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Computationally predicting clinical drug
combination efficacy with cancer cell line screens
and independent drug action
Alexander Ling 1,2 & R. Stephanie Huang 1✉

Evidence has recently emerged that many clinical cancer drug combinations may derive their

efficacy from independent drug action (IDA), where patients only receive benefit from the

single most effective drug in a drug combination. Here we present IDACombo, an IDA based

method to predict the efficacy of drug combinations using monotherapy data from high-

throughput cancer cell line screens. We show that IDACombo predictions closely agree with

measured drug combination efficacies both in vitro (Pearson’s correlation = 0.93 when

comparing predicted efficacies to measured efficacies for >5000 combinations) and in a

systematically selected set of clinical trials (accuracy > 84% for predicting statistically sig-

nificant improvements in patient outcomes for 26 first line therapy trials). Finally, we

demonstrate how IDACombo can be used to systematically prioritize combinations for

development in specific cancer settings, providing a framework for quickly translating existing

monotherapy cell line data into clinically meaningful predictions of drug combination efficacy.
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Drug combinations are a cornerstone of modern therapy
for many different cancers1–3, but the vast number of
possible drug combinations (many orders of magnitude

greater than the number of possible monotherapies) makes it
infeasible to screen them all experimentally when searching for
new combination therapies. To overcome this problem, efforts
have been made to develop computational methods that can
identify promising drug combinations before experimentally
testing them.

So far, these methods have mostly focused on estimating drug
synergy, where the effect of a drug combination is greater than
the additive effect of the drugs in the combination. Such models
have been developed using a variety of approaches, including
those based on mechanistic understandings, drug similarity,
known interaction frequencies, and machine learning4,5. A recent
collaborative effort to improve these models gave 160 research
teams access to one of the largest available in vitro drug combi-
nation screens and tasked them with developing novel approaches
for predicting drug synergy based on information such as gene
expression, monotherapy response, drug structure, and drug
mechanisms6. While many of the developed methods performed
near the limits of experimental reproducibility with in-sample
validation, out-of-sample validation against an independent
screen7 resulted in performance that was little better than random
classification. Furthermore, a meta-analysis of 86 clinical articles
suggests that current pre-clinical measurements of synergy are
not associated with clinical trial results8. These results suggest
that significant challenges remain to be overcome before methods
of predicting drug synergy become clinically useful on a
large scale.

Given the urgent need for computational models to predict
drug combination efficacy and the challenges associated with
models based on drug synergy, we chose to develop a model
based on an assumption other than synergy. Since the earliest
drug combination trials in cancer, researchers have considered
the possibility that drug combinations confer patient benefit via
drug independence rather than drug synergy9. While there are
multiple theories for how drug combination efficacies should be
calculated when drugs act independently10, we chose to focus on
independent drug action (IDA), which hypothesizes that the
expected effect of a combination of non-interacting drugs is
simply the effect of the single most effective drug in the com-
bination. Evidence for the clinical relevance of this model was
recently published11. Furthermore, the simplicity of IDA allows
us to directly calculate drug combination efficacy using mono-
therapy drug screening data without the need for large training
datasets with measured drug combination efficacies. Since
numerous large in vitro monotherapy drug screening datasets
already exist12, this allows efficacy predictions for hundreds of
thousands of two-drug combinations and hundreds of millions
of three-drug and four-drug combinations to be made in a
matter of weeks to months, whereas experimentally testing even
a subset of those combinations could require decades. Such an
approach holds enormous potential for helping researchers
quickly identify drugs that can either be effectively combined
with existing therapies or used in completely novel combination
therapies.

Here we present the IDACombo method, which uses experi-
mentally measured in vitro monotherapy response data to predict
drug combination efficacies using the IDA model. We validate its
predictions independently using both in vitro and patient clinical
datasets. Furthermore, we prospectively predict the efficacies of
thousands of two-drug combinations in 27 cancer types/subtypes
and demonstrate how those predictions can be used to
quickly identify candidate drug combinations for future clinical
development.

Results
Design principle and workflow. IDACombo relies on the prin-
ciple of IDA, predicting that the efficacy of a drug combination in
a given cell line or patient will be equal to the effect of the single
best drug in that combination (Fig. 1a). Importantly, IDACombo
predictions are concentration dependent, which allows us to
predict combination efficacy specifically when each drug is used
at its clinically relevant concentration. Furthermore, predictions
represent an average response across populations of cell-lines/
patients, which mimics the way treatment efficacies are measured
in clinical trials.

We performed in vitro validation of IDACombo by directly
comparing predicted combination viabilities to experimentally
measured combination viabilities from published in vitro drug
combination screens (Fig. 1b). Validation against published
clinical trial results was more complicated, because the results
of a clinical trial depend not only on the magnitude of the
difference in efficacy between a test and control therapy, but also
on the number of events (i.e. tumor progressions, patient deaths,
etc.) observed by the trial. Thus, to make a meaningful
comparison between IDACombo predictions and clinical trial
results, we chose to treat the remaining percent viability after
drug treatment as an estimate of hazard for patients treated with
that therapy. This allowed us to estimate hazard ratios (HRs) for
paired test and control therapies tested in clinical trials, which we
then used to estimate statistical powers for each trial (see
“Methods” section). Trials were classified as likely to succeed or
fail using an 80% power threshold (Fig. 1c). Prospective analyses
to identify novel efficacious drug combinations were performed
either in a high-throughput fashion using summary statistics to
compare many combinations at once or in a focused fashion
where the efficacies of individual combinations were assessed
using a range of drug concentrations (Fig. 1d).

In-sample validation within in vitro drug combination data-
sets. We first compared predictions made with IDACombo to
measure combination efficacies for ~5000 drug combinations
available in the NCI-ALMANAC dataset13. Monotherapy data
from NCI-ALMANAC was used to predict mean viabilities for
each drug combination in the dataset, and the predicted combi-
nation viabilities were compared to the measured combination
viabilities (Fig. S1A). This revealed that IDACombo predictions
in NCI-ALMANAC strongly correlate with measured combina-
tion viabilities (Pearson’s r= 0.932, Spearman’s rho= 0.929,
Fig. 2a, Supplementary Data 1). Furthermore, the large majority
of predicted efficacies were within 10% viability of the observed
values with a median error of 3.22% viability (Fig. 2b), and the
predictions were slightly skewed towards being conservative
predictions, with 62.5% of combination efficacies being predicted
to be less effective than they actually are and 37.5% predicted to
be more effective than they actually are (Fig. 2c). Associations
between predicted and measured combination efficacies in NCI-
ALMANAC are plotted on a drug-by-drug basis in Supplemen-
tary Data 2 as a resource for researchers who are interested in
seeing detailed results for their particular drugs of interest.
To ensure that these results were not specific to the NCI-
ALMANAC dataset, we repeated this analysis using two smaller
drug combination datasets: the AstraZeneca–Sanger Drug Com-
bination Prediction DREAM Challenge dataset6 (AZ–S DREAM
Challenge) and the drug combination dataset from O’Neil et al.
(2016)7. IDACombo showed the same high correlation between
predicted and measured drug combination efficacy and low
prediction error in these datasets as in NCI-ALMANAC (Fig. S2).

