated by
open circles. Prior studies have typically modeled V1 RFs as sitting along the
solid blue line (Eq. (1)). b SF bandwidth (y-axis) is proportional to fo (x-axis)
in a model of scale invariance. Each location represents a 2D Gaussian that
is constrained by the Fourier transform of the Gabors in a. Each blue line in
b is calculated from the Fourier transform of the family of Gabor’s along
each line of a. Also, the 2D Fourier transform of the four Gabors shown in a
are overlayed, where the x-axis (cyc/°) is along the preferred orientation.
The green ellipse indicates the distribution of 2D spectral energy. Along a
line of scale invariance (e.g. solid blue), orientation bandwidth (“σϴ”, top
right) does not change.
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subsequent derivations and results are placed in the context of
σx,si(fo)= 1/(πfo) (“Methods”, Eq. (1)), which is the solid blue line
in Fig. 1a. Other models of scale invariance that use coefficients
different than π are also shown (Fig. 1a, dashed blue).

Taking the Fourier transform of scale invariant Gabors in the
spatial domain (°) yields tuning in the spectral domain (cyc/°)
that is also scale invariant. In general, scale invariance in the
spectral domain implies proportionality between fo and SF
bandwidth (cyc/°), and a constant orientation bandwidth (Fig. 1b).
The Fourier transform of Gabors along the solid blue line in
Fig. 1a gives 2D Gaussians along the solid blue line in Fig. 1b.
Along the radial dimension of each 2D Gaussian is the SF tuning,
which is constrained by σf,si= fo/2, where σf,si is the width of the
Gaussian (cyc/°) and fo is the center (cyc/°). The aspect ratio
(length/width) of the 2D Gaussian energy in the spectral domain
does not vary with fo under scale invariance, thus yielding
constant orientation bandwidth.

The illustrations in Fig. 1a, and the above formulations, are
described in the context of the class of V1 RFs known as “simple
cells”. Simple cells have relatively non-overlapping ON and OFF
subfields17, and are thus more linear. These same formulations
apply to the “energy model” of V1 “complex cells”, in which the
output of multiple linear RFs, which vary only in phase, are
squared and summed31. Although basic and tractable, testing the
model of scale invariance within the hypercolumn requires that
all the aforementioned parameters be measured simultaneously
from a densely sampled population, which we have done here
with two-photon imaging.

Measuring spectral and spatial tuning curves in upper L2/3.
We performed two-photon calcium imaging of excitatory

neurons in primate V1, after expression of GCaMP6f25 with
AAV1-CaMKII. Virus injections and chamber maintenance prior
to recordings were identical to the procedures described in ref. 27,
with the exception that we implanted a novel chamber design
suitable for chronic two-photon imaging (Fig. S9). To extract the
time courses of neurons in the ROI, we computed the local cross-
correlation image during stimulus presentation, followed by
manual selection of bright puncta in the ROI (Fig. 2a, b) (see
“Methods” for details). We present results from two visual stimuli
that were shown to the same population of cells. One stimulus
was a rapid sequence of static sine wave gratings (Fig. 2c), and the
other stimulus was a rapid sequence of narrow bars (Fig. 2j). The
flashed gratings were used to quantify tuning for orientation, SF,
and spatial phase (Fig. 1e–i)32, whereas the random bar stimulus
yielded tuning for orientation, location, and size of the RFs
(Fig. 1l–o)33. Together, the two stimulus sets allow for a char-
acterization of simple or complex V1 neurons. For more linear
(i.e. simple) cells, only one of the two stimuli are necessary to
make similar measurements, but many of the cells in the recorded
population are complex, based on the separation of ON and OFF
components (Fig. 2o) and the depth of phase modulation
(Fig. 2i). Table 1 provides summary statistics of the tuning
parameters measured in the three imaging regions in this study.

Pooling scale invariant RFs over retinotopy accounts for RF
width. Simple cell RFs in V1 are classically depicted as a Gabor with
about one cycle of fo inside the envelope (Fig. 1a, solid blue line),
with the same constraint generally applied to the linear components
of complex cells31. We begin with a descriptive comparison between
the RF width and fo to highlight how their statistics deviate from
scale invariance. First, most RFs are wider than the scale-invariance
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Fig. 2 Measuring spectral and spatial RFs with two-photon calcium imaging of GCaMP6f. a Average image from the first trial (40 s). b The local cross-
correlation image was used to identify groups of pixels that have common temporal dynamics. Four examples of manually selected neurons are outlined in
red. Their mean responses are shown in panels to the right. c Illustration of the random grating stimulus. d Time courses from one trial of the four example
cells in a. e Mean and SE of response following stimulus onset. The two traces in each panel correspond to the orientation/SF combination that elicited the
largest (black) and smallest (gray) response. f Color map indicating the normalized response to each orientation and SF in the ensemble. Responses were
averaged over spatial phase. The color range spans the minimum (blue) to maximum (red) response of each cell. g Orientation tuning curve (black dots)
computed by taking a weighted sum over the SF dimension. Gaussian fit is in red. h Same as g, but for SF. Fit is a difference-of-Gaussian. i Spatial phase
tuning curve for the orientation and SF that elicited the largest mean response. The fit is a sine wave. j Illustration of the random bar stimulus. k Time
courses from one trial of the four example cells in a. l Mean and SE response after onset of the bar that elicits the largest (black) and smallest (gray)
response.m Grayscale image is the addition of the ON and OFF spatial RF; i.e. the “spatial envelope”. The half-max contour of the ON and OFF 2D Gaussian
fits are shown in red and blue, respectively. n The ON and OFF orientation tuning curves (black), measured by averaging over the position dimension, with
Gaussian fits (red and blue). o The ON and OFF line weighting functions (black) taken at each cell’s optimal orientation, with Gaussian fits (red and blue).
This experiment was performed once in three different regions-of-interest, in two animals.
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prediction (Fig. 3a, blue line) of 1/(πfo). At the same time, cells with
the lowest fo (largest predicted width) are near the scale invariance
prediction. Next, the standard deviation of log2(fo) (Fig. 3a, x-axis) is
over 2.2-fold greater than the standard deviation of log2(RF width)
(Fig. 3a, y-axis) (p < 10−20; F-test), whereas these should be equal
under scale invariance. Finally, a linear fit to the data in log–log
coordinates has a shallow slope of −0.08 (r=−0.18; p= 0.025)
(Table 2, column 1), whereas scale invariance predicts a clearer
trend with a slope of −1.0. These descriptive inconsistencies with
scale invariance form the basis of the model described below.

We modeled the measured RF widths in our two-photon data
as the result of pooling of scale invariant RFs. This is expressed as

σ2x;p ¼ σ2x;siðfoÞ þ σ2hðxÞ RFwidth ð �Þmodel ð5Þ
where σx,p is the observed RF width at the output, σx,si(fo)= 1/(πfo)
is the RF width of scale invariant inputs from Eq. (1) (Fig. 1a, solid
blue line), and σh(x) is the width of the Gaussian function that

weights the pool of scale invariant inputs, all in “degrees of visual
field”. Note that the model assumes convolution between the scale
invariant RFs and the Gaussian pooling function to produce
the measured RF widths, in which case the variances of the
convolved functions add. In turn, we refer to this as “pooled
scale invariance”. The known variables from the data are σx,p
and fo, which allowed us to estimate σh(x)= 0.24° using the
entire data set, giving the green line in Fig. 3a. This parameter
estimate was similar when measured independently for the 3
ROIs: σh(x)= [0.18° 0.24° 0.24°]. A simulation of scale invariant
pooling at fo= 2 cyc/° is illustrated in Fig. 3c, showing the
population of scale invariant inputs (blue) and the RF envelope at
the output (green). The pooling model has a similar correlation
with the data as a linear fit in log–log coordinates (Table 2), but
uses only one parameter. Furthermore, the pooling width, σh(x)=
0.24°, provides a physical interpretation of pooling within the
cortical space (mm). Multiplying σh(x) by the magnification factor
(mm/°) gives an estimate of the lateral spatial integration in
millimeters of cortex. Magnification factor was measured by first
calculating the cortical separation (mm) and RF separation (°)
between all cell pairs in the three ROIs, followed by fitting a line
through the origin of the scatter plot of mm vs. deg (°), which
yielded a slope of 2.0 mm/°. RF separation was measured between
the peaks of the RF envelopes, determined from the 2D Gaussian
fits (Fig. 2m). In all, 2 mm/° is comparable to previous studies that
recorded near a similar eccentricity (~2°)3,33,34, and predicts
integration from up to about 0.48 mm away (1σ), which could be
attributed to both local and more long-range unmyelinated inputs
in superficial V1 (ref. 35).

