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Epigenome-wide meta-analysis of DNA
methylation differences in prefrontal cortex
implicates the immune processes in Alzheimer’s
disease
Lanyu Zhang1,5, Tiago C. Silva 1,5, Juan I. Young2,3, Lissette Gomez3, Michael A. Schmidt 2,3,

Kara L. Hamilton-Nelson3, Brian W. Kunkle2,3, Xi Chen1,4, Eden R. Martin2,3 & Lily Wang 1,2,3,4✉

DNA methylation differences in Alzheimer’s disease (AD) have been reported. Here, we

conducted a meta-analysis of more than 1000 prefrontal cortex brain samples to prioritize

the most consistent methylation differences in multiple cohorts. Using a uniform analysis

pipeline, we identified 3751 CpGs and 119 differentially methylated regions (DMRs) sig-

nificantly associated with Braak stage. Our analysis identified differentially methylated genes

such as MAMSTR, AGAP2, and AZU1. The most significant DMR identified is located on the

MAMSTR gene, which encodes a cofactor that stimulates MEF2C. Notably, MEF2C coop-

erates with another transcription factor, PU.1, a central hub in the AD gene network. Our

enrichment analysis highlighted the potential roles of the immune system and polycomb

repressive complex 2 in pathological AD. These results may help facilitate future mechanistic

and biomarker discovery studies in AD.

https://doi.org/10.1038/s41467-020-19791-w OPEN

1 Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA. 2Dr. John T
Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA. 3 John P. Hussman Institute
for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA. 4 Sylvester Comprehensive Cancer Center, Miller School of
Medicine, University of Miami, Miami, FL 33136, USA. 5These authors contributed equally: Lanyu Zhang, Tiago C. Silva. ✉email: lily.wang@miami.edu

NATURE COMMUNICATIONS |         (2020) 11:6114 | https://doi.org/10.1038/s41467-020-19791-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19791-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19791-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19791-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19791-w&domain=pdf
http://orcid.org/0000-0003-1343-6850
http://orcid.org/0000-0003-1343-6850
http://orcid.org/0000-0003-1343-6850
http://orcid.org/0000-0003-1343-6850
http://orcid.org/0000-0003-1343-6850
http://orcid.org/0000-0001-6080-8755
http://orcid.org/0000-0001-6080-8755
http://orcid.org/0000-0001-6080-8755
http://orcid.org/0000-0001-6080-8755
http://orcid.org/0000-0001-6080-8755
http://orcid.org/0000-0002-8311-4251
http://orcid.org/0000-0002-8311-4251
http://orcid.org/0000-0002-8311-4251
http://orcid.org/0000-0002-8311-4251
http://orcid.org/0000-0002-8311-4251
mailto:lily.wang@miami.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Late-onset Alzheimer’s disease (LOAD) is the most common
cause of dementia, affecting about 10% of people 65 years
and older in the US1. The causes of Alzheimer’s disease

(AD) are complex, with the disease likely resulting from a com-
plicated interplay of genetic factors and environmental factors.
While a number of AD-associated genetic variants have been
identified2,3, they do not completely explain an individual’s risk
for developing AD. Epigenetic studies investigate the mechanisms
that modify the expression levels of genes without changes to the
underlying DNA sequence. In particular, there is growing evi-
dence for the prominent role of DNA methylation in AD. Several
reviews4–7 have provided comprehensive details on recent find-
ings of DNA methylation and other epigenetic alterations in AD.

For neurological disorders such as AD, the use of disease-
relevant tissue is often preferred for epigenetic studies. However,
obtaining sufficient sample sizes for brain studies is challenging
because of the difficulty in procuring postmortem human brain
tissue. This makes it difficult to detect the DNA methylation
differences observed in the brains of AD subjects, because these
differences are often of small magnitude. For example, in the
Lunnon et al. epigenome-wide association study (EWAS)8, which
examined postmortem brain tissues in pathological AD subjects
and controls, the absolute difference in corrected DNA methy-
lation between individuals with the lowest (score 0) and highest
(score VI) Braak score ranged from 1 to 5% change even for the
most significant CpGs in the prefrontal cortex region, a region
that shows considerable vulnerability to AD. Furthermore,
because of methodological differences used for analyzing different
methylation datasets, inconsistencies are often seen across mul-
tiple studies9,10.

To address these challenges, we conducted a meta-analysis of
1030 prefrontal cortex samples. All the samples included in this
meta-analysis were measured on the same Infinium Human-
Methylation450 BeadChip platform, targeted the same prefrontal
cortex region, and included the same pathological variable, Braak
stage, which is a standardized measure of neurofibrillary tangle
burden determined at autopsy. Moreover, we reanalyzed each
dataset using a uniform analytical pipeline. In addition to meta-
analyzing individual CpGs, we also performed a meta-analysis of
genomic regions, as methylation levels are often strongly corre-
lated in closely located CpGs11. Methods for identifying differ-
entially methylated regions (DMRs) can be classified into
supervised methods, which look for regions in the genome with
consecutive small P-values, or unsupervised methods which
group CpGs probes into clusters first and then test the clusters
against phenotype10. We performed a meta-analysis of DMRs
using two complementary analysis tools, a supervised method
comb-p12 and an unsupervised method coMethDMR13. Relevant
to this meta-analysis, the coMethDMR-based meta-analysis
strategy allowed us to assess between cohort heterogeneities in
genomic regions. We identified 119 DMRs and 3751 significant
CpGs that are consistently associated with AD Braak stage in

multiple cohorts. In addition to corroborating previous findings,
our analysis also nominated a number of differentially methylated
genes. Enrichment analysis of differentially methylated genes
highlighted multiple immune processes epigenetically associated
with pathological AD as well as polycomb repressed regions.

Results
Study cohort characteristics. Our meta-analysis included 1030
prefrontal cortex brain samples from four independent cohorts
(Table 1), previously described in the ROSMAP14, Mt. Sinai15,
London8, and Gasparoni16 methylation studies. To assess the
diagnostic utility of DNA methylation as clinical biomarkers, we
also compared methylation differences in brain samples with
premortem whole blood samples from a subset of subjects in the
London cohort. Among the four cohorts, the mean age at death
ranged from 73.6 years to 86.3 years, and the percentage of
females ranged from 51.8 to 63.5%.

Meta-analysis identified methylation differences significantly
associated with AD Braak stage at individual CpGs and co-
methylated genomic regions. Adjusting for estimated cell-type
proportions (i.e., the proportion of neurons), age at death, sex,
and batch effects, our meta-analysis of single CpGs in the four
cohorts identified 3979 statistically significant individual CpGs at
5% false discovery rate (FDR). After eliminating CpGs associated
with smoking17 or overlapping with cross-reactive probes18, we
obtained 3751 significant CpGs (Supplementary Data 1), of which
47.8% is located in noncoding regions. This proportion is lower
than the proportion of noncoding probes (53.2%) on the array (P-
value= 2.18 × 10−11). Among the 3751 CpGs, 339 also reached
genome-wide significance level (see details “Genomic inflation
and sensitivity analysis” section).

