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Redox-informed models of global biogeochemical
cycles
Emily J. Zakem1✉, Martin F. Polz2,3 & Michael J. Follows4

Microbial activity mediates the fluxes of greenhouse gases. However, in the global models of

the marine and terrestrial biospheres used for climate change projections, typically only

photosynthetic microbial activity is resolved mechanistically. To move forward, we argue that

global biogeochemical models need a theoretically grounded framework with which to

constrain parameterizations of diverse microbial metabolisms. Here, we explain how the key

redox chemistry underlying metabolisms provides a path towards this goal. Using this first-

principles approach, the presence or absence of metabolic functional types emerges dyna-

mically from ecological interactions, expanding model applicability to unobserved

environments.

“Nothing is less real than realism. It is only by selection, by elimination, by emphasis, that we

get at the real meaning of things.” –Georgia O’Keefe

M icroorganisms drive biogeochemical cycling in the earth system1 (Fig. 1). Photo-
autotrophic microorganisms are responsible for about half of CO2 fixation and O2

production on earth, and heterotrophic microorganisms are responsible for much of
the return reaction: the oxidation of organic matter back into CO2. The temporal and spatial
separation of photoautotrophy and heterotrophy in the global environment drives the biological
sequestration of carbon, the reduction of atmospheric CO2, and the maintenance of elevated
atmospheric and oceanic O2

2–5. Chemoautotrophic microorganisms also fix CO2 and, together
with anaerobic heterotrophic metabolisms, carry out diverse chemical transformations including
the fluxes of nitrogen to and from biologically available states and the formation of the potent
greenhouse gas nitrous oxide (N2O)6,7. Since these transformations respond to, and feedback on,
changes in climate (Fig. 1), estimating microbial activity accurately at global scales is important
for climate science.

However, understanding and projecting the impacts of microbial processes are limited in part
due to oversimplified representation in earth system models. For example, in marine biogeo-
chemical models, much attention is given to the complex impacts of phytoplankton—the
photoautotrophic microorganisms responsible for primary production—and their small zoo-
plankton predators8–10. The bacterial and archaeal activities responsible for other critical aspects
of biogeochemical cycling in the land and ocean—remineralization, denitrification, nitrogen
fixation, methanogenesis, etc.—are often crudely parameterized10. Such models have limited
prognostic capability. For example, models typically prescribe the ecological niche of a given
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metabolism with imposed, empirically determined parameters
that are site- or organism-specific. These parameterizations may
or may not apply to other environments, including past and
future ecosystems.

These simplistic approaches have been largely necessary due to
the difficulties of characterizing the taxonomy and metabolic
capabilities of natural microbial communities. However, the rapid
expansion of genetic sequencing capabilities has enabled a clearer
view of microbial biogeography and activity in the environment.
In consequence, computational biogeochemistry is opening up
the black box of remineralization and other microbially mediated
processes in marine and terrestrial environments11–18.

As we expand models to include the full metabolic potential of
microorganisms, how can we organize and reduce the complexity
of the descriptions of metabolic diversity? Non-photosynthetic
organisms oxidize chemical species for energy, and thus their
respiration is biogeochemically significant19. Here, we explain
how the key reduction-oxidation (redox) reactions that supply
energy for metabolisms can provide an additional organizing
principle for explicit descriptions of microbial populations in
ecosystem models. This redox basis can be exploited to quanti-
tatively resolve chemical transformations in terms of assimilatory
and respiratory fluxes. While not yet incorporated into earth
system models, this view has been advocated for such applica-
tions20, and has been embraced and employed in the field of

environmental biotechnology, such as in the interpretation and
modeling of wastewater bioreactors21. Just as models of ocean
and atmospheric circulation are constrained by conservation of
energy and potential vorticity, complementing mass balance with
powerful redox and energetic constraints enables self-consistent
descriptions of diverse microbial metabolisms.