The two panels in Fig. 3d show the maps of RF width based on
the prediction of the two models under study, scale invariance
(bottom) and pooled scale invariance (top). Both are a function of
fo, which exhibits significant pairwise clustering (Fig. 3f, blue).
However, the predicted map of RF width from pooled scale
invariance, along with the actual map in Fig. 3e, are relatively flat.
Nevertheless, the pairwise statistics show that neuron pairs are
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Fig. 3 Receptive field width as a function of preferred SF (fo). a The scatter plot compares fo to RF width from three ROIs, each indicated by a different
symbol. See Table 2 for joint statistics. The five data points at the extreme left of the x-axis were “low pass” (see “Methods”). To the left of the y-axis are
position tuning curves (black dots) and Gaussian fits (gray) of four example neurons in one ROI outlined and enumerated in e. Below the x-axis are the SF tuning
curves and fits of the same four cells. b Distribution of measured RF width and the scale invariance prediction of RF width based on fo. c Illustration of the
pooling model in the spatial domain, at fo= 2 cyc/°. At bottom are the 1D Gabor functions from the model of scale invariance. They are shifted and weighted
according to the Gaussian in the pooling model (σh(x)=0.24°). The superposition of the Gabors’ energy (i.e. their envelopes) yields the wider green Gaussian
on top, which is the output of the pooling model. d Bottom and top panels are the predicted map of RF width by plugging fo into the scale invariance model and
pooled scale invariance model, respectively. The yield in these map are based on tuning fits to the random grating stimulus (see “Methods”). e Map of the
measured RF width. The yield in d is different from e because they are based on tuning fits from two separate stimulus blocks, the random gratings and random
bars (Fig. 2c, j), respectively. Like the map in e, the scatter plot in a showed the intersection of the yield between the two different stimulus blocks. f Pearson
correlation coefficient between neuron pairs, within 75 μm cortical distance bins, using all three ROIs in the study. The symbol at each distance bin indicates the
correlation coefficient’s significance: Closed dot is p > 0.01, asterisk is p < 0.01, asterisk and open circle is p < 0.001.

Table 1 Marginal statistics.

fo σx σf σlog(x) σθ F1/F0 μON�μOFFj j
σONþσOFF

Mean 2.12 0.3 1.43 0.81 26.01 1.01 0.2
Median 2.06 0.29 1.38 0.73 24.12 0.90 0.16
SD 0.93 0.06 0.38 0.25 10.58 0.72 0.17
Mean-log2 0.95 −1.77 0.47 – 4.60 −0.43 −3.01
SD-log2 0.64 0.29 0.38 – 0.52 1.27 1.65

This table provides standard statistics of the main RF properties in the data set under study. The
symbols on top represent each RF property. From left to right, they are preferred SF (cyc/°), RF
width (°), linear SF bandwidth (cyc/°), logarithmic SF bandwidth (octaves), orientation
bandwidth (°), spatial phase selectivity, and ON–OFF separation. Each row is a different statistic
computed across the three ROIs: mean, median, standard deviation (SD), mean of the log2, and
SD of the log2. The SD-log2 metrics in the bottom two rows are particularly useful in comparing
the distribution between parameters that are presumed proportional under scale invariance. For
example, the SD of log2(RF width) is equal to the SD of log2(fo) under scale invariance,
regardless of the scaling factor used, but there is a more than twofold difference (F-test;
p < 10−20). Similarly, the SD of log2(linear SF bandwidth) is narrower than the SD of log2(SF
preference) (F-test; p < 10−10).
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more likely than chance to have similar RF width at short cortical
distances (Fig. 3f, black). In summary, there is a shallow and
noisy relationship between RF size and fo, which is consistent
with a mapping of RF size that is more weakly clustered than the
map of fo.

The rectangular bar in our visual stimulus is composed of Fourier
energy that decays at higher SFs. Therefore, it has the potential to
create fo-dependent errors in measurements of RF width.
The Supplementary Information addresses specific issues along
these lines. First, the bar might be expected to drive a subset of the
population more than others, which could bias the RF width at the
output of a static nonlinearity. However, the analyses in the
Supplementary Section IV.3 show that most of the neurons are
theoretically and empirically well-driven by the 0.2° bars without
significant dependence on their SF tuning. This suggests that
nonlinearities are unlikely to have a major effect on RF size vs. fo.
Second, Supplementary Section VI quantifies the widening induced
by the finite bar width, as it could inflate RF width and the estimate
of the pooling window. A simple deconvolution derivation shows
that it has minimal impact on the calculation of the 0.24° pooling
window, and therefore the Fig. 3 results in general.

Pooling scale invariant RFs over retinotopy accounts for phase
selectivity. Early studies of V1 RFs segregated the V1 population
into two groups, “simple cells” and “complex cells”, based on the
amount of spatial overlap between ON and OFF responses17.
Later, the distinction was quantified as phase selectivity, specifi-
cally “F1/F0”, at a neuron’s fo23. Simple cells have larger F1/F0
(strong fo phase selectivity) whereas complex cells have smaller
F1/F0 (weak fo phase selectivity). We assessed F1/F0 as a function
of each neuron’s fo (Fig. 4a) and deviation from scale invariance
(Fig. 4b). Figure 4a shows that neurons with lower log2(fo) have
greater F1/F0 (r=−0.51; p < 10−12), which is consistent with the
previous result that simple cells have lower fo than complex
cells21. Figure 4b shows that neurons with an RF width near the
scale invariance prediction (i.e. near unity on the x-axis) have
greater F1/F0 (r=−0.51; p < 10−11). Consistently, it has been
shown that complex cells, unlike simple cells, tend to have much
larger RF width than predicted by a period of fo10,17,18. Next, we
show that these results can be accounted for by the model of
pooled scale invariance.

In the “Methods”, we used pooled scale invariance to formulate
F1/F0 as a function of fo, which is the following Gaussian:

F1ðfoÞ=F0 ¼ π � exp½�ðσh xð Þ2πfoDÞ2=2� phase selectivity model:

ð6Þ

The SD is (σh(x)2πD)−1, where σh(x)= 0.24° is the pooling window
that was computed to account for RF width in the previous
section. D is a free parameter that scales the rate of absolute phase
progression within the pooling window. D= 0 and 1 correspond
to constant “absolute” and “relative” phase, respectively (Fig. 4a,
dashed green lines). The absolute phase is referenced by the fovea,
whereas the relative phase is referenced by the center of the RF
envelope. A least-squares fit to the entire data set yields D= 0.54
(Fig. 4a, solid green), indicating that the absolute phase is more
clustered than a model whereby the population maintains the
constant relative phase. This parameter estimate was similar when
measured independently for the 3 ROIs: D= [0.55 0.56 0.58].
From this model, we derived the result that complex cells tend to
have wider RFs than simple cells (Fig. 4b green). Specifically, the
model domain in Fig. 4b is the ratio between two predicted RF
widths—pooled scale invariance (Eq. (1)) and scale invariance
(Eq. (5)). The domain of the data, however, is the ratio between
measured RF width and the scale invariance prediction. Unity on
the x-axis of Fig. 4b corresponds to a standard Gabor model with
2–3 subfields, and higher values indicate additional subfields
within the envelope.

Finally, the link between fo and F1/F0 predicts a previously
unidentified map of F1/F0 (Fig. 4d), which we found by
comparing neuronal pairs at varying distance. Like fo, nearby
neurons were more likely than chance to have similar F1/F0
(Fig. 4f). To summarize, for a given pooling window in visual
degrees (σh(x)), scale invariant inputs with higher fo will have a
broader distribution of absolute spatial phase, resulting in a
summed output with a relatively large drop in phase selectivity.