The DMRs were identified by both coMethDMR13 and comb-
p12 software. In the coMethDMR approach, we tested 40,010 pre-
defined genomic regions to identify co-methylated and differen-
tially methylated regions associated with Braak stage, adjusting
for estimated neuron proportions, age at death, sex, and batch
effects for each cohort separately. Next, we combined the cohort-
specific P-values for these genomic regions using inverse-variance
weighted regression models for meta-analysis. Alternatively, in
the comb-p approach, we used meta-analysis P-values of
individual CpGs as input, and comb-p was then used to scan
the genome for regions enriched with a series of adjacent low P-
values (Fig. 1).

The coMethDMR and comb-p based meta-analysis approaches
identified 478 and 187 significant DMRs associated with AD
Braak stage, respectively, with 143 being identified by both
methods. After eliminating those DMRs containing cross-reactive
probes18 or smoking-associated probes17, we obtained 119 co-
methylated DMRs at 5% FDR (Supplementary Data 2). The
average number of CpGs per DMR is 5.16 ± 2.80 CpGs. Notably,

Table 1 Sample characteristics of the brain and blood cohorts included in the meta-analysis.

Dataset Tissue Sample size Women N (%) Cases N (%) Age at death mean (SD) Accession

Brain samples cohort
(1) ROSMAP cohort PFC 726 461 (63.5%) 581 (80.0%) 86.3 (4.8) Synapse: syn3157275
(2) Mt. Sinai cohort PFC 141 88 (62.4%) 85 (60.3%) 85.8 (7.8) GEO: GSE80970
(3) London cohort PFC 107 64 (59.8%) 80 (74.8%) 84.6 (9.0) GEO: GSE59685
(4) Gasparoni cohort PFC 56 29 (51.8%) 36 (64.3%) 73.6 (14.7) GEO: GSE66351
(5) London cohort whole blood 69 44 (63.8%) 59 (85.5%) 83.6 (6.2)* GEO: GSE59685

Shown are numbers (and percentages) of samples after quality control.
PFC prefrontal cortex.
*Age at blood draw.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19791-w

2 NATURE COMMUNICATIONS |         (2020) 11:6114 | https://doi.org/10.1038/s41467-020-19791-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


118 out of the 119 DMRs included FDR significant individual
CpGs. On the other hand, only 421 out of the 3751 FDR
significant individual CpGs overlapped with the FDR significant
DMRs. Therefore, methylation differences at individual CpGs and
DMRs did not completely overlap, so analyzing both individual
CpGs and DMRs provided a more complete picture of the Braak-
associated methylome in the prefrontal cortex. Our final set of
DNA methylation differences included these 3751 individual
CpGs along with the 119 DMRs (Fig. 2). The top 20 most
significant CpGs and DMRs are shown in Tables 2 and 3,
respectively. As previous studies have noted8,14,19,20, in both
individual CpG and DMR analyses, we observed that the majority
of the significant methylation differences were hyper-methylated
in AD, for which methylation levels were increased as AD stage
increased. More specifically, 58.6% of significant CpGs and 73.9%
of significant DMRs were hyper-methylated in AD (Supplemen-
tary Data 1 and 2).

Enrichment analysis of significant DNA methylation differ-
ences in pathological AD highlights immune-related processes
and polycomb repressive complex 2 (PRC2). The probes on the
Illumina 450k array are annotated according to their locations
with respect to genes (TSS1500, TSS200, 5′UTR, 1st Exon, gene
body, 3′UTR, and intergenic) or to CpG islands (island, shore,

shelf, and open sea). We tested enrichment of the significant
methylation differences associated with pathological AD in these
different types of genomic features by analyzing individual CpGs
and DMRs separately using Fisher’s exact test. Interestingly,
hypermethylation in AD at individual CpGs and DMRs was
enriched in different features of genes across the genome (Fig. 3a,
b and Supplementary Data 3). Significant hypermethylated indi-
vidual CpGs were over-represented in CpG island and shore but
under-represented in open sea and shelf (Fig. 3a). In contrast, the
hypermethylated DMRs were under-represented in CpG island
but enriched in open sea and shelf (Fig. 3b). In terms of genic
features, the hypermethylated individual CpGs were enriched in
1st Exon, 5′UTR, and gene body but under-represented in
intergenic regions and TSS200 (Fig. 3a). On the other hand, the
hyper-methylated DMRs were only slightly under-represented
in intergenic regions (Fig. 3b). In contrast, there was more
agreement between hypomethylated changes at individual
CpGs and DMRs. Both significant hypomethylated individual
CpGs and DMRs were enriched in open sea, but depleted in CpG
islands.

In addition, we also compared our results with epigenomic
annotations including chromatin states and transcription factor
binding sites. Using combinations of histone modification marks,
computational algorithms such as ChromHMM21 segment
and annotate the genome with different chromatin states
(repressed, poised and active promoters, strong and weak
enhancers, putative insulators, transcribed regions, and large-
scale repressed and inactive domains), which were shown to
vary across sex, tissue type, and developmental age22. For our
analysis, we used the 15-state ChromHMM annotation of the
Roadmap Epigenomics project23. Our enrichment analysis with
respect to chromatin states showed that significant hypermethy-
lated DMRs and CpGs were both enriched in flanking active
promoter regions (TssAFlnk), enhancers (Enh), Transcr. at gene
5′ and 3′ (TxFlnk), and polycomb repressed regions (ReprPC),
but under-represented in promoter regions (TssA), strongly
transcribed regions (Tx), and repressed regions (Quies,
ReprPCWk). In contrast, hypomethylated DMRs and CpGs
were enriched in repressed regions (Quies, ReprPCWk) and
weakly transcribed regions (TxWk), but under-represented in
promoter regions (TssA, TssBiv) (Fig. 3c, d and Supplementary
Data 4). Notably, among the 151 significant CpGs located in
the group of Hox genes on chromosome 7, the majority (135
out of 151) were located in polycomb repressed regions, and the
rest in bivalent enhancer and bivalent/poised TSS regions.
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Fig. 2 Manhattan plot of significant methylation differences in individual CpGs and DMRs identified in meta-analysis using inverse-variance weighted
regression models. The X-axis indicates chromosomes 1–22 and the Y-axis indicates −log10 (P-value), with the horizontal red line indicating a 5% FDR
(false discovery rate) adjusting for multiple comparisons.

Fig. 1 Workflow of meta-analysis for individual CpGs and DMRs.
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Similarly, enrichment tests for regulatory elements using the
LOLA software24 also supported the potential functional
relevance of these significant changes in DNA methylation. In
particular, the significant CpGs were enriched in the binding sites
of 26 transcription factors and chromatin proteins assayed by the
ENCODE project25 (Supplementary Data 5). Notably, the top hits
included EZH2 and SUZ12, both are subunits of polycomb
repressive complex 2 (PRC2), consistent with the observed
enrichment of methylation differences in PRC2 repressed regions
(Fig. 3c, d) and previous observations that DNA methylation
often interact with PRC2 binding26–28. Another top enriched TF
is PU.1, which is critical for the differentiation, proliferation, and
survival of microglia, the resident macrophages of the brain29.
Evidence from a recent GWAS study also suggested PU.1 as a
master regulator for a number of genes associated with delayed
onset of AD, including TREM2, CD33, and ABCA730.

