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Meta-neural-network for real-time and passive
deep-learning-based object recognition
Jingkai Weng1,3, Yujiang Ding1,3, Chengbo Hu1, Xue-Feng Zhu2, Bin Liang1✉, Jing Yang1 & Jianchun Cheng 1✉

Analyzing scattered wave to recognize object is of fundamental significance in wave physics.

Recently-emerged deep learning technique achieved great success in interpreting wave field

such as in ultrasound non-destructive testing and disease diagnosis, but conventionally need

time-consuming computer postprocessing or bulky-sized diffractive elements. Here we

theoretically propose and experimentally demonstrate a purely-passive and small-footprint

meta-neural-network for real-time recognizing complicated objects by analyzing acoustic

scattering. We prove meta-neural-network mimics a standard neural network despite

its compactness, thanks to unique capability of its metamaterial unit-cells (dubbed meta-

neurons) to produce deep-subwavelength phase shift as training parameters. The resulting

device exhibits the “intelligence” to perform desired tasks with potential to overcome the

current limitations, showcased by two distinctive examples of handwritten digit recognition

and discerning misaligned orbital-angular-momentum vortices. Our mechanism opens the

route to new metamaterial-based deep-learning paradigms and enable conceptual devices

automatically analyzing signals, with far-reaching implications for acoustics and related fields.
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It is a fundamental problem in wave physics to detect and
recognize the geometric shapes of objects by properly analyzing
the scattered wave, representing the most basic challenge

behind a plethora of important applications. Representatively, in
acoustics, typical examples range from medical ultrasound ima-
ging1 to industrial non-destructive evaluation2 to underwater
detection3. In contrast to the conventional mechanisms that rely on
human experts such as physicians interpreting the medical ultra-
sonic images in the clinic, which would inevitably suffer from low
efficiency, potential fatigue and wide variations in pathology4–6, the
recent emergence of computer-assisted deep-learning techniques7

has achieved state-of-the-art performance in the important pro-
blem of identification and classification of medical images of
scattered acoustic fields such as for detection of anatomical
structures and disease diagnosis and so on6,8,9, among other fas-
cinating applications in speech recognition10–12, emotion analy-
sis13–16, etc. In spite of the remarkable improvement in
performance and simplification in process, however, such a shift of
the burden from human to computers would still arouse the issue
of computational complexity, energy supply, device size and cost,
owing to their dependence on precise acoustic images that need to
be measured via sensor-scanning and computer-based post-
processing. It is therefore essential to continuously pursue new
deep-learning-based mechanisms with simpler design, smaller
footprint, faster speed and reduced energy consumption and fewer
sensors, which would be vital for the real-world application in
many diverse scenarios such as medical imaging where fast and
easy assessment of tissues are highly desired.

In this article, we break through such fundamental barriers by
introducing a physical mechanism to use a passive meta-neural-
network comprising a three-dimensional matrix of metamaterial
unit cells, with each serving as a meta-neuron, to mimic an
analogous neural network for classical waves with compactness,
simplicity, and pure-hardware task-solving capability. The recent
rapid expansion of the research fields of photonic/phononic
crystals17–22 and metamaterials23,24 enables unconventional
manipulation of wave fields, such as anomalous refraction/
reflection25,26, invisibility27,28, rectification29,30 etc., in a deter-
ministic manner, relying on rational design based on human
knowledge. The past few years witness considerable efforts
devoted to applying machine learning in these artificial structures,
but merely aiming at designs of active imaging devices with
reduced complexity31 or metamaterials for producing specific
wave fields32–35. Recently passive neural networks are proven
possible by using diffractive layers with locally-modulated
thickness according to machine-learning training results36,
which generates quasi-continuous phase profiles and results in
significant phase variation only over wavelength-scale distance37.
Besides, optical metamaterial-based neural network is theoreti-
cally proposed with metasurfaces38 or nanostructured medium39.
In contrast, here we present a theoretical and experimental work
of endowing passive acoustic metamaterials with the “intelli-
gence” to perform complex machine-learning tasks. We prove
that metamaterials’ extraordinary capability to provide abrupt
phase shift within deep-subwavelength scales in all three
dimensions is pivotal for the equivalence between conventional
and the proposed neural network, and use a computer to train the
designed meta-neural-network by iteratively adjusting the whole
phase profile of each layer of meta-neurons. The resulting meta-
neural-network features planar profile, high spatial density of
meta-neurons, and subwavelength thickness of each meta-neural-
layer, which are particularly crucial for acoustic waves that gen-
erally have macroscopic wavelength. More importantly, We
experimentally demonstrate a compact passive metamaterial-
based neural network capable of directly recognizing complex
objects in real 3D space in a totally passive, real-time, sensor-

scanning-free and postprocessing-free manner, as will be
demonstrated hereafter.