This approach aims to advance ecological modeling beyond
species-specific descriptions to those that matter for biogeo-
chemical function, in line with trait-based modeling approaches9.
In analogy to the use of redox chemistry, trait-based functional
type models of phytoplankton have used cell size as an organizing
principle for understanding phytoplankton biogeography, biodi-
versity, and impact on biogeochemistry9,22,23. These types of
theoretical constraints allow for the inclusion of more functional
types without introducing as many degrees of freedom as would
be necessary if each were empirically described. The guiding
perspective is that organizing complex biological behavior by its
underlying chemical and physical constraints gives more uni-
versally applicable descriptions of large-scale biogeochemistry.

When incorporating a redox-balanced approach into ecosys-
tem models, microbial function emerges from underlying chem-
istry as a consequence of interactions between populations
modeled as metabolic functional types and their environment.
Resulting theoretically grounded ecosystem models indepen-
dently simulate microbial growth, respiration, and abundances in
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Fig. 1 Key microbially driven redox transformations that mediate the atmospheric fluxes of climatically relevant gases. Radiatively active gases are
notated with red type. The processes in black type are represented in some way (though not necessarily with electron balancing) in both the marine and
terrestrial biospheres in earth system models within the Coupled Model Intercomparison Project (land: NCAR Community Earth System Model103; ocean:
GFDL COBALTv2104), which are used for projections of climate change in reports by the Intergovernmental Panel on Climate Change. Processes in green
type are represented in only the terrestrial model. Current models do not yet include other relevant reactions, some of which are represented in gray type,
such as anaerobic ammonia oxidation (anammox), the marine production and consumption of methane, the redox cycling of iron, manganese, and other
metals, and the methane-relevant redox chemistry of phosphorus105. COBALTv2 does account for sulfate reduction in marine sediments, but sulfate is not
represented. Image courtesy of NASA.
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ways that we can compare with observations such as sequencing
datasets. Thus, sequencing datasets are used as critical tests for
the models, as external constraints rather than as input to the
models, allowing for an iterative relationship between theory,
observations, and models.

In contrast with empirically informed models, this approach
involves constructing a model of microbial activity theoretically,
and then comparing the results with the observations in order to
gain an understanding of the system. The goal is to understand
why biology functions as it does, in addition to anticipating global
impacts. From a first-principles biogeochemical perspective with
respect to physical and chemical forcing, genes are an inter-
mediate step between forcing and function, with the detailed
complexity of biological reality following the underlying chemical
and physical constraints (analogous to the form follows function
principle of architect Louis Sullivan). This does not equate to
thinking that biology (or genetic information) does not matter or
can be replaced entirely in models by physics and chemistry.
Rather, we want to fundamentally understand biological activity
as an integrated part of an ecosystem, and physics and chemistry
become tools for doing so.

Here, we outline the basis for using redox chemistry as an
organizing principle and its translation into quantitative
descriptions of microbial activity that are simple enough for
global earth system models. We then discuss the benefits of this
approach in the context of their implications for improved
understanding and projections of global change impacts. Finally,
we discuss limitations and possible future developments.

Predicting microbial activity. From one perspective, microbial
communities are characterized by interactions at the micro-scale:
gene expression, enzymatic capabilities, metabolites, species-
specific interdependencies, etc., as well as the physical and che-
mical environment surrounding small cells24–28. The information
from sequencing in particular has allowed for a huge expansion of
insight into the detailed in situ activity of uncultivated species.
When investigating global-scale impacts, how do we decide which
of these details may be bypassed for simplicity? Or, if this sim-
plification is impossible, must we incrementally construct a
microbial ecosystem model that incorporates all known micro-
scale detail?

Another way forward arises from a macro-scale perspective,
which examines how ecosystem function relates to the chemical
potential utilized by organisms for energy20,29,30. For example, it
is well known that microbial communities in sediments and
anoxic zones organize according to the redox tower – the ranking
of half-reactions by electrochemical potential14,31,32. Further-
more, respiration by living organisms increases the entropy of the
environment by dissipating concentrated sources of chemical
energy in accordance with the Second Law of
Thermodynamics30,33,34.