As pathological AD-associated genes can harbor both sig-
nificant individual CpGs and significant DMRs, we performed a
pathway analysis by considering the significant CpGs and DMRs
jointly. The test of KEGG pathways showed that hematopoietic
cell lineage, phagosome, Cytokine–cytokine receptor interaction,
and chemokine signaling pathways were significantly enriched
with methylation differences in pathological AD at 5% FDR
(Table 4). Similarly, gene ontology (GO) analysis showed strong
enrichment in biological processes involving inflammatory
response, immune cell differentiation, and cytokine production,
recapitulating the prominence of immune processes in AD31,32.
Other significant GO terms involved cellular processes previously
shown to be important in AD including cell adhesion,
phagocytosis, cell migration, and synapse pruning.

Prioritizing significant DNA methylation differences with
sample matching. DNA methylation levels are known to be
influenced by aging, which is also the strongest risk factor for AD.
To prioritize significant methylation differences in pathological
AD and minimize confounding effects due to aging, we also
explored an alternative strategy by matching each pathological
AD case with a control subject of the same sex and age at death in
the same cohort. We obtained a total of 346 subjects (173 cases
and 173 controls) for the matched sample set from the London
(n= 46), Mount Sinai (n= 56), and ROSMAP (n= 244) cohorts.
We did not include the Gasparoni cohort for this analysis because
too few age and sex-matched samples (n= 12) were present in
this dataset. The age and sex matched samples were then analyzed
in the same way as described above, except for removing age at
death and sex effects in the linear models. We identified a total of
151 CpGs and 32 DMRs that were significantly different after
matching cases and control samples by sex and age at death
(Supplementary Datas 6 and 7). Among them, 85% (n= 129) of
CpGs and 50% (n= 16) of genomic regions overlapped with the
significant CpGs and DMRs in our main analysis described above
with the same direction of change. In particular, we found that
methylation differences at a number of AD-related genes such as
HOXA3, SLC44A2, AGAP2, CDH9, and MAMSTR were sig-
nificant in both analyses.

Correlation of AD-associated CpGs and DMRs methylation
levels in blood and brain samples. To evaluate the diagnostic
potential of the identified methylation differences, we computed
Spearman rank correlations between inter-individual variations
of the DNA methylation levels in the brain and blood using the
London cohort dataset8, which included 69 pairs of matched
brain and blood samples passing quality control (Table 1). The
difference between age at pre-mortem blood draw and age at
death ranged from 0 to 10 years, with an average of 3.81 ± 2.61T
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years. We performed both an adjusted correlation analysis based
on methylation residuals rresidð Þ, in which we adjusted estimated
neuron proportions for brain samples (or estimated blood cell-
type proportions), array, age at death (for brain samples) or at
blood draw (for blood samples), and sex, and an unadjusted
correlation analysis based on beta values rbetað Þ (Online Meth-
ods). The correlation between methylation levels in brain and
blood were modest at the majority of CpG sites (mean Pearson
r= 0.069, SD= 0.165), which is similar to those reported in Yu
et al.33 for CD4+ lymphocytes and other previous reports33,34.
Among CpGs mapped within the 119 significant DMRs (n=
728), only 11 showed moderate to strong association in brain
and blood in both adjusted and unadjusted analyses (absolute
rbeta ≥ 0:5; FDRbeta<0:05; absolute rresid ≥ 0:5; FDRresid < 0:05).
Similarly, among the 3751 significant individual CpGs, only
39 showed moderate to strong associations (absolute
rbeta ≥ 0:5; FDRbeta < 0:05; absolute rresid ≥ 0:5; FDRresid < 0:05)
in brain and blood. Remarkably, all 50 CpGs showed significant
positive correlations, corroborating previous analyses34 that also
observed a significant negative correlation between brain and
blood is relatively rare.

To further validate these brain-blood correlations, we
performed an additional analysis using the BeCon software35,
which computed correlations between brain and blood methyla-
tion levels in an independent cohort with 16 subjects. We
compared our results from the London cohort with correlation
results between whole blood and Brodmann area 10 (anterior
PFC) in BeCon. Among the 50 CpGs described above, 5 CpGs
(cg03765423, cg16106427, cg18776287, cg22595230, cg00445443)
mapped to HOXA2, intergenic, STK32C, MRPS2, and CENPB
genes also exhibited moderate to strong correlation (absolute R >
0.5) in BA10 (Supplementary Data 8). Again, all these BA10-
blood correlations were positive.

Correlation of methylation levels of significant CpGs and
DMRs in AD with expressions of nearby genes. Among the four
cohorts of brain samples, the ROSMAP study had matched RNA-
seq gene expression data and DNA methylation data available for
529 samples (428 cases and 101 controls). We therefore evaluated
the role of significant DMRs or CpGs by correlating methylation
levels of the significant DMRs or CpGs with the expression values
of genes found in the vicinity (±250 kb from the start or end of
the DMR, or location of CpG). To reduce the effect of potential
confounding effects, when testing for methylation-gene expres-
sion associations, we first adjusted for age at death, sex, cell-type
proportions, and batch effects in both DNA methylation and gene
expression levels separately and extracted residuals from the
linear models. Then we tested for association between methyla-
tion residuals and gene expression residuals, adjusting for
Braak stage.

We found that out of the 118 DMRs that were linked to a gene
transcript (+/−250 kb), 73 (62%) DMRs were associated with gene
expression levels at 5% FDR (Supplementary Data 9). Similarly, out
of the 3642 CpGs that were linked to a nearby gene (+/−250 kb),
we found 652 (18%) CpGs were associated with gene expression
levels at 5% FDR (Supplementary Data 10). Among the significant
DMR–RNA and CpG–RNA associations, 41.1% and 49.2% were
negative associations, respectively. We next compared the strengths
of DMR–RNA with CpG–RNA associations using a generalized
estimating equations (GEE) model where values for−log10 (P-value)
from each DMR or CpG were treated as clusters (Online Methods).
In general, we found the effects of DMRs on gene expression to be
larger than those for single CpGs (P= 2.25 × 10−10), consistent with
the notion that DMRs often have a more relevant biological role
than isolated CpGs.T
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Fig. 3 Enrichment of CpGs significantly associated with AD Braak stage in meta-analysis of individual CpGs and DMRs at 5% FDR. A two-sided Fisher’s
test was used to determine over or under-representation of the significant CpGs in individual CpGs analysis and CpGs mapped within significant DMRs in
various a, b genomic features and c, d chromatin states. ***P-value < 0.001, **P-value < 0.01, *P-value < 0.05, uncorrected for multiple comparisons.
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Correlation and co-localization with genetic susceptibility loci.
To identify methylation quantitative trait loci (mQTLs) for the
significant DMRs and CpGs, we tested associations between the
methylation levels with nearby SNPs, using the ROSMAP study
dataset (imputed to the Haplotype Reference Consortium r1.1
reference panel)36, which had matched genotype data and DNA
methylation data for 688 samples. To reduce the number of tests,
we focused on identifying cis mQTLs located within 500 kb from
the start or end of the DMR (or position of the significant CpG)37.
Among 166,797 SNPs that are associated with AD, 11,670 were
also significantly associated with methylation levels, after cor-
recting for confounding effects age, sex, cell type, batch effects and
PCs in methylation data. Among the 119 DMRs and 3751 CpGs
significantly associated with Braak stage, 37 DMRs and 1010 CpGs
had at least one corresponding mQTL in brain samples, respec-
tively (Supplementary Data 11 and 12).