Results
Theory of meta-neural-network. Figure 1 schematically shows
our proposed mechanism of constructing an acoustic meta-
neural-network comprising multiple parallel layers of sub-
wavelength meta-neurons for passive and real-time recognition
and classification of objects by the geometric shape. The object to
be examined is illuminated normally by a monochromatic plane
wave, and the meta-neural-network is located at the transmitted
side to receive the scattered acoustic wave produced by the object.
The key role of the meta-neural-network is to interact with the
incident wave after it is rebounded by the object and thereby
converges the acoustic energy, which would scatter into all dif-
ferent directions in its absence, to the desired region on a
detection plane behind the last layer, as illustrated in Fig. 1a. For
explaining the recognition criterion of meta-neural-network, we
exemplify the detection plane for a typical case where 10 hand-
written digits, from 0 to 9, are chosen as the object for recogni-
tion. The detection plane includes 10 identical square regions
assigned respectively for these 10 objects. For a specific object,
only when the output signal eventually yielded by the meta-
neural-network is accurately redistributed on the detection plane
such that the total intensity in the expected region corresponding
to this digit is higher than the rest regions, can the recognition
and classification be considered successful. For better mimicking
the real-world applications, here we do not directly translate the
image recognition mechanism for visible light to acoustics by
simply using the image of digits as the input pattern or vector-
izing the input images for facilitating 2D on-chip applications
and, instead, attempt to realize real-time and high-accuracy
recognition of object by appropriately analyzing its scattered wave
field.

First, we consider the propagation of scattered wave in such a
multi-layered metamaterial system. As the fundamental building
block of our designed meta-neuron-network, each meta-neuron
modulates the amplitude and phase of the incident wave, then the
outgoing wave on the transmitted side serves as second sources
and becomes the input signal for the next layer, as governed by
Huygens’ principle40. Obviously, the radiation pattern of each
meta-neuron depends on the unit cell size and spacing related to
wavelength. When each meta-neuron can be approximated as a
monopole source, the relationship between the wave fields on two
neighboring layers in our meta-neural-network can be written as

Plþ1 ¼ Gl � ðPl �WlÞ; ð1Þ
where vector Pl+1 denotes the input wave of the (l+1)-th layer of
meta-neurons, Gl is the wave propagation matrix (see the
Supplementary Notes 1 and 2),Wl ¼ tlexpðjφlÞ is the modulation
introduced by the meta-neurons on the l-th layer with tl and φl

referring to the amplitude and phase modulation respectively, “�”
denotes the element-wise multiplication. While the conventional
neural network can be written as

Ylþ1 ¼ f ðwl � Yl þ BlÞ; ð2Þ
where f is the nonlinear activation function, wl is the weight and
Bl is the bias.

Comparison of Eqs. (1) and (2) clearly reveals the equivalence
and differences between meta-neural-network and a conventional
neural network. Unlike the characteristic of the weight as the
learnable parameters in conventional neural networks, the wave
propagation function is fixed once the meta-neural-network is
fabricated which determines the axis distance between the
adjacent layers. This suggests that the wave propagation function,
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which forms the connections between the adjacent layers, is more
like a hyperparameter than a learnable parameter, and it is not
necessary to optimize the axis distance during the training
process in the design of meta-neural-network. The wave
propagation function also prevents the multi-layered meta-
neural-network from degenerating into a monolayer meta-
neural-network in physical systems, rather than merely forming
the connection between adjacent layers (see Supplementary
Notes 3 for details). In the conventional neural network, the
“weights” represents the connecting strength between two
neurons in adjacent layers, and the input of the latter layer is
determined by the output values of the former layer and the
‘weights’ between them. By tuning the weights, the output loss is
continuously decreasing, and finally the neural-network will be
capable of accomplishing specific tasks. Similarly, the learnable
parameters in our meta-neural-network are the phase modulation
provided by the meta-neurons. The input of meta-neurons in the
latter layer is the interference of outgoing wave emitted by the
whole neurons in the former layer. And the adjusting of phase
modulation redistributes the wave energy on the output plane,
leading to continuous decrease of the loss and the functionality of
resulting meta-neural-network to perform tasks in the same way
as the conventional neural network. (See Supplementary Note 2
for details).