While outliers are certainly present in all three datasets where
predicted viabilities for a combination deviate significantly from
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Fig. 1 IDACombo allows drug combination efficacy predictions to be made using monotherapy cell line screening data, and these predictions can be
validated against measured efficacies or used to identify novel efficacious drug combinations. a Example calculations demonstrating how IDACombo
predicts drug combination efficacies based on IDA. In this example, three cell lines (1–3) with measured efficacies for three monotherapies (A–C) at their
selected concentrations are used to predict the efficacy of the combination of drugs A+ B+ C. Highlighted cells indicate the best monotherapy for that cell
line (i.e. provides greatest reduction in viability). b Strategy for validating IDACombo efficacy predictions using in vitro measurements of efficacy.
Measured and predicted average efficacies for each treatment can be directly compared by calculating their correlation and calculating prediction errors.
c Strategy for validating IDACombo efficacy predictions using published clinical trial results. Combination efficacies which have been predicted using cell
line data are used to predict study HRs, and these predicted HRs are used, along with the number of events observed in each clinical trial, to predict study
powers. Predicted HRs can be compared to reported HRs, and a power threshold (80%) can be set to classify trials as likely or unlikely to detect a
significant improvement in a trial outcome (i.e. PFS), which can then be compared to observed trial outcomes. d Analysis techniques available for using
IDACombo predictions to identify novel efficacious drug combinations. High-throughput analyses using summary statistics can be used to compare
efficacy predictions for many drug combinations at once, or detailed analyses can be used to explore the efficacy of a single drug combination at varying
concentrations of each drug in the combination.
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measured viabilities and drug synergy/additivity or antagonism
may exist, these results suggest that most drug combinations in
the NCI-ALMANAC, AZ-S DREAM Challenge, and O’Neil et al.
datasets can be accurately modeled via IDA, and they support the
use of IDACombo to computationally predict drug combination
efficacy using single agent screening data.

Validation of CTRPv2/GDSC drug combination predictions in
NCI-ALMANAC. We also sought to determine whether or not
efficacy predictions made with IDACombo using monotherapy
data from one dataset would be consistent with measured drug
combination efficacies in a separate dataset, where the screening
methodology and set of screened cancer cell lines differed. To
this end, we used the Genomics of Drug Sensitivity in Cancer

(GDSC)14 and the Cancer Therapeutics Response Portal Version
2 (CTRPv2)15 monotherapy cell line screening datasets to make
IDACombo predictions for all drug combinations in NCI-
ALMANAC which used drugs that were also present in GDSC
and CTRPv2. This approach resulted in weaker correlations
between predicted and measured combination viabilities than the
previous in-sample validations (Spearman’s rho= 0.59 and 0.65
for CTRPv2 and GDSC, respectively, Fig. S3A and S3B). How-
ever, these correlations approach the limits of measured agree-
ment between CTRPv2 and GDSC monotherapy viabilities with
NCI-ALMANAC viabilities (Spearman’s rho= 0.599 and 0.596
for CTRPv2 and GDSC, respectively, Figs. S3C and S3D). These
results suggest that IDACombo predictions are robust across
datasets within the limits of variances due to technical error,
differences in screening methodologies, and differences in the size
and composition of the screened cell line populations.

Identifying clinical trials and drug concentrations for clinical
validation of IDACombo. While the in vitro validation results
suggest that the IDACombo approach is promising, the true
measure of the model’s utility is its ability to accurately predict
the efficacy of drug combinations in the clinical setting. To
explore this, we sought to validate IDACombo predictions of
clinical trial efficacy against published clinical trial results. The
full pipeline for this clinical validation is outlined in Fig. S1B.

We first identified a diverse and unbiased set of clinical trials
against which we could test IDACombo’s predictions. Ultimately,
this resulted in the identification of 54 usable clinical trials which
tested 62 unique treatments involving 32 drugs (Fig. 3,
Supplementary Data 3). Given the concentration-dependent
nature of IDACombo’s predictions, we also searched the
published literature to identify clinically relevant concentrations
for each drug at each dose used in these trials. This process is
described in the Supplemental Text, Methods, and Fig. S4. The
selected concentrations are included in Supplementary Data 4.

IDACombo predictions of clinical trial power closely agree
with results for clinical trials in chemo-naïve patients, but not
for trials in patients who had received previous treatment.
Following clinical trial and drug concentration selection, IDA-
Combo was used to predict efficacies for the control and
experimental treatments of each trial using the GDSC and
CTRPv2 monotherapy cell line screening datasets. These two
screens were chosen because they tested both a large number of
compounds and cell lines. The large number of compounds
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Fig. 2 Agreement between predicted and observed combination
viabilities in NCI-ALMANAC. a Scatterplot showing high correlation
between predicted average percent viability and experimentally observed
average percent viability for each drug combination in NCI-ALMANAC.
Predictions were made using monotherapy data from the dataset. The
green line is a reference diagonal with slope= 1 and intercept= 0. Note
that predictions were only made for the maximum concentration tested for
each drug. b Density plot showing that the absolute values of the
differences between the predicted percent viabilities and the observed
percent viabilities for each drug combination are generally below 10%, with
>50% of drug combinations having an absolute prediction error below 5%.
The red line marks a difference of ±10% viability between predicted and
observed values. c Density plot showing that the differences between the
predicted percent viabilities and the observed percent viabilities for each
drug combination have a slight tendency towards being positive—indicating
that IDA-Combo underestimates efficacy more often than it overestimates
efficacies. Source data are provided as a Source Data file.
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helped maximize the number of clinical trials we could make
predictions for, and the large number of cell lines maximized the
phenotypic diversity reflected in the predictions. The predicted
efficacies were then used to calculate HRs between treatment
groups in each trial. Encouragingly, despite making predictions
for cancer-specific trials with a pan-cancer set of cell lines and the
uncertainties in matching in vitro drug concentrations to

physiological drug concentrations, predicted HRs generated using
cell line data were correlated with reported PFS/TTP HRs in
clinical trials where patients had not received cancer drug treat-
ment prior to trial entry (Fig. S5A) with a Pearson’s r= 0.60 (p=
0.0044) and Spearman’s rho= 0.54 (p= 0.012). It is notable,
however, that, unlike in the in vitro validation analysis, predic-
tions in this analysis tended to be overly optimistic, with pre-
dicted HRs generally being lower than reported PFS/TTP HRs.

To determine whether or not these predicted HRs are of
sufficient quality to practically inform drug combination devel-
opment, we used the predicted HRs to estimate the statistical
power that each trial had to detect significant differences in PFS,
TTP, or OS between the treatment groups and compared our
predicted powers to whether or not each trial actually reported an
improvement in these outcome metrics. These predicted powers
are plotted in Fig. 4, with trials separated based on whether or not
a statistical improvement in PFS/TTP or OS was reported in the
published trial results. For our model to accurately predict trial
results, we expect the higher the predicted power, the more likely
we will see a trial to report a significant difference between
treatment and control groups.