This perspective suggests that chemical potential can be used to
predict the activity of microbial communities and their
biogeochemical impact. However, given the notorious complexity
of microbial cells and systems, which is many steps away from
governing chemical or physical equations, how can we be sure
that this activity is indeed predictable? Frentz et al.35 demon-
strated that external conditions cause the seemingly random
fluctuations observed in microbial growth, rather than stochastic
variation in gene expression. This provides direct evidence of
deterministic behavior, and so the authors conclude that
microbial systems can in principle be determined by
macroscopic laws.

How is this determinism manifested? If microbial communities
can respond relatively quickly to changes to their local

environment, they may predictably optimize the exploitation of
locally available resources. In the ocean, dispersal in microbes is
thought to be a highly efficient process such that microbial
communities can in effect draw from an extensive seed bank36,37,
as captured in the phrase “everything is everywhere, the
environment selects”38. Furthermore, recent evidence also shows
that gene acquisitions and deletions happen quickly enough to
allow for horizontal gene transfer to dominate bacterial adapta-
tion39–43, implying that evolution can occur within few genera-
tions and thus on timescales similar to ecological interactions.
Perhaps consequentially, similar geochemical environments have
been demonstrated to have high-microbial functional redundancy
despite different taxonomic compositions17,44. This may be
interpreted with the hypothesis that physics and chemistry selects
for metabolic traits, and that these traits can be housed in
different organisms with taxonomic composition shaped by
micro-scale or biotic interactions17,44,45.

The prediction of microbial activity from environmental
chemical potential has a long history in microbiology20,21,46–52,
and is conceptually similar to other redox-balanced approaches to
understanding microbial activity in sediments, soils, subsurfaces,
and aquatic systems13,31,53–58. Illustrating the power of these
approaches, anticipating metabolism from chemical potential
resulted in a prediction that anaerobic ammonia oxidation
(anammox) should exist decades before it was observed59,60.
Quantitatively understanding microbially mediated rates of
conversion of substrates has practical implications for wastewater
treatment, and thus the field of biotechnology has established
methodologies for an approach in textbook form21. Flux balance
analysis (FBA) models can be considered as much more highly
detailed analogs of this approach that resolve the mass and
electron balances among a multitude of chemical reactions within
a cell61,62.

Redox-balanced metabolic functional types. We can resolve
microbial activity in global ecosystem models using the under-
lying redox chemistry of diverse metabolisms as a constraint. One
specific way forward is to model distinct metabolisms as popu-
lations of metabolic functional types. This systematically quan-
tifies relative rates of substrate consumption, biomass synthesis,
and excretions of transformed products associated with each
metabolism. Coupled with estimates of substrate uptake, this
replaces implicit parameterizations of processes such as organic
matter consumption, oxygen depletion, and denitrification with
electron-balanced respiratory fluxes of dynamic microbial popu-
lations. Box 1 provides a detailed description of this methodology
for multi-dimensional models.

A particular set of redox reactions may distinguish a functional
type, such as the oxidation of organic matter using oxygen
(aerobic heterotrophy), or the oxidation of ammonia or nitrite
using oxygen (chemoautotrophic nitrification) as exemplified in
Table 1. For each metabolism, an electron-balanced description
consists of multiple half-reactions: biomass synthesis, oxidation of
an electron donor, and reduction of an electron acceptor21,48. The
ratio of anabolism and catabolism can then be represented by the
fraction f of electrons fueling cell synthesis vs. respiration for
energy, following ref. 21. This provides a yield y (moles biomass
synthesized per mole substrate utilized) of each required substrate
that reflects two inputs: electron fraction f and the coefficients of
the half-reactions (Fig. 2). The interlinked yields reflect the energy
supplied by the redox reaction, the energy required for synthesis
and other cellular demands, and the inefficiencies of energy
conversion. Either f or y for any one of the substrates may be
estimated theoretically with Gibbs free energies of reaction21 or
with a combination of theoretical and empirical strategies63.
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The result is a stoichiometric budget of the metabolism of the
whole organism (Table 1). These descriptions quantify the
elemental ratios of utilized substrates, biomass, and the excretion
of waste products. For example, the descriptions account for the
CO2 produced by heterotrophic metabolisms as well as the CO2

fixed by chemoautotrophic metabolisms (Table 1, Fig. 2, and
Supplementary Fig. 2), linking microbial activity directly to global
carbon cycling.