It is apparent, however, that such equivalence between the
mathematical model and practical physical system requires
effective connection between each meta-neuron and all the
meta-neurons on the neighboring layer, which would be difficult
for bulky diffractive components modulating phase continuously
when the system has a compact size or the object has a
complicated pattern. In contrast, meta-neurons’ unique capability
of metamaterials to offer arbitrary and abrupt phase shift41–46

validates the monopole approximation required by Eq. (1) which
is the hinge of the physical analogy of a standard neural network
(see Supplementary Note 1 for details). Given that the

transmission loss of meta-neurons is trivial, the phase modulation
essentially plays the same role as the weight in conventional deep-
neural-network, and we, therefore, choose phase shifts of meta-
neurons as the learnable parameters for training as will be
shown later.

Notice that the proposed strategy needs no measurement of
the original scattered field nor reconstruction of the precise
acoustic image, exempted from the burden on the cost and time
in conventional computer-assisted deep-learning paradigms
which will further increase when the object complexity is
enhanced or the detection region is enlarged. Limited by the
current technology, this will result in many challenges
including implementing large-scaled phased arrays47, fabricat-
ing subwavelength sensor (e.g. piezoelectric transducer), and
accelerating measurements and analysis of huge amount of
sound field data. In stark contrast, the meta-neural-network
performs detection and computation simultaneously due to the
parallel interaction between wave and meta-neurons without
sensor-scanning or postprocessing, which accomplishes once
the incident wave passes regardless of the resolution or number
of meta-neurons, and the output field only needs to be
measured at the receiving end with fixed number of sensors
(e.g., Fig. 1a) as few as the possible classification types of
objects, no matter how complicated the target is. In addition to
these advantages of passive elements in terms of speed and
simplicity, our proposed meta-neural-network with compact
planar geometry and ultra-fine phase resolution enables
downsizing the device to the scale unattainable with diffractive
components and recognizing objects excessively complicated
for diffractive neural networks, as we will demonstrate in what
follows (see Supplementary Note 4 for details).

Experimental realization of handwritten digits classification.
To manifest the unique advantages of our proposed meta-neural-
networks in terms of compactness and efficiency, we first choose
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Fig. 1 Passive object recognition by acoustic meta-neural-network. a The proposed meta-neural-network with network parameters given by a computer-
aided training process is capable of converging the scattered energy from the object (chosen as handwritten digit “8” here) into the corresponding region
on the detection plane (marked by dot-line boxes behind the last layer). b Schematically illustrates the interaction between two adjacent 2D layers of meta-
neurons whose deep-subwavelength size physically ensures wave propagation from each meta-neuron on the 1st layer to all meta-neurons on the 2nd one
(after undergoing the phase-amplitude modulation by the 1st layer and free-space diffraction in between, described by W1 and G, respectively). c A
conventional neural network can be accurately mimicked by the practical physics model shown in b even for compact device and/or complicated object.
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to demonstrate via both simulation and experiment the recog-
nition of MNIST (Modified National Institute of Standards and
Technology) handwritten digits on a scale approximately one
order of magnitude smaller than attainable with deep-learning-
based diffractive layers. The database contains 55,000 training
images, 5000 validation images, and 10000 testing images. For
simplifying the design and fabrication of meta-neural-network
sample in the following experiments, we avoid simultaneous
adjustment of amplitude and phase for the transmitted wave and
only use phase modulation with the transmission efficiency being
set to be 1, which does not appreciably affect the accuracy of the
resulting device as we demonstrate via numerical simulation (see
the Supplementary Notes 5 and 6). Each object is implemented
based on a binary image formed by rounding up the grayscale
value of each pixel in the corresponding MNIST image (see
Supplementary Note 7). The details of training process are shown
in Fig. 2a. The softmax-cross-entropy loss function48 which is
commonly used in classification problem is introduced (see
detailed discussions in Supplementary Note 2), and the gradient
of phase value is calculated through error back-propagation
algorithm49. We adjust the phase values of meta-neurons in
search of the minimum of loss value corresponding to the max-
imum likelihood of making the total acoustic intensity in the
target region higher than the others for as many digits as possible
in the MNIST database. By iteratively feeding training data, the
classification accuracy of testing data keeps increasing and
eventually becomes stable within 6 epochs.