Using a standard 80% power cutoff to classify trials as likely or
unlikely to detect a statistically significant improvement, our
predicted powers for PFS/TTP correctly classified 84.6% of
clinical trials in which patients had not received cancer drug
treatment prior to trial entry (Fig. 4a), with >83% sensitivity and
specificity. The analysis produced three false positives (indicated
by gray arrows in Fig. 4a) and one false negative (indicated by an
orange arrow in Fig. 4a), which are discussed in detail in the
Supplemental Text. Briefly, three of the four misclassified trials
were ovarian cancer trials, suggesting that our pan-cancer
collection of cell lines may not perform well in predicting
outcomes for this disease setting, and two of the three false-
positives tested therapies that are currently in clinical use for
those disease settings. Other possible explanations for the
misclassification of these trials were also identified, including
one of the trials being conducted exclusively in elderly adults with
death from unknown causes/losing patients to follow up being
considered as progression, and one of the tested drugs being
tested with an improper solvent in CTRPv2—likely leading to it
being inactivated and, therefore, not properly accounted for in
IDACombo’s predictions.

For OS powers in treatment-naïve trials (Fig. 4b), accuracy,
sensitivity, and specificity were >90%, but it is difficult to
confidently assess the suitability of IDACombo for predicting OS
benefit, because we only identified three clinical trials in
treatment-naïve patients which detected a statistically significant
improvement in OS. Predicted HRs were associated with reported
OS HRs for first-line therapy trials, but more weakly than with
PFS/TTP HRs (Fig. S5B).

Unfortunately, the model performed much more poorly for
clinical trials in patients who had undergone cancer drug
treatment prior to entering the trial (Fig. 4c and d), reflecting
the fact that no statistically significant association was detected
between measured and predicted HRs in trials which involved
previously treated patients (Fig. S5C and S5D). While the reasons
for this poor performance in previously treated patients are not
immediately clear, possible explanations are discussed later.

The performance of predictions made with cancer type/subtype
specific sets of cell lines is limited by the number of cell lines
available for each cancer type. Notably, the predictions in Fig. 4
were made using all of the available cell lines in CTRPv2 or
GDSC, regardless of the cancer type being studied in each clinical
trial. Analyses with cancer type/subtype-specific sets of cell lines

54 Usable Trials
(48 with PFS/TTP results)

(50 with OS results)

Manually Identify Usable Trials
Based on Inclusion Criteria:

• All drugs in control and
experimental arms are available
in CTRPv2 and/or GDSC.

• Experimental therapy is control
therapy plus one or more
additional drugs.

• ≥50 patients per trial arm

• ≥50 cell lines available for
predictions

• Plasma conc. for drugs in trial
can’t be >2× max tested in vitro
conc. available for predictions

• Cannot be substantially the same
as another selected trial (i.e.
same treatment groups, drug
doses, cancer type, patient
population, and outcomes)

9165 search 
stringsClinicalTrials.gov

1106 Clinical Trial Records

Filter for completed,
phase III trials

Computationally
search for drug

combination trials

1537 Published Articles 
From 636 Clinical Trials

Computationally
search for published

trial resultsPubMed.gov

22,290 Clinical Trial Records

Fig. 3 Trial selection pipeline for clinical validation. Flowchart detailing
how completed, phase III cancer clinical trials were selected for the clinical
trial validation analysis. Searches of ClinicalTrials.gov and PubMed.gov
were performed via web scraping (see “Methods” section) to identify
published results for trials that may meet our inclusion criteria, and the
identified clinical trial publications were then manually inspected to identify
trials that met our study’s inclusion criteria.
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were also performed and are presented in Fig. S6 and Supple-
mentary Data 5. The results of these analyses are discussed in the
Supplemental Text. Briefly, they suggest that predictions for
targeted therapies are sensitive to the molecular features targeted
by those therapies, but that predictions made using cancer-
specific sets of cell lines generally perform less well than predic-
tions made using all available cell lines due to the limited number
of cell lines available for many cancer types. Thus, while the
results of Fig. 4 indicate that predictions with pan-cancer sets of
cell lines are largely sufficient for predicting the outcomes of
cancer-specific clinical trials, IDACombo predictions may
improve in the future if sufficiently large cancer-specific sets of
cell lines can be used to generate cancer-specific predictions.

Prediction performance is drug concentration dependent.
Beyond the selection of cell lines, we also investigated the
importance of drug concentration selection for IDACombo pre-
dictions. The results of these analyses are discussed in the Sup-
plemental Text. Briefly, they suggest that deviating from the
identified clinical drug concentrations reduces model perfor-
mance in the clinical trial validation (Fig. S7), and that IDA-
Combo predictions lose accuracy when attempting to predict the
efficacy of combinations with clinical drug concentrations >2×

the maximum in vitro concentrations tested for those drugs
(Fig. S8).

Clinical predictions with Bliss Independence are less accurate
than predictions with IDA. To further validate our model, we
compared our IDA-based results against predictions made using
Bliss Independence16—one of the most established models for
calculating the expected efficacy of a combination of non-
interacting drugs (see “Methods” section). Bliss Independence-
based predictions generally performed more poorly than IDA-
based predictions (Fig. S9), suggesting that IDA is a more useful
model for clinical drug combinations, at least for the trials in our
dataset (see details in the Supplemental Text).

Overall, the clinical trial validation results suggest that
IDACombo is capable of making highly accurate predictions of
whether or not a clinical trial will detect statistically significant
improvements in patient outcomes for drug combinations in
previously untreated patients using only in vitro monotherapy
information.

Prospective pan-cancer IDACombo predictions reveal patterns
based on drug mechanisms of action. Given the encouraging
validation results in both in vitro and clinical trial data, we chose
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Fig. 4 Clinical trial validation results show accurate efficacy predictions for trials in previously untreated patients but not for trials in previously
treated patients. IDACombo was used to make efficacy predictions for the control and experimental treatments of the clinical trials selected using the
pipeline in Fig. 3. Hazard ratios were then calculated using these predictions, and study powers were calculated for each available comparison of a control
therapy vs. an experimental therapy. These comparisons are separated based on whether or not the experimental arm statistically improved either PFS/
TTP (panels a and c) or OS (panels b and d) in the published trial results. Predicted powers for each comparison are plotted on the y-axes, and an 80%
power threshold (dashed line) is used to classify whether or not a comparison is expected to yield a statistically significant improvement. Comparisons are
colored according to the dataset used to make predictions for the compared treatments. Panels a and b show results for trials in which patients had
received no previous drug treatments. Panels c and d show results for trials in patients who had received previous treatment. Error bars for each plotted
clinical trial power represent mean estimated power ± standard error (bounded between 0% and 100% power). Gray and orange arrows in Panel a indicate
misclassified trials that are discussed in the text. P values were calculated using one-tailed t-tests. Blue circles indicate predictions made using the CTRP
dataset, and red circles indicate predictions made using the GDSC dataset. Boxplots are plotted so that the lower and upper whiskers indicate the extreme
lower and upper values, respectively, the box boundaries indicate the first and third quartiles, and the center line indicates the median. Source data are
provided as a Source Data file.
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to create efficacy predictions for all possible two-drug combina-
tions of clinically advanced drugs available in CTRPv2 or GDSC.
However, the analysis of these results necessitated a different
analysis strategy than was used for the clinical validation analysis.
This was because power calculations were not convenient given
the lack of knowledge about how many PFS/TTP or OS events
would be observed in future trials of these combinations and the
lack of knowledge about which control treatment each combi-
nation should be best compared to when calculating HRs. As a
result, we developed the IDAcomboscore (see “Methods” section
for details), which can be interpreted such that a higher IDA-
comboscore indicates a more effective drug combination relative
to the most effective single drug in the combination.