To evaluate if the significant methylation differences overlap
with genetic risk loci implicated in AD, we compared enrichment
of significant CpGs and DMRs identified in this study with the 24
LD blocks of genetic variants reaching genome-wide significance
in a recent AD meta-analysis3. We found that while no DMRs
overlapped with the 24 LD blocks, 24 FDR significant individual
CpGs overlapped with genetic variants mapped to the HLA-
DRB1, TREM2, NYAP1, SPI1, MS4A2, ADAM10, ACE, and
ABCA7 genes (Supplementary Data 13).

Given the observed overlap between AD pathology associated
CpGs and AD genetic risk loci, we next sought to determine
whether the association signals at the GWAS loci (variant to AD
status as determined by clinical consensus diagnosis of cognitive
status, and variant to CpG methylation levels) are due to a single
shared causal variant or to distinct causal variants close to each
other. To this end, we performed a co-localization analysis using
the method described in Giambartolomei et al.38. The results of
this co-localization analysis strongly suggested39 (i.e., PP3+ PP4
> 0.90, PP4 > 0.8 and PP4/PP3 > 5, Online Methods) that 2 out of

the 24 regions included a single causal variant common to both
phenotypes (i.e., AD status and CpG methylation levels). The
CpGs associated with these causal variants are located on the
SPI130 and ADAM1040 genes (Supplementary Data 14).

Genomic inflation and sensitivity analysis. In this study, we
chose to use the false discovery rate, instead of the more stringent
genome-wide significance threshold, to select significant DNA
methylation differences for enrichment analysis. This was moti-
vated by the observation that in brain disorders such as AD, the
DNA methylation differences in the epigenome are often found to
be modest, so they might be missed by using the more conven-
tional genome-wide significance threshold. To assess the potential
inflation in our results, we estimated genomic inflation factors
using both the conventional and the bacon method41, specifically
proposed for EWAS. As shown by simulation studies41, real
datasets41, and theory42, the conventional genomic inflation
factor (lambda or λ used interchangeably below) is dependent on
the expected number of true associations. Because in a typical
EWAS it is expected that small effects from many CpGs might be
associated with the phenotype, the genomic inflation factor would
overestimate actual test–statistic inflation. To estimate genomic
inflations more accurately in EWAS, Iterson et al.41 developed a
Bayesian method that estimates inflation in EWAS based on
empirical null distributions, which is implemented in the Bio-
conductor package bacon. The estimated genomic inflation fac-
tors for individual cohorts in our study were modest and
comparable to other recent EWAS profiling brain tissues (for
example, Supplementary Fig. 10 in Viana et al.43 showed that
lambdas for different brain regions ranged from 1.02 to 1.23). In
our study, lambdas (λ) by conventional approach ranged from
1.002 to 1.249, and lambdas based on the bacon approach
λ:baconð Þ ranged from 0.986 to 1.082 (Supplementary Fig. 1). In
particular, for the ROSMAP cohort with the largest sample size,

Table 4 Gene set enrichment analysis of significant methylation differences associated with AD Braak stage identified in meta-
analysis using Wallenius’ noncentral hypergeometric test which adjusted for different number of CpGs associated with
each gene.

Gene Set Description P-value FDR

GO:0002684 Positive regulation of immune system process 4.00E−07 2.94E−04
GO:0022409 Positive regulation of cell–cell adhesion 3.88E−10 1.96E−06
GO:0030217 T cell differentiation 3.32E−06 1.99E−03
GO:0050863 Regulation of T cell activation 1.35E−07 1.62E−04
GO:0050870 Positive regulation of T cell activation 4.89E−07 3.27E−04
GO:0043312 Neutrophil degranulation 5.28E−05 1.97E−02
GO:0030097 Hemopoiesis 1.10E−07 1.39E−04
GO:0006952 Defense response 1.57E−07 1.78E−04
GO:0098609 Cell–cell adhesion 3.23E−07 2.72E−04
GO:0097530 Granulocyte migration 7.42E−05 2.68E−02
GO:0002523 Leukocyte migration involved in inflammatory response 2.54E−06 1.56E−03
GO:0002573 Myeloid leukocyte differentiation 3.76E−06 2.05E−03
GO:0002429 Immune response-activating cell surface receptor signaling pathway 1.55E−05 7.21E−03
GO:0006909 Phagocytosis 5.32E−06 2.75E−03
GO:0071706 Tumor necrosis factor superfamily cytokine production 1.07E−04 3.69E−02
GO:0098883 Synapse pruning 3.42E−05 1.41E−02
GO:0045123 Cellular extravasation 5.37E−05 1.97E−02
GO:0016477 Cell migration 7.73E−05 2.75E−02
GO:0050854 Regulation of antigen receptor-mediated signaling pathway 1.29E−04 4.38E−02
KEGG:hsa04640 Hematopoietic cell lineage 1.55E−04 3.96E−02
KEGG:hsa04145 Phagosome 3.01E−04 3.96E−02
KEGG:hsa04060 Cytokine–cytokine receptor interaction 3.53E−04 3.96E−02
KEGG:hsa04062 Chemokine signaling pathway 5.87E−04 4.95E−02

Shown are gene ontology or KEGG database ID (Gene Set), a description of the pathway (Description), and significance assessment (P-value, FDR).
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genomic inflation factors were close to 1 by both approaches (λ=
1.016, λ.bacon= 1.002) Genomic inflation factors for the meta-
analysis were λ= 1.264 and λ.bacon= 1.086.

In addition, we conducted sensitivity analyses to evaluate the
impact of inflation on our enrichment analysis results. To this
end, we performed inflation correction for single cohort effect
sizes and standard errors, and then meta-analyzed the bacon-
corrected effect sizes and standard errors. Enrichment analysis
was then conducted for the 2767 CpGs that reached FDR
significance and the 339 CpGs that reached the 2.4 × 10−7

genome-wide significance level44 (Supplementary Data 15). Our
results showed that the functional enrichment results in these
sensitivity analyses were largely congruent with our main analysis
results (Supplementary Figs. 2–3 and Supplementary Data 16–
18). In particular, we still observed significant enrichment in
polycomb repressed regions for hyper-methylated CpGs in AD, as
well as in binding sites of polycomb repressive complex 2 subunits
EZH2 and SUZ12. Moreover, pathway analysis still showed
significant enrichment in immune system related pathways
(Supplementary Data 19–20) for both FDR significant and
genome-wide significant CpGs after bacon correction.

Discussion
We conducted a comprehensive meta-analysis of four cohorts of
prefrontal cortex brain samples to prioritize consistent DNA
methylation differences involved in pathological AD. Our study
illustrates the power of meta-analysis for EWAS. In individual
cohort analysis, we obtained between 0 and 40 FDR significant
CpGs per cohort. In comparison, we obtained 3751 FDR sig-
nificant CpGs in our meta-analysis. With the larger sample size
utilized by this meta-analysis, in addition to replicating previous
cohort-specific analysis results, we were able to identify many
new genomic regions and sites associated with AD pathology.