In our simulation, the operating frequency is set to be 3 kHz
(corresponding to a wavelength of ~11.4 cm in air) such that the
experimental sample of meta-neural-network is of moderate size
which facilitates both the 3D printing fabrication of subwave-
length meta-neurons and the sound field measurement in
anechoic chamber. As a specific design, each layer is chosen to

consist of 28 × 28 (784 in total) meta-neurons, equal to the
number of pixels in a handwritten digits picture in the MNIST
database. Each individual meta-neuron is assumed to have a sub-
wavelength size in each dimension, consistent with the actual size
of the practical metamaterial we will implement in the
measurement. Specifically, the transversal size of the meta-
neuron is 2 cm (smaller than 1/5 wavelength), which helps to
ensure deep-subwavelength resolution of meta-neural-network
that is vital for the high-accuracy recognition for more
sophisticated cases. The axial distance between two neighboring
layers is set to be 17.5 cm. After its training, the design of our
meta-neuron digit classifier is numerically tested by 10,000
images from MNIST testing dataset.

Here we choose a design of meta-neural-network consisting
of two layers of metamaterial only for a balance between the
classification accuracy and efficiency, based on our numerical
analysis on the dependence of accuracy on the layer number as
shown in Fig. 2b which indicates that the increase rate of
accuracy with respect to layer number becomes much slower
for designs containing more than two layers. The accuracy of
recognition by such a simple bilayer structure can reach 93%,
which is considerably high given the significant acceleration of
training process, reduction of meta-neuron number and
downscaling of resulting device, and can be further improved
at the cost of increasing the total number of meta-neurons and
enhancing the fabrication precision of unit cells as implied by
observing Fig. 2b. For comparison, we also calculate the
recognition accuracy when each basic building block becomes
one-half wavelength wide and the layer distance is chosen such
that the equivlance in Eq. (1) holds and plot the numerical
results in Fig. 2b which clearly show that the increase of unit
size leads to notable deterioration of the performance of meta-
neural-network.
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Fig. 2 Simulated results for the meta-neural-network. a The chart flow of the training process that uses the scattered wave produced by different objects
as training data and calculates the loss of meta-neural-work to iteratively tune the phase value of each meta-neuron, until achieving the maximal probability
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maximum (93%) in the training process of our designed meta-neural-network.
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Next, we perform experimental measurements to verify our
proposed mechanism. As a practical implementation, in the
current study, we propose to design a metamaterial unit cell
composed of four local resonators and a straight pipe50, as
illustrated in Supplementary Fig. 6. Such a specific design enables
free control of the propagation phase within the full 0-to-2π range
while keeping high transmission efficiency via adjustment of a
single structural parameter h, as shown in Supplementary Fig. 6.
Hence the meta-neuron layer has planar profile, subwavelength
thickness and, in particular, fine phase resolution (~1/5
wavelength) pivotal for ensuring equivalence between the
standard and our metamaterial-based neural network (see Sup-
plementary Notes 1, 2, and 5 for details). Based on the parameter
dependence of phase shift given by the numerical simulation, we
determined the precise geometric parameter for each meta-
neuron and fabricated a meta-neural-network comprising two
layers with transversal size of 56 × 56 cm2.

With our designed meta-neural-network, the handwritten
digits in the testing dataset have been well classified which
corresponds to an appropriate redistribution of acoustic energy
into the target region, as shown in Fig. 3a, b. In the experiment,
we have fabricated 2 sets of steel plates with shapes of
handwritten digits (viz., 20 objects in total, and the simulation
result is shown in Fig. 3c) which are selected from the testing
images that have been numerically proven capable of being
correctly classified by our designed meta-neural-network with
each meta-neuron endowed with the ideal phase value given by
the computer-aided training process. Good agreement is observed
between the theoretical and experimental results as shown in
Fig. 3d which takes the digit “8” as an example (more details and
results in Supplementary Note 8), with both revealing that our

designed double-layered meta-neural-network accurately redis-
tributes the input energy into the detection region assigned to the
object, except for the poor performance of meta-neural-network
when recognizing digit “4” which primarily stems from the
experimental error (see the Fig. 3e and Supplementary Note 9).

