
ARTICLE

Alkyl halides as both hydride and alkyl sources in
catalytic regioselective reductive olefin
hydroalkylation
Xianxiao Chen1,2, Weidong Rao 1, Tao Yang 2✉ & Ming Joo Koh 2✉

Among the plethora of catalytic methods developed for hydrocarbofunctionalization of olefins

to date, reactions that regioselectively install a functionalized alkyl unit at the 2-position of a

terminal unactivated C=C bond to afford branched products are scarce. Here, we show that a

Ni-based catalyst in conjunction with a stoichiometric reducing agent promote Markovnikov-

selective hydroalkylation of unactivated alkenes tethered to a recyclable 8-aminoquinaldine

directing auxiliary. These mild reductive processes employ readily available primary and

secondary haloalkanes as both the hydride and alkyl donor. Reactions of alkenyl amides with

≥ five-carbon chain length regioselectively afforded β-alkylated products through remote

hydroalkylation, underscoring the fidelity of the catalytic process and the directing group’s

capability in stabilizing five-membered nickelacycle intermediates. The operationally simple

protocol exhibits exceptional functional group tolerance and is amenable to the synthesis of

bioactive molecules as well as regioconvergent transformations.
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The abundance, low cost and distinct reactivity profiles of
alkenes have enabled these feedstock molecules to be
widely utilized in olefin functionalization reactions for

various chemical synthesis applications1–3. In this respect, the
installation of a hydrogen and carbon-based moiety across π-
systems represents an effective strategy for C–C bond construc-
tion4–6. Numerous hydrocarbofunctionalization protocols rely on
conjugation (i.e., 1,3-dienes7–11, olefins such as styrenes12–14,
alkenyl boronates15,16, and Michael acceptors17) to deliver high
regioselectivity. In contrast, reactions with unactivated aliphatic
C=C bonds are typically plagued by lower substrate reactivity
and/or poorer regiochemical differentiation leading to unsa-
tisfactory levels of site selectivity. Notwithstanding these diffi-
culties, remarkable advances for both anti-Markovnikov18–25

(linear)- and Markovnikov26–30 (branched)-selective hydro-
arylations of alkyl-substituted alkenes have been made. A single
report on Pd-catalyzed olefin hydroalkynylation/hydroalkenyla-
tion to afford linear products was also recently disclosed31. On
the other hand, there is growing demand for methods that furnish
C–C bonds between two sp3-hybridized motifs, which are crucial
for assembling the skeletal backbone of organic entities en route
to bioactive compounds32,33. Accordingly, hydroalkylations
across aliphatic olefins have been devised, although the vast
majority involved linear-selective additions (Fig. 1a). Of these
cases, either a limited range of ureas34, organometallic
reagents35,36 or carbonyl compounds37–39 were employed as
nucleophiles, or an exogenous protic source40 or hydrosilane/base
reagent41–45 is needed to (i) promote protodemetallation or (ii)
generate the requisite metal-hydride species.

To date, highly Markovnikov-selective hydroalkylations of
aliphatic π-systems have been largely achieved with 1,1-

disubstituted/trisubstituted alkenes and primary haloalkanes
through a Mn/Ni dual catalytic metal-hydride hydrogen atom
transfer approach46, or with olefins linked to a tridendate
directing group and 1,3-dicarbonyl nucleophiles using a Pd-based
catalyst40 (Fig. 1b). Therefore, there is compelling motivation to
develop a complementary catalytic regime that accomplishes
efficient and branched-selective hydroalkylation of unactivated
acyclic olefins with exceptional control of regioselectivity in the
presence of commonly occurring functionalities. For operational
simplicity, we speculated that aliphatic halides could serve as mild
donors of both the hydride (by facile in situ β-H elimination47,48)
and alkyl component without external acidic or basic additives,
which might otherwise compromise functional group compat-
ibility (Fig. 1c). The products resulting from successful imple-
mentation of this strategy can be readily elaborated to a variety of
important biologically active compounds (e.g., 1–3, Fig. 1d).
Herein, we report a directed Ni-catalyzed reductive protocol that
achieves these goals.