Pooling scale invariant RFs in the spectral domain accounts for
SF bandwidth. In the preceding section, we showed that most
superficial neurons in V1 have substantially wider RFs than
predicted by classic models of scale invariance—i.e. wider than
one period of fo. Before proceeding to the following analyses on
SF bandwidth and orientation bandwidth, we first emphasize that
widening of the RF via pooling in the spatial domain (°) does not
necessarily lead to a narrowing of tuning in the spectral domain
(c/°). Given the inverse scaling properties of the Fourier trans-
form, this may be a tempting conclusion. However, inverse
scaling assumes (1) linear superposition of sinewaves in the
spatial domain and (2) power in the spectral domain is built from
the constructive interference of sinewave components. However,
the preceding section describes pooled scale invariance as a
hierarchical model where a majority of cells at the output have
weak phase selectivity due to pooling from variable phase. The

Table 2 Joint statistics.

log2(1/σx) log2(σf) σlog(f) log2(σθ) F1/F0 μON�μOFFj j
σONþσOFF

log2(fo)
<difference> 0.84 −0.48 −0.15 3.65 0.06 −0.76
r 0.18 0.50 −0.76 −0.55 −0.51 −0.22
p 0.025 2.6e−12 3.6e−34 2.1e−15 6.0e−13 0.004
Slope 0.08 0.29 −0.31 −0.45 −0.59 −0.06
Intercept 1.69 0.19 1.1 5.03 1.58 0.25
log2[P(fo)]
r (SI pooling) 0.21 0.52 0.8 0.54 0.46 N/A
p (SI pooling) 0.01 3.1e−13 8.4e−41 1.2e−14 2.1e−10 N/A

Top 5 rows: Joint statistics between the log2(fo) and other variables in this study. The first four column symbols—σx, σf, σlog(f), σθ—are RF width (°), linear SF bandwidth (c/°), logarithmic SF bandwidth
(octaves), and orientation bandwidth (°). The last two column symbols are spatial phase selectivity and ON–OFF overlap. As indicated, log2 was taken for parameters in columns 1, 2, and 4, prior to
comparing with log2(fo). The first row is the average difference between the column variable and log2(fo). The second and third rows are the Pearson correlation coefficient and p value relating the
column variable to log2(fo). The fourth and fifth rows are the slope and intercept of the linear fit, where log2(fo) is the domain. Bottom 2 rows: The first five column parameters have a prediction from the
pooled scale invariance model, which is a function of fo, generically identified as P(fo) on the left. Specifically, the prediction of the variables in columns 1–5 are given by Eqs. (5), (7)–(9) and (6),
respectively. The Pearson correlation coefficient and p value between the model predictions and data are given in the bottom two rows.
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output neurons nonetheless accumulate “energy” in the spectral
domain due to a rectification of the inputs. Responsiveness to
sinewave gratings are calculated as the average over the spatial
phase (i.e. F0), not F1 amplitude, in which case the effects of
pooling in one domain cannot be uniquely derived from pooling
in the other.

As shown in Fig. 1b, SF bandwidth (cyc/°) is proportional to fo
under scale invariance. The axes of the Fig. 1b illustration are
identical to the axes of the Fig. 5a scatter plot, and has the same
solid blue line showing the specific model of scale invariance used
here, σf,si= fo/2. We measured σf,si as the half-width at 61% of the
peak in the DoG fit. The data are more consistent with pooled
scale invariance, for the same reasons described above for RF
width (Fig. 3). For one, the measured widths are consistently
wider than the scale invariance prediction. Second, the slope of a
linear fit (r= 0.50; p < 10−11) in log–log coordinates is 0.29,
whereas the slope in any model of scale invariance is 1.0. Lastly,
the standard deviation of log(SF bandwidth) is 59% as large as
log(fo) (F-test, p < 10−10) (Table 1; row 5), yet they are predicted
to be equal under scale invariance. In summary, the deviations of
RF width and SF bandwidth from the scale invariance prediction
are analogous. Both can be explained as a widening that is most
pronounced when the underlying scale invariant predictions are
most narrow. We therefore applied the same scale invariant
pooling model in the spectral domain to model SF bandwidth. In
the case of RF width, the deviation (widening) occurs at higher fo.
In the case of SF bandwidth, the deviation occurs at lower fo.

To predict the measured SF tuning, the pooled scale invariance
model uses a weighted sum of Gaussian functions that
are constrained by scale invariance, σf,si= fo/2 (Eq. (2)). The
weighting function is a Gaussian in the SF domain, and has a
constant width, σh(f). In turn, SF bandwidth can be estimated by

σ2f ;p ¼ σ2f ;siðfoÞ þ σ2hðf Þ linear SF bandwidth ðc=�Þmodel; ð7Þ

where σ2f ;p and fo are measured, so the one free parameter is σh(f).
We estimated σh(f) to be 0.85 cyc/°, giving the green line in Fig. 5a.
This estimate of σh(f) from the entire data set was similar to the
estimates from each of the three independent ROIs: σh(f)= [0.75
0.87 0.85 cyc/°]. The pooling model has similar correlation to the
data as a linear fit (Table 2), but uses only one free parameter.
Furthermore, σh(f) can be related to pooling within the functional
architecture. However, relating σh(f) to integration in the fo maps
is not as straightforward as the retinotopy (see previous section)
because the fo maps are not locally monotonic, but periodic. In
turn, we cannot convert σh(f) into microns of cortex using a
simple scale factor. However, the standard deviation of fo across
all three ROIs was 0.93 cyc/°, which is just above the estimate of
σh(f) at 0.85 cyc/°. This requires that the diameter (2σ) of the
pooling window in microns of cortex be slightly smaller than the
spatial period of the SF maps (~750 µm)12, which is comparable
to the estimate of the cortical window estimate of 960 µm (2σ)
using RF width, described above.
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Fig. 4 Phase selectivity as a function of preferred SF (fo). a Scatter plot compares fo to F1/F0 from three ROIs, each indicated by a different symbol. See
Table 2 for joint statistics. Each of the three green curves show the result of pooling from the same population of scale invariant simple cells, and the same
retinotopic integration window (σh(x)= 0.24°; determined in Fig. 3), but with different alignment in the absolute phase. The solid green curve is the least-
squares fit of phase alignment to the data. To the left of the y-axis are phase tuning curves (black) and fits (gray) of four example neurons in one ROI
outlined and enumerated in e. b Like the scatter plot in a, y-axis data points are F1/F0. However, the x-axis is converted into a metric for the deviation from
scale invariance. Specifically, it is the measured RF width divided by the scale invariance prediction of RF width. To obtain the domain of the green curve, we
took the following ratio: pooled scale invariance prediction of RF width (Eq. (5)) over the scale invariance prediction of RF width (Eq. (1)). Gabor insets
illustrate how the number of ON/OFF subfields increase along the x-axis. c Simulation of the pooling model in the spatial domain at fo= 2 cyc/°, for the
three examples of phase alignment plotted in a (see green open circles in a). At bottom in blue are the 1D Gabor functions from the model of scale
invariance. The spatial phase progresses at a different rate, inside each of the three green rectangles. In the left example, “relative phase” does not change,
whereas in the right example “absolute phase” does not change. Just above, also in blue, are the Gabor functions weighted according to the Gaussian in the
pooling model (σh(x)= 0.24°). The top green curves are the superposition of scale invariant inputs, where the constant absolute phase (right) yields the
greatest phase modulation. d Maps of F1/F0. Bottom panel is all simple cells (F1/F0= π) and is the input to the scale invariant pooling model. Top panel is
the output of scale invariant pooling, based on the solid green fit to the data in a. e Measured map of F1/F0. f Pearson correlation coefficient between
neuronal pairs, within 75 μm cortical distance bins, using all three ROIs in the study. The symbol at each distance bin indicates the correlation coefficient’s
significance: Closed dot is p > 0.01, asterisk is p < 0.01, asterisk and open circle is p < 0.001.
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SF bandwidth in the linear domain (cyc/°) was modeled above,
as opposed to bandwidth in the logarithmic domain (octaves),
because it allowed for a simpler description of the data’s deviation
from scale invariance. That is, a single invariant pooling
mechanism in the linear SF domain (i.e. constant σh(f)) creates
preferential widening of bandwidth at lower fo, which is not the
case for invariant pooling in the logarithmic domain. Further-
more, pooling in the linear SF domain is more amenable to
deriving the effects of scale invariant pooling on orientation
bandwidth, described in the next section. However, logarithmic
bandwidth in octaves is the more commonly used metric for
quantifying SF tuning selectivity21. Figure S3 shows how the same
pooling model can account for the dependency of log bandwidth
(Eq. (8)) on fo21. The derivation of the pooling model from linear
bandwidth to logarithmic bandwidth is described in the
“Methods” section (Eq. (8)).