IDAcomboscores calculated using all available cell lines are
plotted in Fig. 5 for combinations of CTRPv2 drugs which had at
least one IDAcomboscore ≥ 0.004 (this cutoff was determined

based on heatmap cluster boundaries between drugs with higher
and lower IDAcomboscores). Notably, the heatmap suggests that
combinations of drugs which work via the same mechanisms of
action are not expected to be more efficacious than the best
monotherapy under IDA (see combinations of topoisomerase
inhibitors, EGFR inhibitors, MEK inhibitors, mTOR inhibitors, or
alkylating agents). This is not surprising, since IDA predicts that
the best drug combinations will be comprised of drugs which act
on completely separate populations of cells/patients, and drugs
that have the same mechanism of action are likely to act on the
same populations of cells/patients. An exception to this, however,
can be found in the combination of navitoclax and obatoclax,
which has a relatively high IDAcomboscore despite their both
being classified as BCL inhibitors. The most likely explanation for
this is that obatoclax has been found to have effects other than
BCL inhibition. Indeed, it has been previously reported that
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Fig. 5 Top IDAcomboscore predictions for late-stage clinical drugs in CTRPv2. IDAcomboscores were calculated for all two-drug combinations of late-
stage clinical drugs in CTRPv2 using all available cell lines for each drug combination. Darker blue squares represent higher comboscores and, therefore,
greater predicted drug combination efficacies relative to the constituent monotherapies. Black boxes represent missing values, where efficacies could not
be predicted for a combination. The first bar, farthest left on the right side of the heatmap, indicates whether or not that drug is currently used for cancer
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not predicted to combine well with any other drugs (i.e. with a comboscore < 0.004) were excluded from this plot to improve readability, but a full
heatmap with all late-stage clinical drugs can be found in the “IDACombo Paper” project on OSF (see “Methods” section). Colored outlines are used to
highlight certain combinations according to the “Combinations of” legend in the bottom right. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19563-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5848 | https://doi.org/10.1038/s41467-020-19563-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


obatoclax can be highly effective in cell lines that are relatively
resistant to navitoclax17. Unfortunately, an examination of
combinations between drugs with different mechanisms of action
(so-called “class effect”) is more difficult than assessing
combinations of drugs with the same mechanisms of action,
because most mechanisms of action are only represented by a
single drug in Fig. 5.

The accuracy of prospective cancer-specific IDACombo pre-
dictions is currently limited by the number of available cell
lines for each cancer type. While the clinical validation analysis
suggests that IDACombo predictions generated using pan-cancer
sets of cell lines can be used effectively in predicting drug com-
bination efficacy in many specific cancer types, we expect many
researchers to be interested in making IDACombo predictions
with cancer type-specific and subtype-specific sets of cell lines.
Since many cancer types have few available cell lines, we sought to
determine how many cell lines are necessary to create accurate
predictions using IDACombo. The results of this analysis are
discussed in the Supplemental Text, but, briefly, our findings
suggest that prediction performance declines rapidly when pre-
dictions are made with <50 cell lines (Fig. S10A, Supplementary
Data 6). Since most cancer types have <50 cell lines available
(Fig. S10B, Supplementary Data 6), this suggests that cancer-
specific predictions could be improved in the future by increasing
the number of available cell lines for each cancer type.

IDACombo predicts that navitoclax will efficaciously combine
with taxanes in EGFR wild-type lung cancer. To demonstrate
how cancer-specific predictions can be used to identify novel
efficacious drug combinations, we performed an example analysis
in EGFR wild-type lung cancer (which is the cancer subtype with
the most available cell lines in CTRPv2) aimed at identifying
efficacious two-drug combinations with navitoclax, a BCL inhi-
bitor currently in phase I/II clinical trials for lung cancer in
various combinations. We began by identifying the highest pre-
dicted IDAcomboscores for navitoclax combinations in this
cancer subtype (Fig. 6a). While it is possible to perform
hypothesis testing using IDACombo to, for example, estimate the
probability that a particular drug combination has an IDA-
Comboscore ≥ a minimum desired IDAComboscore, we chose to
simply look at the top IDAComboscores as there are several
limitations to hypothesis testing with IDACombo which draw the
robustness of such an approach into question (see the “Statistics”
section in the “Methods” section for further discussion). The
combination with the highest predicted efficacy was with
daporinad (APO866), which is an NAMPT inhibitor that has yet
to enter phase III trials after phase II trials failed to show sig-
nificant efficacy as monotherapy in several cancer settings18,19.
Strikingly, the second and fourth best combinations were both
with taxanes (paclitaxel and docetaxel). Given the stalled clinical
development of daporinad and the shared mechanism of action of
paclitaxel and docetaxel, we decided to further investigate the
combination of navitoclax with taxanes. By calculating mean
viabilities for the combinations of navitoclax+ taxane using a
range of concentrations from 0 μM up to the achievable clinically
sustained plasma concentration for each drug, we determined
that the navitoclax+ taxane combination is predicted to be
superior to the best achievable monotherapy efficacy across a
wide range of drug concentrations for both docetaxel and pacli-
taxel combinations (Fig. 6b and c). In fact, the analysis predicts
that the maximal monotherapy efficacy can be achieved using
combinations of the drugs at much lower doses (approximately
one-third) than are required to achieve the same effect with any
monotherapy. This is important, because it suggests that

combinations that are predicted to be efficacious by IDACombo
may still be superior to monotherapy even if the clinical use of the
combination requires lower doses to be used for each drug to
limit toxicities.

Furthermore, other groups have tested the combination of
navitoclax with taxanes in vitro, in vivo, and in phase I clinical
trials. Their findings suggest that the combination shows superior
efficacy to monotherapy regiments in pre-clinical tests and that it
can be safely administered to patients20–23. Given these findings
and our own predictions, we believe the combination of
navitoclax with taxanes would be significantly more efficacious
than either monotherapy alone in EGFR wild type lung cancer
patients who have not received previous chemotherapy.