Results
Reaction design and optimization. A hallmark of catalytic
reductive transformations49–57 is the use of stoichiometric
amounts of an inexpensive reducing agent to drive single-electron
transfer processes mediated by an appropriate (e.g., Ni-based)
catalyst. This led us to conceive a reductive strategy for alkene
hydroalkylation that takes advantage of the characteristic mild
reaction conditions. Specifically, we aimed to avoid the use of
hydrosilanes, acidic and basic reagents that could engender
undesired side reactions with certain sensitive functional units
(see below for further discussion). However, the question remains
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Fig. 1 The significance of developing branched- and β-selective hydroalkylation of unactivated alkenes. a Reported methods that involve anti-
Markovnikov-selective hydroalkylation of aliphatic olefins. b Reported methods that involve Markovnikov-selective hydroalkylation of aliphatic olefins. c An
attractive catalytic approach for Markovnikov- and β-selective olefin hydroalkylation takes advantage of haloalkanes to transfer the hydride and alkyl motif
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how we could effectively deliver hydride to the C=C bond in this
scenario.

To this end, we envisioned a catalytic approach that merges
aliphatic alkenes tethered to a suitable directing unit 458 with
alkyl halides directly in the presence of a Ni-based catalyst and a
reductant (Fig. 2). This strategy relies on the propensity of
haloalkanes to undergo facile β-H elimination, an observation
that was previously exploited in Ni catalysis to generate catalytic
amounts of nickel-hydride species47,48. As illustrated in the
putative catalytic pathway, a Ni(0) species i could first associate
with 4 and react with an equivalent of the alkyl halide through a
halogen atom abstraction/radical recombination59,60 process to
give ii. At this juncture, a directing auxiliary with appropriate
steric and/or electronic properties could induce alkene dissocia-
tion from the metal center in ii, providing an opportunity for the
Ni–alkyl moiety to preferentially undergo β-H elimination47,48

leading to nickel-hydride iii with concomitant discharge of an
alkene by-product (vs. olefin alkylnickelation to form viii).
Regioselective β-hydride insertion across the associated C=C
bond in iii then affords quinoline-chelated Ni(II) species iv.
Following single-electron reduction with a reducing agent, Ni(I)
complex v would be generated that could subsequently react with
a second equivalent of alkyl halide to furnish vi. Reductive
elimination of vi furnishes the desired hydroalkylation product 5
and vii, which eventually gets reduced back to i to turn over the
catalytic cycle. The key to efficient transformation of 4 to 5 entails
faster conversion of intermediate ii to iv via iii (vs. ii to viii) in
order to suppress adventitious formation of the undesired
dialkylation adduct 6.

We first examined conditions that facilitate hydroalkylation of
β,γ-unsaturated amides with 1-iodobutane 8 (Table 1). After an
extensive survey, we found that the reaction between 8-
aminoquinaldine-tethered alkene 7a and 8 (2 equiv.) using
NiCl2(PPh3)2 (15 mol%), manganese (1.5 equiv.) as reductant and

NMP as solvent gave the best results, affording 9a in 90% GC
(88% isolated) yield and complete Markovnikov selectivity at
ambient temperature (Table 1, entry 1). There was no appreciable
diminution in yield or selectivity when the reaction was carried
out on larger scale (2 mmol). Intriguingly, changing the directing
group to other variants gave poorer yields and site selectivities,
demonstrating the unexpected beneficial role of the ortho-methyl
appendage. We reasoned that the effect might arise from an
elevated steric strain inherent within complex ii (cf. Fig. 2),
forcing Ni-olefin dissociation and allowing the sterically less
demanding Cβ–H bond to coordinate and trigger β-H
elimination47,48 prior to the ensuing β-H insertion to iv. Further
studies to rationalize this effect will be reported in due course.

Changing the Ni-based catalyst afforded lower yields across the
board (Table 1 entry 2), while replacing NMP with other solvents
did not improve results (Table 1, entries 3–4). Unsurprisingly, the
reaction did not proceed in the absence of Mn, with 1.5 equiv. of
Mn being optimal (Table 1, entries 5–7). Switching Mn to Zn as
the reductant led to a drastic reduction in yield and regioselec-
tivity (Table 1 entry 8). Decreasing the equivalents of 8 resulted in
diminished reaction efficiency, whereas no appreciable improve-
ment was detected at higher loadings (Table 1 entries 9–10).
Carrying out the reaction at 40 °C gave similar results as RT
(Table 1, entry 11). A slight drop in site selectivity was observed
with 10 mol% loading of NiCl2(PPh3)2 (Table 1, entry 12).
Performing the hydroalkylation by replacing Mn with hydro-
silane/base as the hydride source41–45 led to lower yields of 9a
(see Supplementary Methods 2.6 for details), highlighting the
importance of the reductive conditions.