To estimate the growth rate of each functional type, the yields
from the metabolic budgets are combined with the uptake rates of
the required substrates (Box 1). Limiting uptake rates may rely on
empirically derived uptake kinetic parameters, or they can be
estimated theoretically from diffusive supply, cell size, membrane
physiology, and other physical constraints64–66. If theoretical
models of uptake are used, the physical constraints on substrate
acquisition and the redox chemical constraints on energy
acquisition can provide an entirely theoretical estimate of the
growth of each metabolic functional type.

One strategy is to represent the populations carrying out each
of these discrete metabolisms as one functional type population,

which aggregates the diverse community of many species that are
fueled by the same (or a similar) redox reaction (Fig. 3). Such
aggregation has been deemed a useful strategy for representing
the biogeochemical impacts of microbial communities for certain
research questions67,68. However, for other questions this wipes
out critical diversity among the aggregated populations. For
example, diverse aerobic heterotrophic populations consume
organic matter over a wide range of rates, and these rates dictate
the amount of biologically sequestered carbon in the ocean.
Redox chemistry and physical limitations alone may not inform
the heterogeneity among similar metabolisms. One additional
constraint is the limited capacity of the cell and thus its allocation
of proteome towards different functions69. While the electrons
supplied to the cell must be conserved following the redox
balance, the electrons may be partitioned differently into
machinery for substrate uptake vs. biomass synthesis, for
instance, for different phenotypes. This partitioning can be
quantitatively related to ecological fitness and biogeochemical
impact via uptake kinetics, effective yields, and other traits9

(Supplementary Note 1 and Supplementary Fig. 1).

Table 1 Simplified equations describing two exemplary metabolic functional types.
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Example efficiency f = 0.1 – 0.2; Marine bacteria101 f = 0.02 – 0.04; Marine archaea18

Example budget 7.1C6.6H10.9O2.6N+ 47O2 → B+ 6.1NH+
4+ 42CO2 112NH+

4+ 5CO2+ 162O2 → B+ 111NO−
2

For each, half-reactions combine to form the catabolic and anabolic full reactions21: the oxidation of an electron donor (RD; here either organic matter or ammonium), the reduction of an electron acceptor
(RE), and biomass synthesis (RS). The total reaction (RT) sums each of these three multiplied by a factor of f, the fraction of electrons partitioned into the synthesis reaction vs. respiration. Denominator d
represents the number of electron equivalents that correspond to the oxidation states of the inorganic constituents of that synthesis: with a microbial biomass composition of C5H7O2N, dB= 4(5)+ 1
(7) – 2(2)− 3(1)= 20. Organic matter oxidation and synthesis equations are written without H2O on the left- and right-hand side, respectively, for conciseness. Charge balance via speciation of DIC is
also neglected for simplicity. Example whole organism metabolic budgets are calculated using the listed example efficiencies for marine organisms, an average marine organic substrate composition102 of
C6.6H10.9O2.6N, and the above biomass composition.

Box 1 Incorporating metabolic functional types into ecosystem models

A metabolic functional type can be represented as a population with a growth rate that is limited or co-limited by multiple required substrates. If Liebig’s
Law of the Minimum is employed, the limiting growth rate μ is described as

μ ¼ minðViyiÞ ð1Þ
where Vi is the specific uptake rate of substrate i, and yield yi is the biomass yield with respect to that substrate. Yields for the different substrates and
elements are interlinked in the metabolic budget derived from the underlying redox chemistry. Yields reflect Gibbs free energies of reaction among
other factors. In the simplest model, non-limiting substrates are consumed in proportion to the limiting resource according to the metabolic budget,
although in reality they may accumulate in the form of storage molecules.