Next, we characterized the functional architecture of linear SF
bandwidth. A map is expected given its significant dependence on
fo. Indeed, there is significant clustering at close distances (Fig. 5f,
black), yet it is weaker than the scale invariance prediction, which
is consistent with a reduced range of bandwidth imposed by
pooled scale invariance. The marginal and joint statistics of SF
bandwidth (linear and logarithmic) and fo are summarized in
Tables 1 and 2.

Pooling scale invariant RFs in the spectral domain accounts for
orientation bandwidth. Under scale invariance, orientation
bandwidth (σθ) is independent from fo (Fig. 1b). However, Fig. 6a
shows a significant negative correlation between log(σθ) and log
(fo): (r=−0.55; p < 10−14; slope/intercept=−0.45/5.03). We are
not aware of this correlation being reported elsewhere, yet it is
consistent with the combined observations in prior studies that
report a positive correlation between orientation bandwidth and
log SF bandwidth, and a negative correlation between log SF
bandwidth and fo21,22. Importantly, the trend is also predicted by
the model of pooled scale invariance when pooling is extended to
the orthogonal dimension of spectral coordinates—orientation
and SF are polar dimensions in 2D spectral coordinates (Fig. 6c).

A given pooling window at lower fo (nearer the origin) pools from
a broader distribution of orientation preferences than the same
pooling window at higher fo, thus yielding broader tuning at the
output of the model. A simulation to illustrate the dependence of
orientation tuning on pooling in 2D spectral coordinates, as a
function of fo, is shown in Fig. 6c. The pooling window is a
circularly symmetric Gaussian with σ= 0.85 cyc/°, which was the
parameter fit in the pooling model for SF bandwidth in the
previous section (Fig. 5a, green). Next, the simulation was for-
malized analytically. We derived the dependence of orientation
bandwidth on fo (Fig. 6a, green), based on pooling from a scale
invariant population in the Fourier plane, given as Eq. (9) in the
“Methods”. No additional parameters were fit to arrive at the
model of orientation bandwidth vs. fo; however, it required an
estimation of the aspect ratio of the scale invariant RF envelopes
(length/width); an aspect ratio of 2.0 was plugged into Eq. (9),
based on previous studies28–30. The pooling model prediction of
orientation bandwidth is similarly correlated to the data as a
linear fit (Table 2), yet provides a more parsimonious description
of the data, as it uses the same pooling coefficient that was used to
predict SF bandwidth from fo.

Due to the strong correlation between orientation bandwidth
and fo, there is an expected mapping of orientation bandwidth.
The pooling model of orientation bandwidth and the data have
maps that are visually comparable (Fig. 6d, e). Like SF bandwidth
and RF size, the clustering of orientation bandwidth is weaker
than, yet similar in structure to, fo (Fig. 6f). As discussed later, this
relationship between maps of orientation bandwidth and fo falls
in line with previous studies on tuning within V1 maps.

Summary of the pooled scale invariance model and its per-
formance. The model of pooled scale invariance uses each cell’s fo
to predict four RF properties—RF width, F1/F0, SF bandwidth,
and orientation bandwidth. The complete model applied to one
ROI is shown in Fig. 7. At the bottom of the hierarchy are scale
invariant simple cells (Fig. 7b), which have a RF width (°) and SF
bandwidth (cyc/°) that are determined by fo (Fig. 7a). To deter-
mine RF width and F1/F0 at the output stage (Fig. 7c), the pooling
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Fig. 5 SF bandwidth as a function of preferred SF (fo). a The scatter plot compares fo to SF bandwidth in three ROIs, each indicated by a different symbol.
See Table 2 for joint statistics. The five data points at the extreme left of the x-axis were low pass. Blue line is the scale invariance prediction of bandwidth,
fo/2. Green line is the model of pooled scale invariance (Eq. (7)). To the left of the y-axis are SF tuning curves (black dots) and fits (gray) of four example
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(blue). c Simulation of the pooling model in the spectral domain, at fo= 2 cyc/°. At the bottom are the 1D Gaussian functions from the model of scale
invariance. They are shifted (cyc/°) and weighted according to the Gaussian in the pooling model (σh(f)= 0.85 cyc/°). The superposition of the scale
invariant Gaussians yields the function on top, which is the output of the pooling model. d Predicted maps of SF bandwidth. Bottom and top panels are
generated by plugging fo in to the scale invariance and pooled scale invariance model, respectively. eMap of measured SF bandwidth. f Pearson correlation
coefficient between neural pairs, within 75 μm cortical distance bins, using all three ROIs in the study. The symbol at each distance bin indicates the
correlation coefficient’s significance: Closed dot is p > 0.01, asterisk is p < 0.01, asterisk and open circle is p < 0.001.
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model integrates over the retinotopy using a weighted Gaussian
with σ= 0.24°, which translates to σ= 0.48 mm of cortex based on
the magnification factor (°/mm). To arrive at the estimate of F1/
F0, an additional parameter constrains the pooling model, which
describes the absolute phase progression, relative to the retino-
topic progression, D. Finally, a third parameter is used by the
pooling model to describe the bandwidth of both orientation and
SF in the 2D spectral domain. Pooling in the spectral domain is
analogous to pooling in the spatial domain—it is the integration of
scale invariant RFs. However, the domain is in cyc/°, and the
weighting function is a 2D Gaussian with σ= 0.85 cyc/°. The layer
of pooled scale invariance (Fig. 7c) is visibly more similar to the
data (Fig. 7d) than the layer of scale invariant RFs (Fig. 7b).

Next, we quantified the accuracy of pooled scale invariance,
relative to scale invariance. All predicted values were generated
using “leave-one-out cross-validation”, whereby the training
population used to predict a given data point consisted of all
other data points. Pooled scale invariance generates significantly
less mean-squared error (MSE) than scale invariance in
predicting log2(RF width) (paired t-test; p < 10−17; 95% CI=
[0.77 1.15]) and log2(SF bandwidth) (paired t-test; p < 10−12; 95%
CI= [0.34 0.56]). For a more conservative comparison to scale
invariance, we then fit “scaling coefficients” that predict RF width
and SF bandwidth from fo. That is, we did not predict RF width
from 1/(πfo), but fit a coefficient other than π in this equation.
Similarly, we did not assume SF bandwidth= fo/2, but fit a
separate scaling coefficient other than ½. The dashed blue lines in
Fig. 1 show other examples of scale invariance models that are

allowed in the fitting procedure. Even with the added flexibility to
scale invariance, pooled scale invariance has significantly lower
MSE in predicting log2(RF width) (paired t-test; p < 10−12; 95%
CI= [0.34 0.57]) and log2(SF bandwidth) (paired t-test; p < 10−9;
95% CI= [0.17 0.32]). In the case of F1/F0 and orientation
bandwidth, the scale invariant model does not have an
independent variable, so a comparison of errors was not done.
However, there is a significant correlation coefficient between the
predictions of pooled scale invariance and the data for both F1/F0
and orientation bandwidth (Table 2, row 7, columns 4 and 5).

Discussion
Preferred SF (fo) varies at a local and global scale of the V1
architecture. At the global scale, across eccentricity, fo varies with
other RF properties in a scale invariant fashion. At the local scale,
within the hypercolumn, these relationships were previously
untested with sufficient experimental or analytical precision to
model V1 output. We offer a model that is a simple hierarchical
step beyond scale invariance that provides a far better account of
our two-photon imaging data. In Figs. 3–6, each scatter plot
compared fo to another classic V1 tuning parameter from a
localized population. Pooled scale invariance performs much
better than scale invariance at predicting RF width and SF
bandwidth from fo. Furthermore, unlike scale invariance, the
pooled scale invariance model is able to use fo to account for
variability in orientation bandwidth and phase selectivity. Given
the clustering of fo within macaque V1, pooled scale invariance
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the origin (@6 cyc/°), assuming an invariant pooling function (σh(f)= 0.85 cyc/°). The simulation on top shows a random sample of weighted and shifted
ori tuning curves (blue) from the two indicated pooling locations, along with their superposition (green). dModeled maps of ori bandwidth. Bottom and top
panels are generated by plugging fo into the scale invariance and pooled scale invariance model, respectively. eMeasured maps of ori bandwidth. f Pearson
correlation coefficient between neural pairs, within 75 μm cortical distance bins, using all three ROIs in the study. The symbol at each distance bin indicates
the correlation coefficient’s significance: Closed dot is p > 0.01, asterisk is p < 0.01, asterisk and open circle is p < 0.001.
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predicts clustering of all the other spatial tuning maps in this
study, which was indeed observed. However, maps of RF position
(i.e. retinotopy), fo, and preferred orientation had the strongest
clustering (Figs. S1 and S2), consistent with them being the
domains of pooling in spatial (Eq. (5)) and spectral coordinates
(Eq. (7)). Some of the results described here can be gleaned from
previous studies that relate single cell tuning to the surrounding
architecture8,36–38, along with studies showing deviation from
scale invariance10,17,18,21,22, yet their hitherto disconnection made
it difficult to provide a simple and holistic model of V1 output.