Substrate scope. With the established conditions in hand, we
proceeded to evaluate the scope by examining various functio-
nalized aliphatic halides and alkenyl amides (Fig. 3). Primary
alkyl iodides and bromides containing different functional groups
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underwent efficient hydroalkyl additions to 7a, furnishing the
desired branched compounds 9b–w in 32–94% yield and high
regioselectivities. Transformations with less activated organo-
bromides were performed at 60 °C for optimal efficiency. These
include products that contain an ester (9d), an enoate (9e), an
aldehyde (9h), an alkene (9n) as well as unprotected protic units
(problematic with basic organometallic reagents)57,61 such as
carboxylic acid (9k), alcohol (9p–q) and phenol (9r). It merits
mention that previous methods which rely on hydrosilane/base to
generate the hydride source may cause undesired silylation side
reactions with hydroxyl groups46. Both acid-labile (acetal 9o) and
base-labile (9k, 9r and boronate 9t) functionalities, which could be
vulnerable under conditions that require acid/base additives40–46,
as well as Lewis basic heterocyclic motifs (9f, 9u–v) are tolerated.
Among the products bearing a derivatizable halogen appendage
(9i–j, 9s), the reaction that afforded 9j highlights the inherent
chemoselectivity of an iodoalkane over an aryl iodide, although
arene hydrodeiodination was detected as a side reaction. The
reductive protocol is also compatible with substrates derived from
complex multifunctional bioactive molecules such as base-
sensitive sulbactam62 (9l) and indometacin (9m).

Secondary alkyl iodides and bromides also served as effective
reagents under the standard conditions, delivering the expected
products 9x–ab in 51–73% yield and offering complementary
scope to a previous report in which secondary haloalkanes were
low-yielding46. However, organohalides that lack a Cβ–H bond
and therefore incapable of generating the requisite nickel-hydride
species by β-H elimination pose a challenge in our system.
Attempts to carry out reductive hydroalkylation using neopentyl
bromide (3 equiv.) as alkyl donor and isopropyl bromide (1.2
equiv.) as hydride donor47,48 gave the desired hydroalkylation

adduct 9w in 32% yield, along with side products derived from
dialkylation with neopentyl bromide as well as reductive
hydroalkylation with isopropyl bromide (see Supplementary
Methods 2.7 for details). β,γ-Unsaturated amides with 1,2-
disubstitiuted C=C bonds underwent reaction to form the
corresponding β-alkylated products (9ac–ag), but those with
1,1-disubstituted and trisubstituted olefins were ineffective
substrates (<5% conv. to desired product).

Synthetic applications. The first application that demonstrates
utility of our Markovnikov-selective reductive hydroalkylation
protocol involves the synthesis of a family of therapeutic com-
pounds 1 for the treatment of metabolic disorders63 (Fig. 4a).
Chemoselective removal of the amide directing group in 9y
(recovered 8-aminoquinaldine in 95% yield) afforded acid 11, a
key intermediate employed in the preparation of 1, in 83% yield.

In a second instance, chemoselective reduction of the 8-
aminoquinaldine amide in 9ah to aldehyde 12 followed by
reductive amination with benzylamine 13 and N-Boc protection
delivered 14, a precursor for the synthesis of an anti-cancer
compound 264, in 51% overall yield. The entire sequence is more
concise compared to a previous report64. The preparation of 16
highlights yet another compelling example of the versatility of the
branched hydroalkylation products. Facile conversion of 9ai to its
redox-active ester derivative 15 (70% overall yield) set the stage
for a catalytic decarboxylative cross-coupling53 with 1-(benzy-
loxy)-3-iodobenzene to furnish 16, which has been further
elaborated to another anti-cancer agent 365.

A corollary to the present reductive approach is the
implementation of remote olefin hydroalkylation66–70, specifically
with alkenyl amides 17 containing an extended hydrocarbon

Table 1 Evaluation of reaction conditions for reductive hydroalkylation.
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Entry Deviation from standard conditions Yield (%) 9a:10aa

1 None 90(88)(81b) >95:5
2 NiCl2, NiCl2·DME, NiCl2(Py)4, NiI2 or Ni(COD)2 instead of NiCl2(PPh3)2 50–74 92:8–>95:5
3 DMF, DMA, DMPU or MeCN instead of NMP 70–92 92:8–94:6
4 DMSO, THF or toluene instead of NMP Trace–10 ND
5 No Mn Trace ND
6 Mn (1 equiv.) instead of Mn (1.5 equiv.) 70 >95:5
7 Mn (2 equiv.) instead of Mn (1.5 equiv.) 90 >95:5
8 Zn instead of Mn 44 80:20
9 8 (1.5 equiv.) instead of 8 (2 equiv.) 70 >95:5
10 8 (2.5 equiv.) instead of 8 (2 equiv.) 91 >95:5
11 40 °C instead of RT 90 >95:5
12 10mol % NiCl2(PPh3)2 instead of 15 mol % 92 92:8