To reduce the concerns about false positives, we employed
several strategies in addition to the sensitivity analysis described
above. First, we made sure that our analyses were robust to dif-
ferent pre-processing pipelines. To this end, we compared our
single-CpG analysis results for the London and Mt. Sinai cohorts
using our preprocessing pipeline with those used in a previous
study15 and we found the use of different preprocessing methods
did not influence the results of statistical analysis (Supplementary
Data 21). Second, in all our analyses, including the integrative
analysis of DNA methylation with gene expression or genetic
variants, we adjusted for potential confounding effects including
age at death, sex, estimated cell-type proportions, and batch
effects. Third, as CpG sites located in gene regulatory regions
often act as functional units when regulating gene expression,
they usually have a high degree of co-methylation. Therefore, in
addition to identifying CpGs associated with AD, we also iden-
tified differentially methylated regions by intersecting two DMR
analysis methods, coMethDMR and comb-p, which allowed us to
borrow information across multiple CpGs within a region to
improve both sensitivity and specificity. While a recent review9

commented that various DMR tools often agreed poorly in single
cohort analysis, here we reported robust findings for 119 DMRs
that were identified by two methods that are vastly different in
methodology, which is probably due to the larger sample size
utilized by our meta-analysis. Fourth, as an alternative strategy to
reduce confounding by sex and age at death, we also employed a
matching design that matched each case with a control sample of
the same sex and age at death. While this greatly reduced the
sample sizes, we still were able to identify 32 DMRs and 151
CpGs at FDR significance with substantial overlap with our main
meta-analysis results. Together, these strategies enabled us to
identify a list of informative and unbiased regulatory changes in

DNA methylation associated with AD pathology. Remarkably, we
found a substantial number of our top results were consistent
with recent AD DNA methylation literature (Supplementary
Data 1 and 2).

Our meta-analysis of individual CpGs identified many of the
loci previously reported in single cohort DNA methylation
analysis8,14–16 include genes such as HOXA3, ANK1, RHBDF2,
SLC44A2, and BIN1. Notably, among the 3751 FDR significant
CpGs (Supplementary Data 1), 151 CpGs were mapped to the
group of HOX genes on chromosome 7, where aberrant methy-
lation in a 48 kb region near the HOXA gene cluster has been
shown to be associated with AD neuropathology in multiple AD
EWAS datasets14–16. Two CpGs in the HOXA3 gene (cg22962123
and cg01301319) also ranked as the most significant association
in our meta-analysis of individual CpGs. Another noteworthy
gene was AGAP2, also known as PIKE, which mediates the
neuroprotective effects of BDNF in response to amyloid beta-
induced toxicity46. Interestingly, this gene is observed to be
expressed mainly in neurons46. Our meta-analysis result of sig-
nificant promoter hyper-methylation in AGAP2 is consistent with
previous studies that suggested this gene might be involved in
reduced functionality of BDNF and subsequent neuronal death in
AD46.

The significant DMRs were identified by both comb-p and
coMethDMR software, which allowed us to determine high
confidence regions with consistent changes in multiple CpGs
across cohorts. In addition, coMethDMR highlighted co-
methylated regions within each cohort (Supplementary Fig. 4).
The most significant DMR was in the promoter region of the
MAMSTR gene, which was consistently hypermethylated in AD
across the four cohorts (Supplementary Fig. 5). MAMSTR is a
transcriptional coactivator that stimulates Myocyte Enhancer
Factor-2C (MEF2C), which was recently found to modulate
microglial responses to promote homeostasis under proin-
flammatory conditions in the aging brain47. Genetic variants
in the MEF2C locus were found to be associated with LOAD in a
recent meta-analysis2. Our result is consistent with previous
studies that suggested loss of MEF2C function might
contribute to the increased sensitivity of microglia to immune
stimuli, as commonly observed in neurodegenerative diseases
such as AD47.

In addition to corroborating previous findings in single-cohort
analysis using the same methylation datasets (Supplementary
Data 1 and 2), our meta-analysis also uncovered a number of
novel differentially methylated genes. For example, among genes
that overlapped with the top 20 DMRs (Table 3), is CAMTA1
(calmodulin binding transcription activator 1), for which variants
were shown to be associated with episodic memory48 and more
recently with immediate recall in GWAS studies49. Given mem-
ory impairment is an early feature of AD, DNA methylation
differences affecting this gene are particularly relevant. Another
cardinal feature of AD is chronic neuroinflammation. In patho-
logical AD samples, our meta-analysis identified significant
hypomethylation in the promoter region of the AZU1 gene, also
known as CAP37, which is a neutrophil granule protein that helps
defend the host against microbial pathogens and regulate
inflammation50. Previously, mRNA expression levels of CAP37
were observed to be upregulated in AD patients51,52. It has been
suggested that in AD, elevated levels of amyloid beta and
proinflammatory cytokines might trigger upregulation of CAP37,
which then activates microglial cells50, whose function has been
observed to be dysregulated in AD. Taken together, these results
demonstrated our meta-analysis replicated methylation differ-
ences in a number of genes previously implicated in pathological
AD, as well as nominated additional genes likely to be involved in
AD pathogenesis.
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As in previous single cohort studies8,14,19,20, we observed that
the majority of the significant DNA methylation differences were
hypermethylated in pathological AD. Our enrichment analysis
brought to light the potential roles of these hypermethylations in
regulating active and repressive elements in pathological AD.
Comparison of the DNA methylation differences with genomic
annotations and additional epigenomic features such as chro-
matin states showed these hyper-methylated changes were enri-
ched in CpG islands, gene body, flanking active TSS, and
polycomb repressed regions where many developmental genes
such as the Hox genes are located. An integrative analysis of the
DNA methylation differences with ChIPSeq performed by the
ENCODE project showed these hypermethylations were also
enriched in the binding sites of two chromatin proteins, EZH2
and SUZ12, both of which are core subunits of the polycomb
repressive complex 2 (PRC2) protein complex.

PRC2 is a type of polycomb group (PcG) protein and plays
important roles in multiple biological processes including pro-
liferation and differentiation as well as maintenance of cellular
identity through regulation of gene expression. The PRC2 protein
complex is composed of three core component proteins: SUZ12,
EED, and either EZH1or EZH12, which along with RBBP4 or
RBBP7 forms distinct subcomplexes by associating with different
interaction partners. It is highly conserved and was originally
discovered in Drosophila studies as a suppressor of Hox
genes53,54. It is well known that PRC2 mediates the methylation
of Histone 3 lysine 27 (H3K27). Methylation of H3K27 negatively
regulates gene expression via chromatin compaction and shows a
highly dynamic profile during developmental transitions55–57. Of
particular relevance to AD, PRC2-mediated gene silencing has
also been observed in adult brains, long after the completion of
neuronal differentiation58. Furthermore, PRC2 was recently
shown to regulate neuronal lineage specification and to maintain
neuronal functions. Most importantly, PRC2 silences genes
involved in neurodegeneration and its deficiency leads to the de-
repression of developmental regulators such as the Hox gene
clusters, which manifest in progressive and fatal neurodegenera-
tion in mice58.