Each metabolic functional type population can be incorporated into a multi-dimensional environmental model (e.g., an ocean simulation) with
physical transport as

dB
dt

¼ μB� L Bð ÞB� ∇ � uBð Þ|fflfflfflffl{zfflfflfflffl}
advection

þ∇ � κ∇Bð Þ|fflfflfflfflffl{zfflfflfflfflffl}
diffusion

ð2Þ

for biomass concentration B, loss rate L, velocity u, and diffusion coefficient κ. The loss rate function varies with biomass and represents a combination
of processes, including predation, viral lysis, maintenance, and senescence. These processes remain largely unconstrained, although efforts have been
made to relate losses to ecological dynamics107,108.

The yield partitions the amount of substrate taken up by the population into that used for growth, Viyi, versus that exiting the cell in modified form as
a waste product, Vi(1− yi) (Fig. 2 and Table 1). Equation 1 suggests a correlation between μ and y, but yields may be further modified by other factors.
For example, accounting for maintenance energy decreases the ratio of growth to respiration, contributing to a decoupling between growth rate and
yield particularly at low growth rates109. Furthermore, a trade-off between uptake rate and yield at the cellular level reflects the allocation of enzyme
towards machinery for substrate uptake vs. biomass synthesis, among other factors. Considering a proteome constraint can incorporate this trade-off
(Supplementary Note 1).
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Benefits and implications for anticipating global change. Redox
chemistry aids in reducing the number of degrees of freedom in
descriptions of diverse microbial metabolisms. We next discuss
the benefits of this electron-balanced approach, each con-
textualized by specific projected impacts of global change due to
microbial activity and broad challenges in the fields of microbial
ecology and biogeochemistry.

Flexible and broadly applicable metabolic thresholds: A key
question for microbial biogeochemical studies, for which
biogeochemical models are primed to answer, is how the
biogeographies of diverse, active metabolisms vary with changes
in the physical and chemical environment. What threshold
determines the viability of a given metabolism?

Redox-balanced metabolic budgets obviate the need to impose
critical concentrations or other thresholds that determine the
presence of any given metabolism. Rather than being imposed
following empirical relationships, metabolic biogeography
emerges dynamically from ecological interactions and reflects
environmental chemical potential. This flexibility aids in under-
standing metabolic thresholds more fundamentally, and it
expands model applicability to diverse and unobserved environ-
ments. This is of particular importance for understanding global
change, since past and future worlds may include very different
ecosystems that do not reflect current empirical trends.

For example, the oceans are currently losing oxygen due to
global warming5,70. If anoxic zones continue to expand, this will
increase the habitat of anaerobic microorganisms, whose respira-
tion results in emissions of N2 and N2O to the atmosphere7.
Many biogeochemical models prescribe O2 concentrations that
inhibit anaerobic activity in accordance with observations of
specific organisms or communities in experimental conditions.
This assumes that the same O2 concentrations limit metabolism
similarly in all environments, and often trades mechanistic
understanding of oxygen limitation for empirical correlations that
may reflect a variety of natural and introduced biases, such as
micro-scale heterogeneity, physical mixing in the ocean, and
experimental bottle effects.

In contrast, a metabolic functional type model does not require
imposed oxygen threshold concentrations (Supplementary Fig. 3).
When oxygen supply is abundant, anaerobic types are competi-
tively excluded because growth using alternative electron
acceptors is lower than with oxygen. When oxygen supply is

low, aerobic populations may persist and continue to deplete any
available oxygen even as their growth is limited by oxygen,
allowing for a steady state stable coexistence of aerobic and
anaerobic metabolisms, which is consistent with a variety of
observations71.