IDACombo predicts that elesclomol can be efficaciously added
to the combination of cisplatin and gemcitabine in EGFR wild
type lung cancer. To demonstrate how IDACombo can be used
to identify candidate combinations of more than two drugs, we
performed an analysis aimed at identifying drugs that could be
added to the combination of cisplatin+ gemcitabine to increase
the treatment’s efficacy in EGFR wild type lung cancer. Similar to
the navitoclax analysis, IDAcomboscores were predicted for the
addition of late-stage clinical drugs to the combination, with
cisplatin+ gemcitabine being treated as a monotherapy for the
purposes of IDAcomboscore calculations. By far, the highest
predicted IDAcomboscore was produced by the addition of ele-
sclomol, an inducer of oxidative stress, to cisplatin+ gemcitabine
(Fig. S11A). Importantly, predicted IDAcomboscores remained
high and predicted HRs remained low across a range of ele-
sclomol concentrations (Fig. S11B and S11C), indicating that the
combination is predicted to be superior to cisplatin/gemcitabine
or elesclomol alone even if elesclomol must be used at low doses
for toxicity reasons. We are unaware of any published studies
testing the combination of cisplatin+ gemcitabine+ elesclomol.
However, elesclomol has been demonstrated to selectively target
cisplatin-resistant lung cancer cell lines24, suggesting that it may
target a phenotypically distinct population of tumor cells from
that targeted by cisplatin. The high IDAcomboscore predicted for
this combination supports this possibility and suggests that this
combination should be further investigated for use in the first-line
therapy of EGFR wild type lung cancer. Along with the navitoclax
findings above, these findings demonstrate the ease and feasibility
with which IDACombo predictions can be used to identify novel
drug combination candidates for further development.

Discussion
Our results demonstrate that IDACombo can be used with
monotherapy cell line screening data to accurately predict drug
combination efficacy both in vitro and in patients. While this
does nothing to diminish the importance of continued efforts to
understand and predict drug synergy/additivity, it does demon-
strate that clinically meaningful predictions can be made using
the simpler IDA hypothesis while methods which account for
additivity and synergy continue to improve. In addition, our
results are notable because they demonstrate that in vitro drug
screening data can be used to generate clinically meaningful
predictions for drug combination efficacies in patients despite the
physiological and pharmacological differences between in vitro
and in vivo systems. Furthermore, they suggest that many of these
predictions can be made using pan-cancer sets of cell lines despite
the wide range of genetic and phenotypic diversities observed
among different cancer types.

There are, however, several limitations to this method. The first
major limitation is an apparent unsuitability of cell-line-based
IDACombo predictions for patients who have undergone

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19563-6

8 NATURE COMMUNICATIONS |         (2020) 11:5848 | https://doi.org/10.1038/s41467-020-19563-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


previous cancer drug treatment. One possible explanation for this
is that the set of cell line models we used for model construction
may be more representative of a population of treatment naïve
tumors than it is of a population of tumors which have recently
undergone a narrow set of treatments. It is well established that
drug treatment can induce clonal selection in tumors in ways that
alter the tumors’ drug sensitivities25. While these altered sensi-
tivities may be reflected in cell lines that were generated from the
tumors of previously treated patients26, it is likely that the cell
lines in CTRPv2 and GDSC were derived under a diverse set of
circumstances. This likely means that our set of cell lines contains
greater phenotypic diversity at the population level than would be
expected from a set of tumors which had recently undergone
similar treatments and, therefore, similar selective pressures.
Importantly, we do not believe this limitation negates the clinical
value of our method. Of the trials systematically selected for our
study, we identified more phase III cancer drug combination
clinical trials in treatment-naïve patients than in previously
treated patients, and more than half of the trials in treatment-
naïve patients were published within the last decade. This sug-
gests that there is still value in developing novel first-line thera-
pies, meaning that drug combinations prioritized by IDACombo

may have immediate clinical value. A second limitation of this
method is the inability of high-throughput cell line screens to
measure the efficacy of immunotherapies—making it impossible
for IDACombo to use currently available screens to predict the
efficacy of drug combinations which include immunotherapies. It
should be noted, however, that this does not mean that IDA-
based predictions of drug combination efficacy are necessarily
unsuitable for immunotherapies. Rather, this is currently a
technical limitation that may be overcome by efforts to generate
in vitro models suitable for screening immunotherapies27. These
limitations, and potential strategies to overcome them, are dis-
cussed in more detail in the Supplemental Text.

Despite the limitations of this analysis, our results strongly
support the notion that IDA is sufficient to explain the activity of
many drug combinations used to treat cancer, and IDACombo
provides a framework for translating monotherapy cell line data
into clinically meaningful predictions of drug combination effi-
cacy. Critically, while it is currently infeasible to experimentally
test the vast number of possible cancer drug combinations, the
algorithmic simplicity of IDACombo could allow researchers to
computationally predict the efficacies of hundreds of millions of
drug combinations in a matter of weeks to months. Moreover, as
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Fig. 6 IDA-Combo predicts strong benefits for combinations of navitoclax and taxanes in EGFR-WT lung cancer. a An ordered bar plot of the IDA-
comboscores predicted using EGFR-WT lung cancer cell lines for combinations of navitoclax with other drugs that have reached late-stage clinical trials.
Each bar represents a different combination of navitoclax with another drug. b and c 3-D plots of measured and predicted average cell viabilities at different
concentrations of navitoclax and docetaxel b or paclitaxel c. The gray plane represents the lowest average viability achievable with monotherapy. The red
arrow represents the difference between the best observed monotherapy effect and the best predicted combination effect, which suggests that the
combination therapy will reduce tumor cell viability below what is achievable with monotherapy alone. Source data are provided as a Source Data file.
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new cancer cell line models are developed and cell line screens
increase in size and quality, it should be possible to increase the
accuracy and disease/subtype specificity of IDACombo’s predic-
tions well beyond the promising first-steps presented here. By
using these predictions to systematically prioritize promising
combinations for future experimental and clinical validation, this
approach has the potential to significantly reduce the number of
drug combinations which need to be tested—greatly reducing the
cost and time of novel cancer drug combination discovery.

Methods
IDA and Bliss Independence drug combination efficacy predictions with
IDACombo. As shown in Fig. 1a, IDA predictions of drug combination efficacy are
produced by predicting that the effect of a combination of two or more drugs on a
cell line will be equal to the effect of the single most efficacious drug in the
combination. The efficacy of the drug combination is then summarized by calcu-
lating the mean predicted efficacy across all cell lines being used in the analysis, and
this average efficacy is used in downstream analyses. This equates to Eq. (1) below,
where µcombo,IDA is the mean IDA predicted efficacy of a combination of drugs A to
Z in n cell lines and where EAk and EZk are the respective efficacies of drugs A and
Z in cell line k.