Previously, substantial cross-talk has been observed between
PRC2 and DNA methylation, two key epigenetics mechanisms for
gene repression26–28. Although the targeting of PRC2 to methy-
lated CpGs has also been shown in vitro59, PRC2 typically binds
to unmethylated CpG islands60 at the promoters of inactive
developmental genes. Dysfunction of PRC2 is associated with
alterations of DNA methylation of CpGs in promoters of devel-
opmental genes61. Conversely, it has also been shown that loss of
DNA methylation results in enhanced H3K27me3, suggesting
that PRC2 can serve as a back-up repressive complex for newly
hypomethylated CpGs. In particular, epigenetic switching
has been observed in development62 and cancer cell lines63,64,
wherein CG-rich regions of genes silenced by PRC2 lose their
polycomb marks but gain DNA methylation and remain
repressed. Our meta-analysis revealed substantial hypermethyla-
tion in AD, which was significantly over-represented in
polycomb repressed regions (Fig. 3 and Supplementary Data 4, 5).
These observations prompted us to hypothesize that epigenetic
switching might also be involved in AD, where defects in PRC2
functionality might have influenced the observed DNA hyper-
methylation changes, to continue to repress the PRC2 target
genes. When we examined PRC2 target genes58, we found many
of these genes had low normalized gene expression levels in both
pathological AD cases (Braak stage 3–6) and controls (Braak stage
0–2) in the ROSMAP samples (Supplementary Data 22), con-
sistent with recent studies that have suggested DNA methylation
and PRC2 often complement each other in gene silencing26,27,63.
Although epigenetic switching do not cause de novo repression, it

might potentially participate in AD pathogenesis by modifying
epigenetic plasticity64. Future studies that perform high
throughput sequencing on chromatin modification, DNA
methylation, and gene expression changes in parallel would help
elucidate the complex interactions between these epigenetic
mechanisms underlying AD.

The results of our pathway analysis overwhelmingly point to
immune system alterations in pathological AD. A main hypoth-
esis in AD pathogenesis states that accumulation of amyloid beta
in the brain triggers a cascade of events that culminate with
neuronal death and brain atrophy, and in response the brain
activates innate immune responses that include microglia and
astrocyte changes31,32. Indeed, genetic variants that increase AD
risk include astrocyte and microglia expressing genes involved in
the innate immune system and inflammation2,65–67. While pre-
vious studies have associated AD with inflammatory responses
through genetics, gene expression, or proteins68–70, our study
provides strong support that these changes can also be observed
in the epigenome, in particular in DNA methylation.

Although overall brain and blood DNA methylations did not
correlate well8,34, we did observe robust brain-blood correlations
for a few significant methylation differences in both the London8

and Edger et al.35 cohorts, possibly reflecting the systemic
inflammation associated with AD32. Future studies are needed to
further evaluate and validate these potential biomarkers before
their adoption in clinics.

Traditionally neuroinflammation in AD has been viewed as a
reactive process, however more recent studies supported the
notion that immune actions occur early in the disease course and
can, at least at a given time point, drive and sustain AD
pathology31,71,72. A recent gene expression network analysis
nominated the immune-specific and microglia-specific co-
expression module as the most significant module associated with
AD pathology68. Moreover, recent GWAS studies have demon-
strated that AD-associated common and rare genetic variants are
linked to genes that regulate immune processes2,65–67 including
ABCA7, CLU, CR1, MS4A4E/MS4A6A, CD33, EPHA1, HLA-
DRB5, HLA-DRB1, INPP5D, MEF2C, SORL1, and TREM2.
Notably, several of these AD-associated genes (CD33, MS4A4E/
MS4A6A, TREM2, and ABCA7) contained binding sites for the
transcription factor PU.1, a central hub in the AD gene network
that is critical for regulating microglial gene expression73. Pre-
viously, PU.1 binding sites were shown to be enriched in epige-
nomic signals in AD mouse models using ChIPseq experiments74.
Consistent with these previous studies, we observed significant
differential methylation at several immune-related genes with
PU.1 binding sites in our meta-analysis, including MS4A6A,
MS4A4A, and TREM2 genes as well as the SPI1 gene that encodes
PU.1. Interestingly, the most significant DMR identified in this
meta-analysis is located on the MAMSTR gene, which encodes a
cofactor that interacts with MEF275, a transcription factor that
cooperates with PU.176,77.

As amyloid beta might be deposited in the brain decades before
the onset of clinical symptoms, DNA methylation differences that
reflect inflammatory responses might provide a useful source of
biomarkers for early detection of AD. It has also been proposed
that targeting glia cells and reducing neuroinflammation may be a
viable approach for delaying the onset and progression of AD78.
For example, the HDAC-inhibitor Vorinostat was recently shown
to be effective at reducing transcription factor PU.1 expression in
human microglia73. On the other hand, epigenetic therapies that
leverage the plastic nature of DNA methylation might also be an
alternative strategy to modulate inflammation79.

Several limitations of the current study are in order. First,
the 450k arrays used by the studies analyzed in this meta-
analysis cannot distinguish 5-methylcytosine (5mC) from 5-
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hydroxymethylcytosine (5hmC). This complicates the biological
interpretation of the observed methylation differences. Efforts to
identify 5hmC in AD are underway and they provide an
enhanced understanding of the biological role of DNA mod-
ifications80–83. Meta-analysis strategies such as the one employed
here could be similarly applied to large datasets that discriminate
between 5mC and further oxidized DNA modifications. Also,
although using target tissues to study brain disorders is often
preferred, there are still issues with using postmortem brain tissue
in such studies. For example, it typically represents the end stages
of the disease, and it is still unclear if there are postmortem
changes in methylation patterns and how postmortem intervals
might affect them. In this study, we did not adjust for post-
mortem interval (PMI), because in the ROSMAP cohort PMI was
not significantly associated with Braak stage (Spearman correla-
tion r=−0.018, P-value= 0.6156), so is unlikely to be a con-
founder for it. Also, PMI was not available for the other three
public datasets (London, Mount Sinai, Gasparoni) we analyzed.
Furthermore, the methylation levels in the studies used here were
measured on the bulk prefrontal cortex, which contains a com-
plex mixture of cell types. To reduce confounding effects due to
different cell types, we included estimated cell-type proportions of
each brain sample as a covariate variable in all our analyses.
Currently, a challenge with cell-type specific studies is that they
are often limited to smaller sample sizes due to labor-intensive
sample preparation procedures and therefore have limited sta-
tistical power. Finally, the associations we identified do not
necessarily reflect causal relationships. Future studies that employ
longitudinal designs with AD endophenotypes are needed to
identify causal changes in DNA methylation as AD initiates and
progresses.

In summary, we have identified numerous methylation dif-
ferences at DMRs and CpGs consistently associated with AD
Braak stage in multiple cohorts. Enrichment analysis of these
significant methylation differences highlights the particularly
relevant roles of PRC2 and immune processes in AD pathology.
Our analysis results suggest a meta-analysis that synthesizes
information from multiple large cohorts might be a useful
strategy for uncovering the epigenetic architecture underlying
AD. These findings will be valuable for designing future studies
that more precisely map AD-associated changes in the
epigenome.

Methods
Study cohorts. Our meta-analysis included a total of 1030 brain samples in four
independent cohorts, collected from four different brain banks. The ROSMAP
cohort included samples from the Religious Order Study (ROS) and the Memory
and Aging Project (MAP)84. Samples of the Mount Sinai cohort were obtained
from the Mount Sinai Alzheimer’s Disease and Schizophrenia Brain Bank, pre-
viously described in Smith et al.15. The London cohort included samples obtained
from the MRC London Brain Bank for Neurodegenerative Disease, previously
described in Lunnon et al.8. Samples in the fourth cohort were obtained from the
Gasparoni et al.16 study. In all these datasets, brain samples were classified
according to Braak stage85, with scores ranging from 0 (control) to VI (late stage
tau pathology AD), indicating different levels of severity of the disease. In addition,
to assess the diagnostic utility of DNA methylation as clinical biomarkers, we also
studied methylation changes in premortem whole blood samples from a subset of
subjects in the London cohort.