Descriptions of microbial growth that reflect underlying
chemical potential can enable predictions of many other
metabolic transitions, such as nitrogen fixation, nitrification,
and the transition to sulfur oxidation and reduction13,18,72–74. As
another example, this approach predicts the restriction of

0 15

500

400

300

200

100

0

Model NPP

10

5

0

0.8

0.4

0

20

10

0

6

4

2

0

10

5

0

m
ol

 C
 m

–2
 y

r–1

gC
 m

–2
 y

r–1
µm

ol
 C

 m
–3

µm
ol

 C
 m

–3
m

m
ol

 C
 m

–3
m

m
ol

 C
 m

–3

Phytoplankton

Aerobic heterotrophs

Ammonia oxidizers

Nitrite oxidizers

POC flux

200

400

0

200

400

0

200

D
ep

th
 (

m
)

400

0

200

400

0

200

400

60°N 30°N 30°S 60°S0°

Latitude

Fig. 3 Solutions from a global simulation resolving multiple metabolic
functional types. Net primary productivity (NPP), the biomasses of the
metabolic functional types, and the sinking particulate organic carbon
(POC) flux are resolved along a transect of a global microbial ecosystem
model coupled with an estimate of the ocean circulation (Darwin-
MITgcm18).

NH4
+

O2

H2O
NO2

–

Respiration

CO2

Micronutrients
(Fe, Cu, etc.)

Biomass synthesis

Required substrates

Excreted products

Fig. 2 Schematic of a single cell represented as a metabolic functional
type carrying out the aerobic oxidation of ammonia. The redox balance
informs the elemental ratios of substrates utilized, biomass synthesized,
and waste products excreted (Table 1).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19454-w PERSPECTIVE

NATURE COMMUNICATIONS |         (2020) 11:5680 | https://doi.org/10.1038/s41467-020-19454-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


nitrification from the sunlit surface ocean as a consequence of
competitive exclusion by phytoplankton in many environments
(Fig. 4 and Supplementary Fig. 2), as well as active nitrification in
some surface locations where phytoplankton are limited by
another factor not affecting the chemoautotrophs, such as at high
latitudes where phytoplankton are limited by light18. The
emergent exclusion from most of the surface ocean anticipates
that many clades of nitrifying microorganisms have adapted to
long-term exclusion from the surface and consequentially lost (or
did not develop) photoprotective cellular machinery.

Replacing implicit descriptions of organic matter remineraliza-
tion: The fate of organic matter dictates the amount of carbon
sequestered in the marine and terrestrial biospheres. Microbial
consumption mediates the carbon stored in soils, the carbon
stored in the ocean as dissolved organic matter (DOM), and the
sinking flux of organic carbon that constitutes the marine
biological carbon pump4, without which atmospheric CO2 would
be 100–200 ppm higher than current levels. We want to
understand how these carbon reservoirs respond to changes in
climate, such as increased temperatures and changes in
precipitation patterns. However, in biogeochemical models,
simple rate constants often dictate the remineralization of
elements from organic back into inorganic constituents.

Replacing simplistic parameterizations with dynamic metabolic
functional types means that electron-balanced descriptions of
growth and respiration instead drive the fate of organic matter in
earth system models (Fig. 3). In addition to a more sophisticated
and responsive description of carbon sequestration, non-living
organic matter is fully integrated into ecosystem frameworks,
enabling theoretical studies of phytoplankton-bacteria interac-
tions to complement observational and experimental approaches.

Much work remains in the development of these descriptions.
As we discuss below, accurate estimates of organic matter
turnover rates require more accurate descriptions of the complex

processes governing microbial uptake rates of organic matter.
However, the redox-informed yields are still useful for quantify-
ing the relative amount of CO2 excreted and the absolute amount
of biomass sustained on a given substrate, independent of uptake
kinetics (Supplementary Note 2).

Relationships between abundances, rates, nutrient concentra-
tions, and elemental ratios: An overarching puzzle challenging
microbial ecology is to understand how chemical transformations
in the environment are set by the ecological interactions at the
organism level, among individual microscopic cells. It is clear that
abundances of populations are not simply and directly correlated
with biogeochemical impact (i.e., higher abundance does not
necessarily imply an associated higher rate of chemical transfor-
mation). Untangling the relationship between abundances and
biogeochemical function is also necessary for interpretation of
genetic evidence that provide insight into this complex ecosystem
structure.