μcombo;IDA ¼
Pn

k¼1 min EAk; ¼ ; EZkð Þ
n

: ð1Þ

Note that this is well defined for any efficacy metric where a decrease in the
efficacy metric indicates a decrease in the ability of a drug to kill cells (i.e. for a
metric such as viability relative to untreated cells). If a decrease in the efficacy
metric indicates an increase in the ability of a drug to kill cells (i.e. if the used
metric is viability reduction, etc.), then the equation must be modified to Eq. (2).

μcombo;IDA ¼
Pn

k¼1 max EAk; ¼ ;EZkð Þ
n

: ð2Þ

Bliss Independence predictions of drug combination efficacy are based on
rearranged equations from Bliss16, while assuming that the coefficient of
association between drugs in a combination is equal to 0. This equates to Eq. (3)
below, where µcombo,Bliss is the mean Bliss Independence predicted efficacy of a
combination of drugs A–Z in n cell lines and where PAk and PZk are the respective
probabilities of an individual cell surviving treatment with drugs A and Z in cell
line k. These probabilities can be taken as the viabilities of cell line k when treated
with drugs A or Z relative to an untreated control.

μcombo;Bliss ¼
Pn

k¼1 PAk ´ ¼ ´PZk

n
: ð3Þ

Note that Bliss Independence is only defined for probabilities between 0 and 1,
so any viabilities which fell below 0 or above 1 were rounded up to 0 or down to 1,
respectively, for Bliss Independence calculations in our analysis.

Percent viability. Percent relative viability (shortened to “percent viability”
throughout this paper) is simply the ratio of the viability of a treated cell line at a
study’s endpoint divided by the viability of an untreated control at the study’s
endpoint. As such, it can be interpreted such that 0% viability indicates complete
cell death at a study’s endpoint and 100% viability indicates identical viability to an
untreated control at the study’s endpoint. Notably, this means that percent viability
is not able to differentiate between treatments that are cytotoxic and treatments
that are cytostatic.

Processing CTRPv2 and GDSC cell line drug screening data. CTRPv2 and
GDSC often use slightly different names for the same drugs and cell lines, so these
identifiers were matched between the two datasets using the harmonized identifiers
provided by Ling et al.12. The code used to do this is included in the “Harmonizing
GDSC and CTRPv2” folder of the “IDACombo Paper” project on Open Science
Framework (OSF, see “Data availability” statement).

Following identifier harmonization, four-parameter log-logistic dose–response
curves were fit to the raw drug response data using the drc R package v3.0.128 and
the code included in the “Reprocessing raw CTRPv2 and GDSC data” folder of the
“IDACombo Paper” OSF project. This was done because the available sources of
processed dose–response data for CTRPv2 and GDSC were generated using
different algorithms between the two datasets. Recalculating the curves from the
raw data allowed us to harmonize the analysis method for both datasets, and it
allowed us to utilize information from all raw data points when estimating
uncertainties in downstream analyses. Uncertainties in estimated viabilities were
estimated using the drc R package predict.drc function and the sandwich R package
v2.4.029,30 for calculating the variance–covariance matrix. Having fitted
dose–response curves for each drug/cell-line pair in these datasets was necessary
for this analysis because Csustained concentrations were often not tested directly in
the datasets, so the curves were used to estimate these Csustained viabilities.

NCI-ALMANAC analysis. IDACombo was used to predict drug combination
efficacies for the combinations included in NCI-ALMANAC using the mono-
therapy data in NCI-ALMANAC. To avoid evaluating the accuracy of IDACombo
for the same drug combination more than once, predictions were only made for
each drug combination using the maximum tested monotherapy concentrations for
each drug in the combination. Since Holbeck et al.13 reported protocol differences
between the different screening sites used to create NCI-ALMANAC, data for each
monotherapy and drug combination was restricted to whichever site performed the
most experiments for that monotherapy/combination. Furthermore, if multiple
experiments were performed for the same treatment/cell line pair, the results of
those experiments were averaged. The monotherapy-based drug combination
efficacy predictions for each cell line were then averaged across all cell lines to
produce a mean predicted efficacy for each drug combination, and the measured
efficacies in NCI-ALMANAC were also averaged to produce a mean measured
efficacy for each drug combination. These predicted and measured mean efficacies
were then compared. All data and code used for this analysis is included in the
“NCI-ALMANAC Analysis” folder of the “IDACombo Paper” project on OSF.

AZ-S DREAM Challenge and O’Neil et al. 2016 Analysis. As with the NCI-
ALMANAC analysis, IDACombo was used to predict drug combination efficacies
for the combinations included in the AZ-S DREAM Challenge dataset and the
O’Neil et al. (2016) dataset using the monotherapy data in AZ-S DREAM and
O’Neil et al., respectively. To avoid evaluating the accuracy of IDACombo for the
same drug combination more than once, predictions were only made for each drug
combination using the maximum tested monotherapy concentrations for each drug
in the combination. The code used to perform these analyses has been included in
the “AstraZeneca-Sanger DREAM Analysis” and “O’Neil 2016 Analysis” folders of
the “IDACombo Paper” project on OSF. See the “Data availability” section for
descriptions of where data was accessed for each of these datasets.

Comparing IDACombo predictions made with CTRPv2 and GDSC to measured
drug combination efficacies in NCI-ALMANAC. Similar to the NCI-ALMANAC,
AZ-S DREAM Challenge, and O’Neil et al. Analyses, monotherapy data from
CTRPv2 and GDSC were used with IDACombo to predict mean combination
viability for drug combinations in NCI-ALMANAC that consisted of drugs tested
in CTRPv2 or GDSC, respectively. Note that predictions were only made for the
maximum tested NCI-ALMANAC concentrations for each drug in the combina-
tion and that overlapping combinations were excluded if the concentration tested
in NCI-ALMANAC exceeded the maximum tested concentration in CTRPv2 or
GDSC, respectively, for any drug in the combination. All available cell lines in
CTRPv2 or GDSC were used when making predictions for each drug combination.
These CTRPv2 and GDSC predictions were then compared to the mean viabilities
for the combinations that were experimentally measured in NCI-ALMANAC. Note
that cell line overlap was intentionally not considered in this analysis, so CTRPv2/
GDSC predictions were made with different (and much larger) sets of cell lines
than were used to generate the measured NCI-ALMANAC efficacies. The data and
scripts used in this analysis are included in the “NCI-ALMANAC Analysis” folder
of the “IDACombo Paper” project on OSF.