Reactions were carried out on 0.1 mmol scale.
DMA N,N-dimethylacetamide, DMF N,N-dimethylformamide, NMP N-methyl-2-pyrrolidone, DMPU N,N′-dimethylpropyleneurea, DMSO dimethyl sulfoxide, THF tetrahydrofuran, DME 1,2-
dimethoxyethane, Py pyridine, COD 1,5-cyclooctadiene, RT room temperature, ND not determined.
aYields and regioisomeric ratios were determined by GC analysis with n-tridecane as internal standard. Values in parentheses denote yields for isolated and purified products.
bThe reaction was conducted on 2mmol scale.
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backbone (≥ five-carbon chain length). As showcased in Fig.4b,
we postulated that the organonickel intermediate ix generated
from nickel-hydride addition (cf. Fig. 2) could potentially
isomerize to the relatively more stabilized five-membered
nickelacycle x66,67,71 through consecutive β-H elimination/olefin
insertion steps. Following a similar mechanism in Fig. 2, x could
be converted to 18 with net remote alkylation at the β position.
Although nickel-hydride-promoted remote hydrocarbonfunctio-
nalizations have been disclosed, most instances involve functio-
nalizations at either the sterically exposed terminus or the α-
carbon site adjacent to an electron-stabilizing moiety68,69.

Gratifyingly, γ,δ-unsaturated amides bearing terminal and
internal C=C bonds were found to participate in remote
hydroalkylation with primary and secondary haloalkanes, afford-
ing products 18a–e in 47–82% yield as single β regioisomers
through single double-bond migrations (Fig. 4b). Cyclic olefins
also underwent reaction as exemplified by 18e, which was
obtained as a single syn diastereomer71. Using the regioisomeric
β,γ-unsaturated amide substrate leading to 18e would be,
however, less practical since the corresponding β,γ-unsaturated
carboxylic acid is much more expensive. Transformations with δ,
ε-unsaturated amides (involving two C=C bond isomerizations)
were similarly efficient and site-selective (18d and 18f).
Remarkably, subjecting the 6-heptenoic acid-derived alkenyl
amide to established conditions gave β-alkylated 18g in 60%
yield, underscoring the fidelity of the catalytic process that
features an alkene transposition over three positions67,68.

Furthermore, a streamlined synthesis of β-alkylated 18d could
be attained in 62% yield through regioconvergent hydroalkylation
of an isomeric mixture of olefin substrates (Fig. 4b, gray inset).

Mechanistic studies. Subjecting the α,β-unsaturated isomer of
7a to the standard conditions only gave the fully hydrogenated
product 19, thereby ruling out the likelihood of olefin iso-
merization prior to the hydroalkylation event (Fig. 5a). To shed
light on the importance of the alkyl halide partner in our cat-
alytic system, we carried out deuterium labeling studies with 7a
in the presence of two equivalents of d-20 under the standard
reaction conditions (Fig. 5b). Accordingly, the hydroalkylation
product d-9aj and olefin by-product d-21 were isolated. Deu-
terium incorporation on C1 of d-9aj and deuterium scrambling
in d-21 suggest that a nickel-deuteride species was likely gen-
erated from reaction with d-20 (i.e., ii→iii in Fig. 2). The
reversible nature of β-H(D) elimination and re-insertion means
that adventitious deuterium scrambling in d-21 and formation
of Ni–H cannot be avoided. Competitive addition of Ni–H and
Ni–D across the olefin in 7a eventually gave rise to d-9aj with
40% D incorporation at C1. Overall, these results support the
haloalkane’s key role as a donor of both the hydride and alkyl
group.

The radical nature of the reductive hydroalkylation reaction
was substantiated through a radical clock experiment using
(bromomethyl)cyclopropane 22 as an electrophile (Fig. 5c). A

7

Et

O

N
H

N
=

9b

93% yield

RR

Primary alkyl iodides

Primary alkyl bromides

Me

Ni(PPh3)2Cl2 (15 mol %)

Mn (2 equiv.) β

R'

R''X

(2 equiv.)