Preprocessing of DNA methylation data. All methylation datasets were mea-
sured by the same Illumina HumanMethylation 450k beadchip, which included
more than 450,000 methylation sites primarily at genic regions and CpG islands86.
Supplementary Data 23 shows the number of CpGs and samples removed at each
quality control step. Quality control for CpG probes included several steps: First,
when raw.idat files were available for the cohort, we selected probes with detection
P-value < 0.01 for all the samples in the cohort. A small detection P-value corre-
sponds to significant difference between signals in the probes compared to back-
ground noise. Next, probes on the X and Y chromosomes were removed, as were
those in which a single nucleotide polymorphism (SNP) with minor allele fre-
quency (MAF) ≥ 0:01 was present in the last five base pairs of the probe. We did

not remove cross-reactive probes18 or probes associated with cigarette smoking17,
but chose to examine them posthoc in the list of significant DMRs and CpGs, as
was previously done in other large scale meta-analyses87. Quality control for
samples included restricting our analysis to samples with good bisulfite conversion
efficiency (i.e., ≥88%) and principal component analysis (PCA). More specifically,
PCA was performed using the 50,000 most variable CpGs for each cohort. Samples
that were within ±3 standard deviations from the mean of PC1 and PC2 were
selected to be included in the final sample set.

The quality controlled methylation datasets were next subjected to the QN.
BMIQ normalization procedure as recommended by a recent systematic study of
different normalization methods88. More specifically, we first applied quantile
normalization as implemented in the lumi R package to remove systematic effects
between samples. Next, we applied the β-mixture quantile normalization (BMIQ)
procedure45 as implemented in the wateRmelon R package89 to normalize beta
values of type 1 and type 2 design probes within the Illumina arrays. To benchmark
our pre-processing pipeline, we compared our single CpG analysis results for the
London and Mount Sinai cohorts with published results15 using alternative dasen
pre-processing pipeline89 (Supplementary Data 21).

Meta-analysis. First, we performed cohort specific analyses for individual CpGs.
The association between CpG methylation levels and Braak stage was assessed
using linear statistical models in each cohort. Given that methylation M-values
(logit transformation of methylation beta values) has better statistical properties
(i.e., homoscedasticity) for linear regression models90, we used the M-values as the
outcome variable in our statistical models. We adjusted for potential confounding
factors including age at death, sex, methylation slide effects, and cell-type pro-
portions (i.e., proportions of neurons) in the samples estimated by the CETS R
package91. For the ROSMAP cohort, we also included the variable “batch” that was
available in the dataset to adjust for technical batches which occurred during data
generation.

To meta-analyze individual CpG results across different cohorts, we used the
meta R package. The evidence for heterogeneity of study effects was tested using
Cochran’s Q statistic92. The inverse-variance weighted fixed effects model was
applied to synthesize statistical significance from individual cohorts. Although the
fixed effects model for meta-analysis does not require the assumption of
homogeneity93, for those regions with nominal evidence for heterogeneity
(nominal Pheterogeneity < 0.05), we also applied random effects meta-analysis94 and
assigned final meta-analysis P-value based on the random effects model.

For region based meta-analysis, we used two analytical pipelines, the comb-p12

approach and the coMethDMR13 approach, and selected significant DMRs
identified by both methods. Briefly, comb-p takes single CpG P-values and
locations of CpG sites to scan the genome for regions enriched with a series of
adjacent low P-values. In our analysis, we used meta-analysis P-values of the four
brain samples cohorts as input for comb-p. As comb-p uses the Sidak method95 to
account for multiple comparisons, we considered DMRs with Sidak P-values less
than 0.05 to be significant based on comb-p. We used the default setting for our
comb-p analysis, with parameters --seed 1e−3 and --dist 200, which required a P-
value of 10−3 to start a region and extend the region if another P-value was within
200 base pairs.

In the coMethDMR approach, we performed cohort specific analyses for
genomic regions first. We define “contiguous genomic regions” to be genomic
regions on the Illumina array covered with clusters of contiguous CpGs, where the
maximum separation between any two consecutive probes is 200 base pairs. First,
coMethDMR selects co-methylated subregions within the contiguous genomic
regions. Next, we summarized methylation M values within these co-methylated
subregions using medians and tested them against AD Braak stage. In the same way
as in single CpG analyses, we adjusted for potential confounding factors including
age at death, sex, methylation slide, and cell-type proportions in the samples
estimated by the CETS R package91. For the ROSMAP cohort, we also included the
variable “batch” that was available in the dataset to adjust for technical batches
which occurred during data generation. The cohort specific P-values for each
contiguous genomic region were then combined across cohorts using the inverse-
variance weighted fixed effects meta-analysis model (or inverse-variance weighted
random effects model if test of heterogeneity had a P-value less than 0.05) as
described above. Note that the coMethDMR approach allowed us to assess among
cohort heterogeneities for genomic regions. DMRs with less than 5% false discovery
rate (FDR) were considered to be significant based on coMethDMR. We then
selected DMRs that are significant by both comb-p and coMethDMR. Finally, we
excluded CpGs and DMRs that overlapped with any of the 2623 CpGs associated
with smoking identified in Joehanes et al.17 or any of the cross-reactive probes
identified in Chen et al.18.

To prioritize methylation changes most likely to be affected by the AD
pathogenesis process, we also performed an analysis using an alternative strategy to
control for confounding effects for age and sex. More specifically, we first matched
each case with a control sample with the same age at death (in years) and sex in the
same cohort using the matchControls function in the e1071 R package. When there
are multiple matched control samples, the control sample with the most similar age
as the case sample is selected. The age and sex matched samples were then analyzed
in the same way as described above, except for removing age at death and sex
effects in the linear models.
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To assess inflation of test statistics in this study, we used Quantile–quantile (QQ)
plots of observed and expected distributions of P-values for each cohort. In addition,
we also computed genomic inflation factors for each cohort and meta-analysis,
using both the conventional approach and the more recently proposed bacon
method as described in Iterson et al.41 and implemented in the bacon R package.

Functional annotation of significant methylation changes. The identified
methylation changes at individual CpGs and DMRs were annotated using both the
Illumina (UCSC) gene annotation and the GREAT (Genomic Regions Enrichment
of Annotations Tool) annotation96 with the default “Basal plus method” that
associates genomic regions to regulatory domain of genes.

To test for over-representation and under-representation of significant DMRs
in different types of genomic regions with respect to CpG islands or genes, we used
Fisher’s exact test, which compared the proportion of CpGs within significant
DMRs that mapped to a particular type of genomic region (e.g., CpG islands)
(foreground) to the proportion of CpGs in contiguous genomic regions covered by
CpGs on the array that mapped to the same type of genomic region (background).
Similarly, we also used Fisher’s test to assess enrichment of significant DMRs in
different chromatin states by comparing with the 15-chromatin state data
estimated with ChromHMM21 using a DLPFC tissue sample (E073) from the
Roadmap Epigenomics Project23. The enrichment of significant CpGs, or DMSs
(differentially methylated sites), were tested in the same way, except for replacing
foreground with significant DMSs and background with all probes on the array. In
addition, we also explored an alternative enrichment analysis that accounts for
correlations between CpGs using a logistic mixed effects regression model. More
specifically, for each type of genomic feature (e.g., CpG island), we tested for an
association between the type of genomic region (e.g., isCpGisland= “yes” or “no”)
and significance of the CpG (e.g., isSignificant= “yes” or “no”). Random effects for
each chromosome were also included in this model to account for correlations
between CpGs within the same chromosome. This analysis was performed using
SAS procedures GLIMMIX and HPMIXED, which implemented specialized high-
performance techniques designed to cope with estimation problems in mixed
effects models with large datasets. The enrichment analysis results based on the
mixed model were similar to those based on Fisher’s test (Supplementary Data 24).