The recognition of multiplexed OAM beams. For further
demonstrating the potential of our meta-neural-network to
recognize very complicated object in real-time with compact
footprint, we showcase a distinctive example in which one needs
to accurately distinguish between different spatial patterns of wave
field that are encoded with information and far more sophisticated
than the scattered patterns produced by simple digit-shaped
objects. As a representative case, the introduction of orbital
angular momentum (OAM) opens a new degree of freedom for
information encoding and dramatically improves the capacity of
waves as information carriers51,52, which is of crucial significance
particularly for acoustic waves that dominate underwater com-
munications but innately bear no spin53–55. Such spatial multi-
plexing mechanism uses several twisted beams with different
topological charges (TCs) to carry multiplexed information which,
however, needs to be read out accurately from the complicated
spatial pattern of this synthesized beam. But the existing strategies
based on OAM’s orthogonality for passive decoding suffer from
uncontrollable spatial locations of the different output beam and,
in particular, strict alignment between the beam and receiving
device which is vital for decoding accuracy but challenging in
practice56,57. Here we propose to overcome these fundamental
limitations based on an inherently different mechanism, by using
an acoustic meta-neural-network trained to recognize the
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complicated spatial patterns associated with different OAM
orders. More importantly, by straightforwardly training the meta-
neural-network with both centered and non-centered OAM
beams, the system is able to recognize the spatial pattern of each
OAM order regardless of whether the centers of the beam and
device are perfectly overlapped. A four-layered meta-neural-
network containing 101 × 101 × 4 (40,804 in total) meta-neurons
is designed to recognize a maximal combination of 8 OAM orders
(±1, ±2, ±3, ±4, 255 combinations in total). In the current design,
we will demonstrate the realization of a meta-neural-network
capable of recognizing multiple OAM beams with their centers
transversally misaligned in arbitrary directions by a maximal
distance of 6λ, which reaches 1/3 of the side length of each meta-
neuron layer and would be quite challenging for existing
mechanisms using equal-sized devices. The ranges of r and θ are
[0,6λ] and [0,2π), respectively, with (r,θ) being the location of the
vortex center under polar coordinate. Figure 4a shows schemati-
cally how the designed meta-neural-network realizes accurate and
real-time recognition of each OAM beam via elaborate redis-
tribution of the incident energy on the detection plane (which
illustrates the recognition of OAM beams composed of +3 and 4
orders with misalignment of (6λ, 0) as an example). Now the
detection plane is divided into 8 regions, with each containing two
areas (marked by “Y” and “N”, corresponding to existence and
non-existence of a specific OAM state respectively), as shown in
Fig. 4a (more details in Supplementary Note 10). The distribution
of sound intensity at detection plane is also shown in Fig. 4a,
which clearly indicates that the sound energy is redistributed into
correct area (more details in Supplementary Note 10). Figure 4b
illustrates the dependence of recognition accuracy on the distance
and direction of misalignment (viz., the parameters of r and θ).
The significant misalignment can be observed from the compar-
ison between the spatial patterns depicted in the insets for an
aligned and misaligned OAM beam with the same order. We have

calculated the recognition accuracy for all the possible 255 com-
binations among 8 orders of OAM states under different (r,θ) and
plot the results in Fig. 4b, which clearly reveals that our
mechanism is effective even the distance between the centers of
OAM beams and meta-neuron layer reaches 6λ. In the training
process, we have also taken the parameter of propagation distance
of OAM beams into account, in an attempt to also empower the
designed meta-neural-network with high tolerance against mis-
alignment of the detection device along the propagation direction
which would be of great importance for the practical application
of OAM-based communication. The simulated recognition accu-
racy as a function of axis distance depicted in Fig. 4c shows a high
accuracy of our meta-neural-network persisting within a wide
range of propagation distance (from 500 cm to 700 cm, nearly
18λ). As a result of such distinctive mechanism, we realize real-
time and passive recognition of each mutually-orthogonal OAM
states by using meta-neural-network that features controllable
output regions and high robustness against misalignment along
both the axial and transverse directions, which helps to solve the
long-standing questions in OAM-based high-capacity commu-
nications and would have far-reaching implication in relevant
fields by serving as a smart transducer, with the potential to be
extended for recognizing more complicated objects given
sufficiently-large training database and accordingly-redesigned
meta-neurons, e.g., diagnosing tumors in ultrasound imaging or
identifying defects in industrial testing.