Identifying clinical trials for IDACombo clinical validation. As outlined in Fig. 3,
the rvest R package v0.3.231 was used to search ClinicalTrials.gov with 9165 search
strings designed to identify trials that tested at least two of the drugs in CTRPv2 or
GDSC. Search results were then compiled, resulting in the identification of 22,290
clinical trial records. These records were filtered to identify only completed, phase
III clinical trials, resulting in 1106 clinical trial records. Web scraping with rvest
was then performed again on ClinicalTrials.gov to search the records of each trial
for listed publications associated with the trial. This resulted in the identification of
1537 publications associated with 636 clinical trials. Web scraping with rvest was
then performed on PubMed.gov to collect the abstracts for each of these pub-
lications, which were then manually inspected to determine if the trial met the
following inclusion criteria: 1. Completed, phase III clinical trial; 2. ≥50 patients per
trial arm; 3. All cytotoxic drugs in control and test therapies are available in at least
one of either CTRPv2 or GDSC; 4. ≥50 cell lines available for predictions of tested
control and test therapies; 5. Test therapy is control therapy plus one or more
additional drugs; 6. Clinically relevant drug concentrations for each drug in a trial
are not >2× the tested drug concentrations in the dataset(s) necessary to predict
that trial’s efficacy (i.e. CTRPv2 and/or GDSC); and 7. Trial is not substantially the
same as another selected trial (i.e. same treatment groups, doses, cancer type,
patient population, and outcomes). These criteria were established prospectively
with the exception of the criteria that clinically relevant drug concentrations for
each drug in a trial must not be >2× the tested drug concentrations in the in vitro
dataset(s) used to make predictions for that trial as this was not a problem we were
expecting when the criteria were initially defined.

After trials were selected based on publication abstracts, the full articles were
downloaded and reviewed for final selection and collection of trial information.
This resulted in the identification of 54 clinical trials for use in the validation
analysis—48 of which reported PFS/TTP results and 50 of which reported OS
results. These trials tested 62 unique drug treatments (46 unique control vs. test
treatment comparisons) involving 32 unique drugs. If it was discovered that a long-
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term follow-up had been published for one of the selected trials, the most recent
publication of the trial’s results was used. The selected trials are listed in
Supplementary Data 3. The data and code used in this selection process are
included in the “Identifying Clinical Trials” folder of the “IDACombo Paper”
project on OSF.

Identification of clinically relevant drug concentrations. In order to ensure that
our drug combination efficacy predictions are clinically relevant, we surveyed the
published literature to identify clinical plasma concentrations for all of the late-
stage clinical drugs in CTRPv2 or GDSC. For drugs involved in the clinical trials
identified for the clinical validation of IDACombo, we searched for plasma con-
centrations produced by the drug doses used in those trials. As such, multiple
concentrations were identified for some drugs, each corresponding to a different
dose of that drug. When multiple concentrations existed for a drug, the highest
clinical concentration was used for the prospective analysis. All clinical con-
centrations as well as their corresponding citations are included in Supplementary
Data 4, with concentrations for the clinical trial analysis in the first sheet of the
table and concentrations for the prospective analysis in the second sheet.

Clinical concentrations were defined using published clinical trials which
measured patient plasma concentrations over time after drug administration. Since
many drugs that are administered via bolus IV exhibit extremely high plasma
concentrations at the time of administration with a very rapid decrease in
concentration immediately after administration, we decided that Cmax values were
not appropriate for use in our model. As such, we opted to define our clinical
concentration as the maximum plasma concentration achieved at least 6 h after
drug administration, which we called Csustained. We chose 6 h because we
observed that the exponential decline in plasma concentration for bolus IV drugs is
typically finished by 6 h, though we also found that the idea of using 6 h plasma
concentrations to define clinical drug activity is not unique to our study32. A
graphical demonstration of how Csustained values were determined is included in
Fig. S4.

Estimating clinical trial powers with IDACombo. Cell line viabilities and their
associated uncertainties were estimated at Csustained drug concentrations using
the fitted four-parameter log-logistic dose–response curves calculated from the raw
CTRPv2 and GDSC data and the drc R package predict.drc function and the
sandwich R package v2.4.029,30 for calculating the variance–covariance matrix.
These monotherapy viabilities were used to estimate mean viabilities for the control
and test treatments using IDACombo either using IDA-based predictions or Bliss
Independence-based predictions. To make a comparison between IDACombo
predictions and clinical trial results possible, we chose to treat the remaining
percent viability after drug treatment as an estimate of hazard for patients treated
with that therapy, where 100% viability indicates a hazard of 1 (all cancer cells are
alive relative to untreated) and 0% viability indicates a hazard of 0 (all cancer cells
are dead). This allowed us to then estimate a HR for each control/test treatment
comparison by dividing the mean test treatment viability by the mean control
treatment viability.

It should be noted that it is an obvious simplification to assume that mean
viability in cell lines is quantitatively linked to hazard for tumor progression or
death in treated patients. The rationale behind this simplification is that a
treatment which kills 100% of treated cancer cells in vitro may be hypothesized to
kill 100% of treated tumor cells in vivo resulting in a hazard for progression or
death of zero and that two treatments which kill the same proportion of treated
cancer cells in vitro may be hypothesized to perform similarly in vivo, resulting in a
HR of 1. It is less obvious, however, that mean viabilities between 0% and 100% can
be hypothesized to have a direct linear relationship to clinical hazards. It is also
notable that this approach cannot account for factors that influence patient hazard
beyond the toxicity of a therapy to tumor cells—such as patient performance status
or immune function. Despite these limitations, this approach was chosen because
we believed that any comparison of IDACombo’s predictions to clinical trial results
must be aimed at estimating trial power, and doing so requires estimating a HR.
We believe that directly dividing predicted mean viabilities of the test and control
treatments is the fairest way to accomplish this task, because it provides no
opportunity for arbitrary manipulation of the results as might be the case if
response thresholds were used to classify cell lines as “responders” or “non-
responders” for the purposes of hazard calculations.

Estimated HRs were used to estimate PFS/TTP/OS power for each trial using
the powerSurvEpi R package v0.0.933 and the number of PFS/TTP/OS events
observed in each trial. While a full description of the method used for power
calculations is too detailed to include here, it can be found in the powerSurvEpi
reference manual (https://cran.r-project.org/web/packages/powerSurvEpi/
powerSurvEpi.pdf) under the “powerCT.default0” function. All clinical trial power
predictions were performed using the data and scripts included in the “Clinical
Trial Validation Analysis” folder of the “IDACombo Paper” project on OSF.

Prospective analysis. The prospective analysis was performed using all drugs in
CTRPv2 and GDSC that have reached phase III or IV clinical trials, with selected
phase 2 drugs included based on our lab’s interests. For each selected drug, cell line
viabilities were estimated using drug concentrations from 0 to Csustained and the

fitted four-parameter log-logistic dose–response curves calculated from the raw
CTRPv2 and GDSC data. These monotherapy viabilities were then used to estimate
mean viabilities for the control and test treatments using IDACombo using IDA-
based predictions both with all available cell lines and with cancer-specific sets of
cell lines. The predicted mean drug combination viabilities were then used to
calculate HRs between the predicted drug combination efficacy and the best
monotherapy efficacy (HRC/Mbest) in the same way as was done for the clinical trial
analysis. Since this HR would not allow for comparisons of drug combinations that
did not share the same most effective monotherapy, we developed an IDA-
comboscore metric which is calculated using Eq. (4), where Δvia is equal to the
mean viability when cell lines are treated with the best monotherapy (i.e. mono-
therapy resulting in the lowest mean viability) minus the mean viability when cell
lines are treated with the drug combination.