Predicting orientation bandwidth from preferred SF can be
linked to previous results. We observed a strong correlation

between orientation bandwidth and fo, which we accounted for
with isotropic pooling of scale invariant RFs in the 2D spectral
domain. To our knowledge, this specific result has not been
reported, yet is predictable from previous electrophysiology stu-
dies. A positive correlation was shown between logarithmic SF
bandwidth and orientation bandwidth, along with a negative
correlation between logarithmic SF bandwidth and fo21,22. Taken
together, this predicts a negative correlation between orientation
bandwidth and fo, like in Fig. 6a.

The negative correlation between orientation bandwidth and fo
predicted by pooled scale invariance is also consistent with a
putative alignment between orientation pinwheels and regions of
low fo in the functional architecture. This logic is based on the
following series of observations. First, V1 neurons have broader
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orientation tuning in more diverse regions of the orientation map
(e.g. near pinwheel centers)37,39,40. Next, pinwheel centers align
with the centers of ocular dominance columns13,41,42, and the
centers of ocular dominance columns align with regions of low
fo8,33. Together, regions of broadly distributed orientation
preferences (pinwheel centers) are more likely to align with low
fo, as illustrated in Fig. 6b. In turn, isotropic pooling within the
maps can be expected to integrate a wider range of orientations,
at lower fo (Fig. 6c), thus producing a negative correlation
between orientation bandwidth and fo (Fig. 6a). This may also be
a source of noise in the use of fo to predict orientation bandwidth
in the scale invariant pooling model—there will be randomness in
the alignment between local minima in the maps of fo and regions
of diverse orientation preference.

RF size depends on the visual stimulus used. V1 RF size is
stimulus dependent, so a single value is unable to characterize
each neuron. Measurements of RF size are often classified as
either a minimum response field (mrf) or a spatial summation
field (ssf). mrf is measured from sparse bars or dots that are
flashed over the RF43, whereas the ssf is often measured from
drifting gratings of variable size that are centered on the RF44–46.
The relationship between mrf and ssf has not been well char-
acterized in the same population, but reports of parafoveal
mrf2,3,47,48 tend to be smaller (~0.2–1.0°) than ssf (~1.0°)44–46. It
has been suggested that this difference is due to an inability of
sparse stimuli to drive the edges of the RF above threshold. The
size–tuning experiments use larger, steady-state drifting gratings
that are matched to the optimal SF, so are more likely to drive the
classical RF border and yield greater estimates of size.

The sizes computed in this study are best classified as an mrf.
The median (2σ= 0.58 ± 0.12) is a bit larger, but similar to, most of
the previous mrf studies referenced above. Measuring the ssf with
optimal sinewave gratings for all RFs in each two-photon field-of-
view would be very time-consuming given the range of preferred
orientations, SFs, and locations. Our random bar stimulus was
designed to quickly yield quantitative measurements of complex
and orientation selective V1 RFs for all cells in an imaging region
that span multiple octaves of fo. The width of the bars (0.2°) was
chosen to (1) drive the majority of SF tuning selectivity in a
parafoveal V1 population while (2) limiting the “smearing” that
inflates the size estimate. We chose a relatively narrow bar width
that drives the high side of SF sensitivity in the population in order
to minimize the smearing of our SF envelope (see Supplementary
Section VI, “Correcting for the effects of eye movements and
stimulus bar width on RF size”). It should be noted that a subspace
reverse correlation method, such as the one used in ref. 32, would
overcome the challenging tradeoff of minimizing experiment time
while matching fo and RF locations for a diverse population.
However, this reconstruction method requires that the neurons
have strong phase modulation. When attempted with our grating
stimulus it yielded noisy RFs because they are mostly complex.

To our knowledge, only one study has directly compared fo to
ssf49. They reported a trend that is partly consistent with Fig. 3a—
size and fo do not scale—but their data are much closer to scale
invariance. The cause of this discrepancy is probably due to
differences in how the data were collected. For one, their
population is likely pooled from a wider range of eccentricity,
where scale invariance is going to hold more strongly. Also, their
study used multi-unit activity, so did not distinguish between
simple and complex cells. The few studies that compared RF size
(as mrf) to fo, for both simple and complex populations, found
that this specific violation of scale invariance was largely limited
to complex cells10,17,18. Our analyses show that pooled scale
invariance can account for these observations (Figs. 3 and 4).

Scale invariant pooling at other eccentricities. The recordings
from this study were limited to a very narrow range of eccen-
tricity, which is both an advantage and pitfall. The advantage is
that our trends are independent of the more global changes in RF
scaling that correlate with eccentricity, unlike most other studies
that examined scale invariance from a substantial population of
electrode recordings. However, since we were limited to 2° to 4°
from the fovea, it is unclear how our parameter estimates might
generalize to other eccentricities. The pooled scale invariance
model nonetheless allows for some predictions. In comparing RF
size to fo in Fig. 3, we estimated a pooling window of 0.24° in
visual space, which would be expected to scale inversely with
magnification factor (mm/°) for a constant window in cortical
space (mm). Using our retinotopy maps, the estimate of magni-
fication was 2 mm/°, which normalizes the pooling window to
480 μm (1σ) of cortical distance. We may look to cortical distance
as the most effective normalizer of the pooling window since the
millimeter scale of the functional and anatomical architecture
remains roughly constant across V150–52.

Correcting for the effects of eye movements and finite stimulus
bar width on RF size. Two-photon imaging in the anesthetized-
paralyzed primate is a valuable preparation for precise measure-
ments of RF tiling in V1, since small eye movements in the awake
preparation can easily corrupt measures of the fine structure in
V1 RFs. However, even the anesthetized prep is susceptible to
small drifts in eye position. In particular, we must consider the
possibility that eye movements smear the measured RF envelope,
making it seem wider along the axis of eye movement. Also, eye
movements will make simple cells appear more complex, in a fo-
dependent manner—the phase modulation at higher fo will
appear to be shallower. In addition to (potential) eye movement,
the finite bar width (0.2°) of the random bar stimulus will inflate
the measured RF size. In Supplementary Section VI, we measured
the variance of slow eye movements, and added this to the
smearing induced by the stimulus bar in order to identify an
upper limit on the RF size inflation artifact. In short, we conclude
that there is near-zero detectable correction to the fit relating RF
size to fo in Fig. 3a, and F1/F0 to fo in Fig. 4a.

Fluorescence nonlinearities. The observed fluorescence signal in
calcium imaging has a nonlinear relation to spike rates, which will
bias tuning metrics. GCaMP nonlinearities are generally
accelerating25,53, which will have the effect of artificially nar-
rowing a tuning curve or RF, in most operating regimes. How-
ever, our use of reverse correlation, which updates the stimulus
multiple times within the integration window of the calcium
signal’s impulse response, can help to circumvent a static output
nonlinearity54,55. Still, we did not directly compare to spike rates,
so we cannot quantify the magnitude of the bias. Also, we were
not able to reconstruct spike times in this preparation, as it is
rather difficult in primate V1 for two main reasons. The first is
that spike rates are high, which exposes a wider range of the
nonlinearity for each cell, making deconvolution more challen-
ging. The second is that we must account for breathing and
heartbeat artifacts (see “Methods”). Although these issues are not
insurmountable, they can make the spike reconstruction much
less robust and ultimately yield noisier tuning functions than
simply computing the stimulus-triggered average fluorescence.
The potential effects of fluorescence nonlinearities on our main
results are formalized with a simulation in Supplementary Sec-
tions IV.1 and IV.2 (Fig. S5), which draw two main conclusions.
First, if the underlying spike rates yield scale invariant tuning, so
would the fluorescence measurements. Second, if one were to
correct for a GCaMP nonlinearity, the data would deviate even
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further from scale invariance, and yield a larger integration
window in both dimensions (° and cyc/°) of the pooling model.