To identify biological pathways enriched with significant methylation changes,
because significant DMRs and DMSs can co-localize to the same gene, we
combined CpGs from DMRs and DMSs and tested for enrichment using the
missMethyl R package97. We grouped the FDR significant GO terms into several
clusters based on similarity of their member genes, using the Jaccard similarity
index. A total of 19 clusters of GO terms was obtained and we selected one term to
represent each resulting cluster.

Correlation of significant DMRs with expression of nearby genes. The ROS-
MAP study also generated RNA-seq data for a subset of samples with available
DNA methylation data. We used 529 samples with matched DNA methylation and
gene expression data for this analysis. More specifically, normalized FPKM
(Fragments Per Kilobase of transcript per Million mapped reads) gene expression
values for the ROSMAP study were downloaded from the AMP-AD Knowledge
Portal (Synapse ID: syn3388564). Next, for each significant DMR identified in the
meta-analysis, we first removed confounding effects in DNA methylation data by
fitting the model median methylation M value ~ neuron.proportions + batch +
sample.plate array + ageAtDeath + sex and extracting residuals from this model,
which are the methylation residuals. Similarly, we also removed potential con-
founding effects in RNA-seq data by fitting model log2(normalized FPKM values +
1) ~ ageAtDeath + sex + markers for cell types. The last term, “markers for cell
types,” included multiple covariate variables to adjust for the multiple types of cells
in the brain samples. More specifically, we estimated expression levels of genes that
are specific for the main five cell types present in the CNS: ENO2 for neurons,
GFAP for astrocytes, CD68 for microglia, OLIG2 for oligodendrocytes, and CD34
for endothelial cells, and included these as variables in the above linear regression
model, as was done in a previous large study of AD samples14. The residuals
extracted from this model are the gene expression residuals. For each gene
expression and DMR pair, we then tested the association between gene expression
residuals and methylation residuals using a linear model: gene expression residuals
~ methylation residuals + Braak stage. For significant CpGs this analysis was
repeated, except for replacing median methylation level in the DMR with methy-
lation level of the CpG, and correlating with expression values of genes found ±250
kb away from the CpG. To compare the strengths of DMR–RNA with CpG–RNA
associations, we used a generalized estimating equations (GEE) model where
�log10 (P-value) from each DMR or CpG were treated as clusters. The GEE model
included �log10 (P-value) of the DNA methylation to RNA associations as the
outcome variable, and is DMR (yes/no) as the independent variable. We assumed
an exchangeable working correlation structure for the clusters of correlated
observations (i.e., values of �log10 (P-value) for the same DMR or CpG), along
with log link and gamma distribution for the outcome variable.

Correlation and co-localization with genetic susceptibility loci. The GWAS
regions associated with AD were obtained from Supplementary Data 8 of the recent
AD meta-analysis described in Kunkle et al.3, which identified 24 LD blocks with

genetic variants reaching genome-wide significance. For the methylation quanti-
tative trait loci (mQTLs) analysis, we used the ROSMAP study dataset, which also
had matched genotype data and DNA methylation data for 688 samples. More
specifically, ROSMAP genotype data was downloaded from AMP-AD
(syn3157325) and imputed to the Haplotype Reference Consortium r1.1 reference
panel36. To reduce the number of tests, we focused on cis mQTLs located within
500 kb from the start or end of the DMR as previously done37. We additionally
required SNPs to (1) have minor allele frequency of at least 1%, (2) be imputed
with good certainty: information metric (info score) ≥ 0.4, and (3) be associated
with AD case–control status (as determined by clinical consensus diagnosis of
cognitive status), after adjusting for age, sex, batch, and the first three PCs esti-
mated from genotype data, at nominal P-value less than 0.05. We then fit the linear
model methylation residual ~ SNP dosage + batch + PC1+ PC2+ PC3, where
PC1, PC2, and PC3 are the first three PCs estimated from genotype data, to test the
association between methylation residuals in CpGs and the imputed allele dosages
for SNPs to identify mQTLs. The analysis for DMRs is the same except for
replacing methylation residual with median (methylation residuals) of all CpGs
located within the DMR. For co-localization analysis, we used the R package coloc
to compare association signals in the AD GWAS meta-analysis3, which associated
genetic variants with AD status (trait 1), with results from a mQTL analysis which
associated genetic variants with methylation levels at CpGs within 500 kb of the 24
LD blocks (trait 2) computed using the ROSMAP dataset. Given observed data for
trait 1 and trait 2, the co-localization analysis computes Bayesian posterior prob-
abilities (PPi) for each of the following five hypotheses38: (a) H0: No association
with either trait; (b) H1: Association with trait 1, not with trait 2; (c) H2: Asso-
ciation with trait 2, not with trait 1; (d) H3: Association with trait 1 and trait 2, two
independent SNPs; and (e) H4: Association with trait 1 and trait 2, one shared SNP.
We set prior probabilities at their default values. The summary statistics obtained
in Kunkle et al.3 were downloaded from https://www.niagads.org/igap-rv-
summary-stats-kunkle-p-value-data (file “Kunkle_etal_Stage1_results.txt”).

Correlation of methylation changes in brain and blood samples. Using the
London cohort8, which consisted of 69 samples with matched PFC and blood
samples, we compared brain-blood methylation levels in significant CpGs and
those CpGs mapped within significant DMRs using Spearman correlations. Two
approaches were used to quantify methylation levels: beta values or corrected
methylation levels (i.e., methylation residuals adjusted for estimated neuron pro-
portions for brain samples (or estimated blood cell-type proportions), array, age at
death (for brain samples) or age at blood draw (for blood samples), and sex as
described above). In addition, we also conducted look up analysis using the BeCon
tool35, which compared brain-blood methylation levels of Broadmann areas 7, 10,
and 20 in postmortem samples of 16 subjects.

In all analyses, to account for multiple comparisons, we computed FDR using
the method of Benjamini and Hochberg98. Associations with 5% or less FDR were
considered to be FDR significant. All analyses were performed using the R software
(https://www.r-project.org/; version 3.6), Python software (version 2.7.12), PLINK
(version 2), and SAS (version 9.4).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
All datasets analyzed in this study are publicly available as described in Table 1 and
“Methods” section. The Mt. Sinai, London, Gasparoni and ROSMAP datasets can be
accessed from GEO (accessions GSE80970, GSE59685, GSE66351) and Synapse (https://
doi.org/10.7303/syn3157275). Source data are provided with this paper.

Code availability
The scripts for the analysis performed in this study can be accessed at https://github.com/
TransBioInfoLab/ad-meta-analysis. The version number of the software used can be
accessed at end of each individual script under “Session information”.
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