Discussion
For clear demonstration of physical model and facilitation of
practical implementation, we only demonstrate a considerably
reduced model of meta-neural-network, with several major sim-
plifications which, however, will not impair the generality of our
proposed mechanism. To be specific, the holistic performance of
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Fig. 4 The recognition of misaligned OAM states. a Shows the recognition of a multiplexed OAM beam (with TCs=+3, ±4 and a misalignment distance
of 6λ as an example) by the designed meta-neural-network that redistributes the incident energy on the detection plane in a way such that whether or not
each OAM state can be unambiguously marked. b Depicts the dependence of recognition accuracy on the distance and direction of misalignment. Insets:
the spatial patterns of a misaligned (top) and an aligned (bottom) OAM beams with the same OAM order. c Shows the simulated recognition accuracy as
a function of axial distance, and the error bar indicates the ±1 standard deviation from the mean of accuracies.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19693-x

6 NATURE COMMUNICATIONS |         (2020) 11:6309 | https://doi.org/10.1038/s41467-020-19693-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the current meta-neural-network can be further improved by
modifying the design and training of meta-neurons. For example,
one can easily enhance its compactness and efficiency by repla-
cing the simple metamaterial unit cell used here with some
recently-emerged designs such as hollow-out-type metamaterial
with thinner than 1/600 wavelength46, and allows programmable
meta-neural-network by using reconfigurable meta-neurons. Our
scheme also applies to more realistic applications such as ultra-
sound imaging by employing waterborne metamaterials such as
with soft graded-porous media58 and including non-planar inci-
dent wave and inhomogeneous medium in the training process.

In conclusion, we demonstrate a theoretical design and experi-
mental implementation of a metamaterial-based passive neural
network in acoustics, performing various complicated object
recognition tasks such as recognition of handwritten digits and
misaligned OAM beams. Besides having no dependence on human
experts as in computer-based deep-learning methods, our pro-
posed meta-neural-network needs no complicated sensor arrays
nor high-cost computers, and, in particular, performs real-time
recognition without power supply, thanks to its passive nature and
parallel wave-interaction, exempt from the heavy burden on the
computational hardware in conventional deep-learning methods.
Furthermore, the meta-neural-networks have small footprint
thanks to the subwavelength nature of metamaterials, which is vital
for their application in acoustics where acoustic waves generally
have macroscopic wavelength but unachievable with diffractive
components-based neural networks. Our design with simplicity,
compactness, and efficiency offers the possibility of miniaturization
and integration of deep-learning devices, and may even open route
to the design of new generation of conceptual acoustic devices such
as portable and smart transducers which, as a result of coupling the
functionalities of detection and computation, may be able to
automatically analyze the backscattered acoustic signals it receives
and subsequently complete sophisticated tasks such as evaluating
tumors in a totally passive, sensor-scanning-free and
postprocessing-free manner. Furthermore, our designed device
serves as a new class of passive deep-learning chips for power-
supply-free yet real-time task-solving purpose, with the ability to
inspire relevant researches for other classical waves.

Methods
Our acoustic meta-neural network was simulated using MATLAB and trained in a
desktop with a GeForce RTX 2070 Graphical Processing Unit(GPU), Intel(R) Xeon
(R) CPU E5-2620 v3 @ 2.40 GHz and 160 GB of RAM, running Windows 7
operating system(Microsoft).

In the experiment, the input sound was generated by a speaker (Beyma CP380),
driven by the waveform generator (RIGOL DG1022). The sensor we used on the
detection plane was 1/4-inch free field microphone (BRÜEL & KJÆR Type 4961)
and the stand-alone recorder (BRÜEL & KJÆR Type 3160-A-022). The experi-
ments are carried out in anechoic room.

Data availability
The data that support the findings of this study are available within the paper and
the Supplementary Information. Additional data related to this paper are available from the
corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability
The code that supports the findings of this study are available from the corresponding
author upon reasonable request.
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