NMP, 22−60 oC, 12−20 h 9

R' R''

Secondary alkyl iodides Secondary alkyl bromides

9c

89% yield

Ph

9d

73% yield

O

O

MeO

9f

94% yield

9e

90% yield

O NO O

9g, G = CF3, 72% yield

9h, G = CHO, 62% yield

9i, G = Br, 74% yield

9j, G = I, 52% yield

O

G

OO

9k

55% yield

HO2C

9l

70% yield

O

O
N

S

O

Me
Me O

O
H

9m

56% yield

O

O

H

H

H

H H H H H H H

1,2-Disubstituted alkenes

9x

71% yield

Me

H

Me

9p, n = 2, 85% yield

9q, n = 3, 70% yield

OH

H

9n

72% yield

H

9r

77% yield

H
n

9o

64% yield

H

OO

9s

66% yield

H

Cl

9t

83% yield

H

B
OO

Me
Me Me

Me

9u

88% yield

H

N

9v

90% yield

H

O

NO

HO

9y

68% yield

H

Boc
N

Me H

H H

Me

Me

i-Pr

H

H

9z

51% yield

9aa

60% yield

H

9ab

73% yield

H

O

9ac

50% yield

H

Me

G

9af, G = n-Bu, 57% yield

9ag, G = i-Pr, 60% yield

H

Ph

9ae

58% yield

H

Bn

OH

Boc
N

9ad

61% yield

H

Et

CO2Et

N
OMe

O

Cl

Me

9w

32% yield

t-Bu

H

Fig. 3 The range of products accessible by reductive olefin hydroalkylation. The protocol is compatible with both primary and secondary alkyl halides
bearing Brønsted/Lewis acidic and basic functionalities, including those derived from complex bioactive molecules. Both mono- and 1,2-disubstituted
alkenyl amides are tolerated in the catalytic system. For 9w, the reaction was conducted with neopentyl bromide (3 equiv.) and isopropyl bromide (1.2
equiv.) using NiI2 as the catalyst. For 9ac and 9af, reactions were conducted using iodides (X = I). For 9ad, 9ae, and 9ag, reactions were conducted using
bromides (X = Br). For 9j, ~20% of an inseparable hydrodeiodination side product was detected. For 9m, ~3% of an inseparable self-coupling side product
of iodide substrate was detected. 9g, 9i, 9u, 9ab, and 9af were obtained as 88:12, 93:7, 92:8, 90:10, and 91:9 regioisomeric mixtures, respectively. 9l and 9z
were obtained as 5:1 and 1:1 diastereomeric mixtures, respectively. Regioisomeric and diastereomeric ratios were determined by 1H NMR analysis. Yields
are for isolated and purified products. R, functional group; X, halide; NMP, N-methyl-2-pyrrolidone; Boc, tert-butoxycarbonyl.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19717-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5857 | https://doi.org/10.1038/s41467-020-19717-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


20:80 mixture of 9ak and the ring-ruptured product 9n in 84%
yield was detected, intimating that 22 likely reacts with the
catalytic organonickel species (cf. i→ii and v→vi in Fig. 2)
through a bromine abstraction/radical recombination process59,60

via a cyclopropylmethyl radical that is prone to ring opening.
Further support for the intermediacy of radicals could be
obtained from the corresponding reactions using enantioenriched
23, in which the desired product 9al was generated in 51–73%
yield and ~70:30 d.r. as a racemic mixture (Fig. 5d).

In summary, we demonstrated that Ni-catalyzed branched-
selective hydroalkyl additions to unactivated alkenyl amides can
be achieved by using haloalkanes and manganese as reductant.
With long-chain olefins, remote and regioconvergent

hydroalkylations proceed to furnish products with reliable β
selectivities. Mechanistic experiments corroborate the aliphatic
halide’s dual role as a hydride and alkyl donor. Equally crucial is
the 8-aminoquinaldine tether that effectively suppresses any
adventitious dialkylation side reaction. The robust conditions are
compatible with diverse functional groups, including those that
are sensitive to hydrosilane, acidic or basic additives. In
conjunction with existing methods, we expect our catalytic
strategy to find significant utility in chemical synthesis.

Methods
General reductive hydroalkylation procedure. In a N2-filled glovebox, to an
oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate
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(0.1 mmol), alkyl iodide or bromide (if solid, added at this time) (0.2 mmol), Ni
(PPh3)2Cl2 (9.8 mg, 0.015 mmol) and Mn powder (0.15 mmol). The mixture was
then dissolved in 0.3 mL dry NMP. The vial was tightly capped and removed from
the glovebox. The alkyl iodide or bromide (if liquid, added at this time) was added
by a micro-syringe. The mixture was allowed to vigorously stir at ambient tem-
perature (for alkyl iodide) or 60 °C (for alkyl bromide) for 12–20 h. When alkene
was almost fully consumed (monitored by TLC), the mixture was directly subjected
to flash silica gel column chromatography to afford the pure product.

Data availability
All data are available from the corresponding authors upon reasonable request.
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