Scale invariance yields a variant V1 population envelope. Due
to V1 having small RFs and retinotopy, a small object in visual
space (°) will elicit a localized response in cortical space (mm). If
the object moves closer, it will elicit a broader response in the
cortex. Similarly, if the object stretches along one axis, the
response envelope in cortex will change along the corresponding
axis. Studies suggest that the V1 response envelope is used by
downstream areas to decode the shape and size of a stimulus56–58.
However, in a scale invariant and retinotopically precise V1
population, the response envelope is also altered by the SF con-
tent of an object. For example, in showing two Gabor’s with the
same envelope but different SF carrier, the Gabor with lower SF
will produce a wider response. It is possible that this could pro-
duce a perceptual confound if downstream areas are using the
population envelope to decode the size and shape of objects.
Given the results from previous studies56,57, homogenizing scale
invariant RFs into energy detectors of invariant size may be an
important computation for downstream areas to decode
object shape.

Toward a general model of V1 tuning. To build a general model
of RFs in output layers of V1, future experiments will need to
probe critical stimulus dimensions that were not measured here.
For instance, binocular disparity arises within V1 and may also be
linked to the maps of preferred SF, as suggested by the alignment
between maps of fo and binocularity33. Furthermore, disparity
maps have been shown in the cat with 2p imaging59, thus lending
support to their existence in the primate. Color is yet another
complex stimulus dimension requiring additional investigation.
As noted above, several studies have linked tuning of color and
form, which suggests that color tuning can be connected to
pooled scale invariance. However, to unify the relationship
between color and the spatial parameters measured here, new
measurements and modeling are required that compare them
directly. Finally, V1 neurons exhibit several nonlinear tuning
properties within and outside the classical RF. It may be that these
nonlinear interactions are dependent on placement within the
neighborhood of the functional architecture, combined with a
spatially invariant pooling mechanism similar to what we have
outlined here.

Methods
Animal preparation and surgery. All procedures were conducted in accordance
with guidelines of the US National Institutes of Health and were approved by the
Institutional Animal Care and Use Committee at the University of Texas at Austin,
which maintains AAALAC accreditation. We used two adult male rhesus monkeys
(Macaca mulata), ages 6 and 13 years old. One of the two animals had been
previously used for studies employing widefield imaging in the awake preparation.
In this case, the widefield chamber was removed and replaced with a recording
chamber and window used for an acute two-photon imaging session. The details of
the acute two-photon imaging chamber are described in ref. 12. In summary, a glass
coverslip was pressed against the brain using small stabilization feet that were
anchored to a surrounding titanium disk. The second animal was initially
implanted with a chronic two-photon imaging chamber design, illustrated in
Fig. S9.

Details of the method for injecting virus (rAAV:CaMKII-GCaMP6f) in both of
the animals have been described previously27. In summary, a glass pipette (15 μm
tip diameter) was first lowered through an opening in the imaging chamber,
puncturing the pia. Injections were made at depths of 1.5, 1.0, and 0.5 mm using a
Nanoject II. At each depth, 0.5 μL was delivered manually in 10 × 50 nL steps, with
approximately 30 s pauses between steps.

On the day of recording they were anesthetized with ketamine (10 mg/kg, i.m.)
and pretreated with atropine (0.04 mg/kg, i.m.). They were placed in a stereotaxic
apparatus, in which the animal’s head was rigidly held in the stereotaxic frame by
ear bars, eye bars, and a palate clamp (David Kopf Instruments). Anesthesia was
maintained throughout the experiment with sufentanil citrate (4–10 μg/kg/h, i.v.),
paralyzed using pancuronium or vecuronium bromide (0.1–0.2 mg kg−1 h−1, i.v.),

and artificially ventilated using a small animal ventilator (Ugo Basile). The EKG,
EEG, SpO2, EtCO2, heart rate, and body temperature were monitored
continuously to judge the animal’s health and maintain proper anesthesia.
Dexamethasone (0.1 mg/kg, i.m.) and cefazolin (25 mg/kg, i.v.) were administered
at the beginning to reduce brain swelling and prevent infections. We administered
topical 1% tropicamide to dilate the eyes, along with non-refractive contact lenses
to prevent drying.

The first animal underwent a 5-day acute procedure (1 ROI), and the second
underwent repeated anesthetized recordings (2 ROIs). In the latter case, each
recording session lasted for a total duration of up to 8 h from initiation to
termination of paralysis. After termination of paralysis and injectable anesthesia,
the animal was given a dose of atropine (0.1 mg/kg i.v.), neostigmine (0.1 mg/kg
i.v.) and naloxone (0.04 mg/kg i.v.) to facilitate recovery60. A peripheral nerve
stimulator was used to indicate induction and recovery from paralysis.

Two-photon microscope setup. Images were collected with a resonant scanning
two-photon microscope from Neurolabware, together with acquisition software by
Scanbox. The scan rate was set to a 15 Hz frame rate. We used a Chameleon Ultra
laser set to 920 nm. The beam size was adjusted to slightly overfill the back aperture
of the ×16, 0.8 NA objective (Nikon).

Visual stimuli. Visual stimuli were generated using the Psychophysics Toolbox
extensions for Matlab61,62 on a 17-inch CRT monitor (1024 × 768) with a refresh
rate of 60 Hz. The monitor was gamma corrected using a Photo Research-655
spectroradiometer. The midpoint of luminance (gray level) was 55 cd/m2. To focus
the contralateral eye on the screen, V1 SF tuning curves were measured after
placing a range of corrective lenses in front of the eyes. To identify approximate RF
locations, we identified visible increases in fluorescence while “hand mapping” with
a bar on the screen. Following this manual mapping, approximate RF locations
were confirmed from a trial-based coarse retinotopy experiment. In short, a drifting
grating inside a square (1° × 1°) aperture was shown at a different location on each
trial, which gave a spatial tuning curve along the horizontal and vertical dimension
of the monitor. Next, we proceeded to present the stimuli used to quantify RF
properties.

The random grating stimulus (Fig. 2c) varied over eight orientations (Δ22.5°),
four spatial phases (Δ90°), and seven logarithmically spaced SFs between 0.25 and
8.0 cyc/°, giving 224 possible gratings in the ensemble. They were all at max
contrast. The gratings were played in direct succession of each other and updated
every 133 ms. They were inside a 3° square aperture, with a gray surround. The
surround and grating midpoint had a luminance of 55 cd/m2.

The random bar stimulus (Fig. 2j) varied in orientation, position, and
luminance. The bars were 2°–4° long (varied across ROI) and 0.2° wide.
Orientation was sampled 10° apart and bar positions were sampled 0.1° apart.
However, the tuning curves were binned by 2× before Gaussian fitting to compute
parameters. For example, the tuning curves shown in Fig. 2n, o have orientation
and position sampled at intervals of 20° and 0.2°, respectively. The two luminance
levels of the bars were presented at the monitor’s maximum and minimum. All
other pixels were set to the midpoint luminance of 55 cd/m2. For both random
grating and random bar stimuli, there was approximately 20 min of total stimulus
time, which was divided up into 20–40 blocks, with 5 s of gray screen between
blocks.

Model of scale invariance. Here, we describe how the scale invariance model
equations were derived. In each equation, a different RF parameter can be pre-
dicted from the preferred SF, fo (cyc/°). We begin with the scale invariance con-
straint on RF width

σx;siðfoÞ ¼ 1=αfo; RFwidth ðFig: 2a; blueÞ: ð1Þ
We estimate that α= π based on previous studies of primate and cat V1 simple
cells18,28–30, and implies 2–3 ON–OFF subfields. Other parameters that depend on
fo can be derived from Eq. (1) using the Fourier transform identity of a Gaussian.
The Fourier transform of a Gaussian in the spatial domain (x) produces a Gaussian
in the SF domain (f) where the standard deviations are related by σx= (2πσf)−1.
This can be plugged into Eq. (1) to predict SF bandwidth from fo for a linear RF.