IDAcomboscore ¼ Δvia � Δvia ´HRC=Mbest: ð4Þ

The resulting metric is larger for drug combinations that are expected to be
more efficacious, and it rewards drug combinations that maximally decrease the
mean cell line viability relative to monotherapy while also having a low HR relative
to the most effective monotherapy in the combination.

All data and code used to perform the prospective analysis is included in the
“Prospective Analysis” folder of the “IDACombo Paper” project on OSF. Notably,
this folder also includes a subfolder, “./Outputs/Cluster_Heatmaps/”, with efficacy
prediction plots and tables for predictions made with all cell lines and with 27
cancer type/subtype specific sets of cell lines in both CTRPv2 and GDSC. For plots
and tables of all cell line predictions, combinations are only included if at least 50
cell lines were available for predicting the efficacy of that combination. For cancer
type/subtype specific predictions, at least three cell lines were required for a
combination to be plotted.

Statistics. Standard errors for IDACombo’s predicted HRs, powers, and IDA-
comboscores were estimated using a semi-parametric bootstrap. Briefly, this pro-
cedure was performed in the following steps:

1. Distributions of the calculated monotherapy viability values used in each
analysis were simulated for each cell line by randomly sampling values from
normal distributions with means equal to the calculated viability values and
standard deviations equal to the standard errors estimated for each
calculated viability using the fitted-dose–response curves described in the
“Processing CTRPv2 and GDSC cell line drug screening data” section of the
“Methods” section.

2. Simulated monotherapy viabilities were used to calculate estimated therapy
efficacies for each cell line under the relevant model assumptions for each
simulation.

3. Cell lines were randomly sampled with replacement for each simulation.
4. Mean therapy efficacies were calculated for each simulation.
5. HRs, powers, and IDAcomboscores were calculated for each set of simulated

therapy efficacies, and the standard deviation of these simulated statistics
were calculated and used to estimate standard errors, 95% confidence
intervals, and relevant p-values.

10,000 simulations were performed for each control/experimental treatment in
the clinical trial validation analysis, and 1000 simulations were performed for each
drug combination in the prospective analysis. It should also be noted that, when
sampling viabilities for two therapies which were to be compared and which shared
one or more compounds, standard normal deviates were used to match sampled
viabilities for those shared compounds between the two therapies. While
simulating curve parameters may be a more robust approach than using standard
normal deviates, particularly if the concentrations of the shared compounds differ
significantly between the two therapies being compared, the standard normal
deviate approach was chosen due to its being simpler to implement, faster to run,
and more versatile. In particular, this approach allows IDACombo to estimate
uncertainties when using data where only measured viabilities and their standard
deviations are known, such that no curve fit parameters exist to be simulated (this
is the case for datasets such as NCI-ALMANAC, where a number of compounds
were tested at only three concentrations, making it impractical to fit dose–response
curves).

Importantly, the standard errors estimated in this analysis only account for
random errors in the measured viability values provided by the cell line drug
screening datasets and in random sampling from the cell line population being
used to make predictions. Systematic errors, such as might be caused by imprecise
drug dilution or cell line counting, variation in phenotype between different
aliquots of a cell line, or different protocols for performing cell line screens, are not
modeled here. Likewise, no effort is made here to estimate uncertainties arising
from predictions being made with cell line populations that do not adequately
represent the patient population the predictions are to be applied to, as how to
quantify how representative a collection of cell-line models is for a given set of
cancer patients is an open question in the field. Additionally, no efforts are made to
estimate the uncertainties introduced by uncertainty in the in vitro drug doses
which most closely mimic the in vivo effect of each drug on patient tumors. As
such, the uncertainties estimated for values calculated by IDACombo should be
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considered as the lower limits of uncertainty, and should not be considered to be
particularly robust for hypothesis testing.

To determine if a predicted IDAcomboscore is >0, the null probability that the
IDAcomboscores is ≤0 was estimated by dividing the number of simulated
IDAcomboscores that are ≤0 by the total number of simulated IDAcomboscores.
Multiple testing correction was performed by using the Benjamini–Hochberg
procedure34 to estimate false discovery rates (FDRs), with FDRs ≤ 0.05 being
considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. With the exception of the AstraZeneca-Sanger
Drug Combination Prediction DREAM Challenge dataset (controlled access, see below),
all raw data necessary to run the analyses in this paper, along with detailed readme files
to aid investigators in navigating and understanding each analysis and script in the
project, have been uploaded in their entirety to Open Science Framework (OSF) and are
stored in the “IDACombo Paper” project35, which can be publicly accessed at https://osf.
io/sym6h/.
The NCI-ALMANAC dataset was accessed by downloading the

“ComboDrugGrowth_Nov2017.zip” folder from the following link on 5/17/2019: https://
wiki.nci.nih.gov/download/attachments/338237347/ComboDrugGrowth_Nov2017.zip?
version=1&modificationDate=1510057275000&api=v2.
The AstraZeneca–Sanger Drug Combination Prediction DREAM Challenge dataset

was accessed by downloading the “DREAM_OI_matrices_final.zip” [syn18468836] and
“OI_combinations_synergy_scores_final.txt” [syn18435126] files from Synapse.org on 2/
13/2020. Note that this data is not included in the OSF repository for this paper because
it is controlled access and cannot be distributed with this manuscript.
The O’Neil et al., 2016 dataset was obtained by downloading the supplemental data

files associated with O’Neil et al.7 using links from the following webpage on 1/31/2020:
https://mct.aacrjournals.org/content/15/6/1155.figures-only
Release 6.0 of the GDSC dataset was downloaded from the following website on 2/26/

2018: ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-6.0
The CTRPv2 dataset was downloaded from the following weblink on 2/26/2018: ftp://

anonymous:guest@caftpd.nci.nih.gov/pub/OCG-DCC/CTD2/Broad/
CTRPv2.0_2015_ctd2_ExpandedDataset/CTRPv2.0_2015_ctd2_ExpandedDataset.zip.
Source data are provided with this paper.

Code availability
The code necessary to reproduce the analyses in this paper, along with detailed readme
files to aid investigators in navigating and understanding each analysis and script in the
project, have been uploaded in their entirety to Open Science Framework (OSF) and are
stored in the “IDACombo Paper” project35, which can be publicly accessed at https://osf.
io/sym6h/.
Most analyses were performed using R v3.4.236 with Microsoft R Open v3.4.237 and

RStudio v1.1.46338. Processing of the raw dose–response data from CTRPv2 and GDSC
was performed using the Mesabi compute cluster at the Minnesota Supercomputing
Institute (MSI) at the University of Minnesota (http://www.msi.umn.edu) and R v3.4.4.
The IDACombo R package created for this analysis is available on GitHub at https://

github.com/Alexander-Ling/IDACombo/. Additional R packages used in the analysis are
listed in Table S1 along with their citations and web-links.
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