σ f ;siðfoÞ ¼ αfo=2π; linear SF bandwidth Fig: 4a; blueð Þ: ð2Þ
For logarithmic SF, we start with the following function that depends on linear SF
bandwidth and fo, which reduces to a constant under scale invariance:

σ logðf Þ;siðfoÞ ¼ log2½ðfo þ σ f ;siÞ=fo� ¼ log2 1þ α=2πð Þ � 0:71 oct;

log SF bandwidth Fig: S3a; blueð Þ ð3Þ

Note that logarithmic bandwidth can instead be defined using the ratio between
high- and low-pass cutoff of the SF tuning curve, as in previous studies21. However,
we opted to define it as a function of fo and linear bandwidth (σf,si) to allow for
analytical transformation between linear and logarithmic bandwidths in the output
of the pooling model. For context, our definition (Eq. (3)) yields a value that is
about 1 octave lower than using the more classically defined ratio between high-
and low-cutoff.
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Finally, we also derive orientation bandwidth from Eq. (1). Orientation
bandwidth, σθ, can be computed as atan(σf,si/fo/A), where A= σy(fo)/σx(fo); i.e. “A”
is the aspect ratio of the RF where σy(fo) is the RF length along the axis that is
parallel to the preferred orientation, and σx(fo) is the width defined in Eq. (1). We
used A= 2 (refs. 28–30). This reduces to

σθ;siðfoÞ ¼ atan
α

2πA

� �
� 14�; orientation bandwidth ðFig: 6a; blueÞ: ð4Þ

Model of pooled scale invariance. Here, we summarize all the equations and fits
to the pooled scale invariance model. First, the pooling model in the spatial domain
is the convolution between the scale invariant RF envelope and a weighting
function (pooling window), which have widths defined as σx,si and σh(x), respec-
tively. Since variances of the convolved functions add, we can model the RF widths
at the output of linear pooling as

σ2x;p ¼ σ2x;siðfoÞ þ σ2hðxÞðFig: 3a; greenÞ: ð5Þ
The known variables from the data are σx,p and fo, which allowed us to estimate
σh(x)∼ 0.24° by taking the root-median of σ2x;p � σ2x;siðfoÞ. The Eq. (5) fit is shown in

Fig. 3a (green line), which is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπfoÞ�2 þ 0:242

q
.

We then used σh(x) to help predict the phase modulation at the output of the
pooling model, which is derived in the next section and given as

F1ðfoÞ=F0 ¼ π � exp½�ðσh xð Þ2πfoDÞ2=2� ðFig: 4a; greenÞ; ð6Þ
where D is a free parameter and estimated to be 0.54.

The results also describe the pooling model in the SF domain, which is a
convolution between the scale invariant Gaussian SF bandwidths and a Gaussian
pooling window, defined as σf,si and σh(f), respectively. The pooling model in the SF
domain is therefore described as

σ2f ;p ¼ σ2f ;siðfoÞ þ σ2hðf ÞðFig: 5a; greenÞ: ð7Þ
Estimation of the one unknown coefficient, σh(f), gives the plot in Fig. 5a (green

line), which is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfo=2Þ2 þ 0:852

q
.

Next, we showed that the pooling model can account for the logarithmic
bandwidth, which we defined as

σ log fð Þ;pðfoÞ ¼ log2½ðfo þ σf ;pðfoÞÞ=fo� ðFig: S3a; greenÞ ð8Þ
σf,p is the fit to Eq. (7). Lastly, we define orientation bandwidth as

σθ;p ¼ atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2f ;siðfoÞ=A2 þ σ2hðf Þ

q

fo

2
4

3
5 ðFig: 6a; greenÞ; ð9Þ

where “A” is the aspect ratio of the RF. The numerator inside the brackets is the RF
bandwidth (σ) in the 2D Fourier domain along the axis that is perpendicular to the
dimension of the SF tuning curve. That is, it is tangent to the arc of orientation.

Formulating predictions of F1/F0 in the pooling model. We measured phase
selectivity at the preferred SF (fo) as F1/F0. Specifically, we obtained the peak-to-
peak amplitude from the Fourier transform of the phase tuning curve, and then
divided by the mean over phase (i.e. F1/F0). To model F1/F0 as a function of fo in
pooled scale invariance, we start with the assumption that the pooled population of
scale invariant RFs are simple cells with a half-wave rectifying nonlinearity. Next,
we inherit the same Gaussian pooling window that was fit in Eq. (5): σh(x)= 0.24°.
As formalized below, the input from each pooled RF is phase-shifted and Gaussian-
weighted according to σh(x), then they are all summed to yield the output cell’s
phase tuning (Fig. 4). As the simplest case, we start with a constant relative phase,
whereby the absolute phase shift is coupled to the retinotopic shift of the envelope;
i.e., the RFs look identical, but are shifted by the retinotopy (Fig. 4c, left). In this
case, absolute phase shift (°) equals fo times the retinotopic shift of the RF (“x”deg).
To formulate F1/F0 as a function of fo, we start with convolution between the
spatial pooling function and a scale invariant Gabor.

Gxð0; σh xð ÞÞ⊛GaborxðfoÞ;
where Gx(0, σh(x)) is the spatial pooling function—it is a Gaussian in the spatial
domain (x) with peak= 1, mean= 0 deg, and SD= σh(x) deg. The right side of the
convolution is a scale invariant Gabor with carrier frequency fo. Importantly, the
Gabor is normalized by the square root of its L2 norm, which ensures that the
Fourier amplitude at fo (i.e. the F1) is constant prior to the convolution. We are
interested in the Fourier amplitude following the above convolution, which is
proportional to the product of two Gaussians in the frequency (f) domain:

Gf 0; ðσh xð Þ2πÞ�1
� �

� Gf fo; fo=2ð Þ:

The left side of the product is the Fourier amplitude of the pooling function and the
right side is the Fourier amplitude of the Gabor. Both are unity amplitude Gaus-
sians with the mean and SD in parentheses, in units of cyc/°. Evaluating at fo gives

the following, which is proportional to the “F1”:

exp½�ðσh xð Þ2πfoÞ2=2�:
For a half-wave rectifying nonlinearity, the maximum F1/F0 is π, so we scale
accordingly to get

F1 foð Þ=F0 ¼ π � exp½�ðσh xð Þ2πfoÞ2=2�;
which is a Gaussian centered at 0 cyc/°, with an SD of (σh(x)2π)−1= 0.66 cyc/°. This
function is shown in Fig. 4a (bottom dashed green), which underestimates the
population’s phase selectivity at each fo. The above equations assume that all the
scale invariant inputs have the same relative phase (e.g. they all have even sym-
metry), which means that any change in the absolute phase is coupled to the RF
envelope. For a more accurate model, we reduced the rate of the absolute phase
progression with a coefficient, denoted D, in Eq. (6) below. D was fit by minimizing
the mean-squared error.

F1 foð Þ=F0 ¼ π � exp½�ðσh xð Þ2πfoDÞ2=2� ð6Þ
D= 1 and 0 translate to constant relative and absolute spatial phase, respectively
(Fig. 4c, left and right). The fit yields D= 0.54 (Fig. 4c, middle), which slows the
advance of the carrier frequency, fo, relative to that of the RF envelope—that is,
absolute phase changes along the cortical surface at about half the rate of the
retinotopic gradient. Note that σh(x) was previously constrained without D in the
pooling model to account for RF width.

Quantifying model performance with cross-validation. We compared error
distributions between the two competing models—scale invariance and pooled
scale invariance—in predictions of RF width and SF bandwidth. For each model
and RF parameter, a prediction error was computed for every data point using
leave-one-out cross-validation. This means that the model was fit anew to generate
a prediction for every data point, where the predicted data point was excluded from
the calculation of parameter fits. This generated a distribution of squared errors for
each model, defined for each data point (“i”) as [log2(σi,data) – log2(σi,prediction)]2,
where σ indicates either RF width or SF bandwidth. To identify a significant
difference in the mean-squared error between models for each parameter, a paired
t-test was used.

Processing calcium signals to generate tuning curves. For each neuron, the
random grating stimulus yields the average timecourse in response to each com-
bination of orientation, spatial frequency, and spatial phase, Rgrat(ori,SF,phase,t).
The random bar stimulus yields the average response to bar orientation, position,
and luminance, Rbar(ori,pos,lum,t). To arrive at these response kernels from the
raw movies required four general steps: (1) rigid alignment of the frames to correct
for lateral brain movement, (2) neuron identification using local autocorrelation of
the movies, (3) filtering to remove resonant peaks in the power spectrum from
breathing and heart rate, and (4) computing the stimulus-triggered average
response. The details of these steps are given below.

To account for lateral brain movement, we performed rigid alignment of each
frame using the Scanbox offline software toolbox, which uses the cross-correlation
between images on successive frames. From there, cells were identified using the
local cross-correlation image, whereby the timecourse of each pixel was cross
correlated with the weighted sum of its neighbors63. This is given as

LocalXðx; yÞ ¼
X
t

F x; y; tð Þ½F x; y; tð Þ⊛DoGðx; yÞ�; ð10Þ

where F(x, y, t) are the fluorescence values at each pixel and timepoint, DoG(x, y) is
a difference-of-Gaussian image, and ⊛ indicates convolution in x and y. The DoG
rewards pixels that are correlated in time with their immediate neighborhood, but
also penalizes them if they are correlated in time with the broader surround. The
central Gaussian of the DoG was near the size of a neuron body (σ= 3 µm),
whereas the outer “suppressive” Gaussian had σ= 20 µm to capture the
surrounding neuropil. The integral of each Gaussian was normalized. Including the
suppressive surround in the weighting function yields brighter and more localized
puncta in the resultant image, LocalX(x, y) (Fig. 2b). That is, groups of pixels about
the size of a cell body could be more clearly disambiguated from the surround,
which is important for the subsequent manual selection of cells. The puncta were
manually selected using a “point-and-click” GUI. After clicking on a location, a
local threshold was applied to LocalX(x, y) in order to identify the cell ROI. The
pixels inside the ROI were then averaged to give the timecourse of each cell. On
each trial, the timecourse of each neuron was passed through a double notch filter
that removed the breathing and heartbeat artifact. The algorithm searched for two
resonant peaks in a “typical” frequency range that were >3 SD outside of the noise
at nearby frequencies. The timecourse of each neuron was Z-scored within each
trial to account for minor changes in depth or fluorescence over the course of the
experiment. From there, we computed the stimulus-triggered average, for 1 s after
the stimulus onset, for all stimulus combinations, which are defined as Rgrat(ori,SF,
phase,t) and Rbar(ori,pos,lum,t) for the random grating (Fig. 2c) and random bar
experiments (Fig. 2j), respectively. Next, we computed a tuning curve along each
dimension of Rbar and Rgrat. The first step was to remove the time dimension,
which entailed smoothing along time with a Gaussian (σ= 50 ms), and then taking
the slice of the smoothed kernel at the peak response (toptimal).
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To compute orientation and SF tuning curves from Rgrat(ori,SF,phase,
toptimal), we averaged over phase. The 1D orientation tuning curve was
computed as a weighted average over the SF dimension, where the SF weighting
function was calculated as the average of Rgrat(ori,SF) over ori. The 1D SF
tuning curve was computed analogously. The orientation tuning curve was fit
with a four-parameter Gaussian after a circular shift to center the peak. The
orientation tuning width was calculated as the half-width of the Gaussian fit at
61% of the amplitude. In most cases, this value was equivalent to σ in the
Gaussian fit. However, when the fit yielded particularly large σ (e.g. >90°), they
differed such that using the half-width metric provided a better representation
of bandwidth. The SF tuning curve was fit with a five-parameter difference-of-
Gaussian (DoG) function, A1 exp �ðf � μ1Þ2=ð2σ21Þ

� �� A2 exp �f 2=ð2σ22Þ
� �

. For
linear SF bandwidth, we used the fit to calculate half-width at 61% of the peak,
defined as σf = (fhi − flow)/2. All the cells included in the analysis were
“bandpass” (see data yield description below); however, 5% of these bandpass
cells did not have a low-pass cutoff based on the 61% criterion, in which case
we used the lowest SF (0.25 cyc/°) for flow. Logarithmic bandwidth (Fig. S3) was
computed from linear bandwidths and fo as shown in Eq. (3). Phase tuning was
measured at the orientation and SF that was nearest to the peak in the fits. A
sine wave was fit to the phase tuning curve, which gave F1 (peak-to-peak
amplitude) and F0 (mean).

To compute RF width from Rbar(ori,pos,lum,toptimal), we first averaged over the
two luminances (black and white). Next, the optimal orientation was found after
averaging over position. Finally, a Gaussian fit to the position tuning curve, at the
slice of optimal orientation (i.e. “line weighting function”), gave the RF width
(Fig. 3a, left). The details of calculating the x/y RF location (Fig. S2) are described
in ref. 33. In summary, this entailed fitting a 2D Gaussian to the inverse Radon
transform of the response as a function of orientation and position.

To compute the normalized ON–OFF separation from the random bar stimulus
(Tables 1, 2), we extracted the position tuning curve for the ON and OFF
responses, at a single optimal orientation (Fig. 2o). The optimal orientation was
based on the average ON+OFF response. A 1D Gaussian was fit to both the ON
and OFF line weighting function. The normalized ON–OFF separation was then
computed as jμON � μOFFj=½σON þ σOFF�. Unlike other metrics, ON–OFF
separation required that we compute both the ON and OFF subfield, as opposed to
the average. Several cells had weak responses to the ON bars. We nonetheless
kept the data yield constraints (below) the same, which were based on the fits to the
ON+OFF response.

The data yield in each analysis was defined as follows. Neurons in the ROI were
first identified from manual selection in the local cross-correlation image (Fig. 1b).
The local cross-correlation image was generated during presentation of the random
grating stimulus. This study pooled from three ROIs in two animals, which yielded
34 (0.5 × 0.35 mm), 98 (1.0 × 0.7 mm), and 71 (1.0 × 0.7 mm) neurons from this
manual selection stage. The first and smaller ROI is shown in Fig. 1 (n= 34).
Figures 3–6 contain the second ROI (n= 98), and Fig. 7 contains the third ROI
(n= 71). After manual selection in the cross-correlation image, neurons were
excluded from analyses of parameter comparison that did not yield accurate
parameter fits. First, neurons were excluded from analysis of the random grating
stimulus (Fig. 2c) that did not have orientation and SF tuning curves that could be
fit with respective Gaussian and DoG curves that accounted for at least 70% of the
variance (24/203 excluded). We did not further exclude neurons based on the
phase tuning curve fit because this would have excluded flat tuning curves (i.e.
complex cells). Next, neurons were excluded from analyses of the random bar
stimulus (Fig. 2j) that did not yield a 2D Gaussian fit to the RF envelope that
accounted for 70% of the variance (25/203 excluded). In the case of the RF width
vs. fo analyses (Figs. 3a and 4b), we combined results from random grating and
random bar stimuli, which combined the two exclusion criteria, resulting in 41/203
total exclusion.

Finally, we always excluded an additional five cells that were deemed “low pass”
in their SF tuning, as they are undefined in a model of scale invariance. Although
they are excluded from statistics, they are shown in scatter plots on the left side of
the x-axis (Figs. 3a, 5a and 6a). Low pass was defined as having a fit to the SF
tuning curve with a peak at the minimum SF.

Quantifying functional organization. To quantify the tuning similarity between
neurons at varying distances, or “functional clustering”, we computed joint sta-
tistics between cell pairs at discrete pairwise distances. For non-circular variables,
we computed the Pearson correlation coefficient between the pairings at each
distance. For orientation preference in Fig. S1c, we used a metric for circular
variables used previously12. Specifically, we computed, r ¼ real e2iðORIi�ORIjÞ� �

i;j ,

where ORIi and ORIj are the preferred orientations of neuron pairs i and j, and the
brackets indicate the mean over all pairs separated by a given cortical distance. r
will be 1 if ORIi and ORIj are always the same, −1 if they are 180° apart, and ~0 if
they are 90° apart or independent. To compute the significance of orientation
clustering at each distance, the neuron locations were randomly shuffled, and then
clustering was recomputed, 1000 times. The p value was the percentage of times
that shuffling yielded stronger clustering.

In the case of parameters computed from the random grating experiment, the
total number of unique pairs in the three ROIs was 5176, and divided up into bins
of cortical distance at 75 μm intervals. The minimum number of pairs in a bin was

303 (0–75 μm) and the maximum was 892 pairs (300–375 μm). The total yield was
different for the random grating and random bar experiments (see above). In the
case of the random bar experiment (i.e. RF width, Fig. 3f), the total number of pairs
was 4821, with highest and lowest bin-yields of 296 (0–75 μm) and 830
(375–450 μm).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data from this study are available from the authors upon reasonable request.

Code availability
The Matlab code that supports the findings of this study are available from the
corresponding author upon reasonable request.
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