Redox-balanced metabolic functional type modeling links rates
of biomass synthesis associated with a particular metabolism to
its rate of respiration as well as the standing stock of limiting
nutrients. As functional type modeling is coupled with estimates
of population loss rates due to grazing, viral lysis, or other
mortality, simulations also resolve the standing stocks of
functional biomass. This quantifies the relationship between
biomass concentrations and volumetric rates of chemical
transformations, emphasizing how relatively low biomass may
be associated with relatively high bulk rates71.

For example, the approach has revealed a clear example of the
signature of chemical potential in the ecology of marine
nitrification18 (Fig. 4). In this model, the two steps of nitrification
are represented by two functional type populations. This predicts
about a three-fold difference in the abundances of the organisms
responsible for each of the two steps of nitrification, despite the
fact that the two populations carry out the same rate of subsurface
N-cycling at steady state6,18. A three-fold or greater difference in
abundance and associated ammonium (NH4

+) and nitrite
(NO2

−) concentrations is consistent with observed
differences18,75, and it reflects that the oxidation of one mole of
NH4

+ generates three times more electrons than the oxidation of
one mole of NO2

−, with differences in cell size further
contributing to differences in abundances (Fig. 4 and Supplemen-
tary Fig. 2). Recent observations confirm the redox-based
difference in NH4

+ and NO2
− biomass yield76,77, although

measured rates from a nonsteady environment suggest that
NO2

−-oxidizing bacteria can partition electrons more efficiently
than NH4

+-oxidizing archaea76 (i.e., higher fraction f despite
lower yield y; see Supplementary Note 3).

As redox-based descriptions resolve the stoichiometry of whole
organism metabolism, they also link together elemental cycles.
Explicit description of relative elemental flow through the
ecosystem, and specifically their variation from average values, is
critical for understanding climate-biogeochemical feedbacks78–80.
For example, the nitrification model also estimates the CO2

fixation rates associated with nitrification rates (Supplementary
Fig. 2), enabling global-scale, electron-balanced projections of the
amount of carbon converted to organic form by chemoauto-
trophic nitrifying microorganisms.

Connections with sequencing datasets: How do we relate
metabolic functional type models to sequencing datasets
measuring genetic, transcriptomic, and proteomic diversity?
Connecting biogeochemical models with sequencing data is
critical because this data provides an enormous amount of
information about ecosystem structure and function. Genes (or
transcripts) themselves are not necessarily the most concise or
useful currency given functional redundancies, unattributed
function, and variation in gene dosage from horizontal gene
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transfer as well as growth rate40. Recent gene-centric models aim
to resolve the abundances of key genes as proxies for a
predetermined set of metabolic pathways13,14,17. However, the
parameters used to describe metabolic pathways in these models
are estimated similarly to the redox-balanced yields and
efficiencies described here.

The innovation of gene-centric models is the sophisticated
conversion of estimates of biogeochemical activity and biomass to
genes. For example, the model of Coles et al.17 resolves biomass
and nutrient concentrations prognostically, and then uses a three-
part formula—representing constitutive, regulated, and steady
state transcription—to diagnostically calculate transcription rates
from modeled biomass and growth rates17. Thus, the two types of
modeling are complimentary, with redox chemistry providing
estimates of metabolic activity from fundamental principles, and
the careful calibrations between activity and sequencing providing
a comparative metric.

The examples here externalize the conversion between
modeled activity and sequencing information as a transparent
process. In Fig. 4, the predicted functional biomass of ammonia-
oxidizing population is related to archaeal Marine Group I (MGI)
and Nitrospina-like 16S rRNA genes with two conversion factors:
the cell elemental quota (fmol N cell−1) and the number of
cellular gene copies. Conversion error arises since cell mass and
size vary with growth rate81,82. Maintaining transparency of the
conversion from predicted microbial activity to genes and
transcripts allows interdisciplinary audiences to understand and
critique the models.

Limitations and possible extensions. Using chemical potential as
a theoretically grounding organizing principle for the resolution
of diverse metabolisms can greatly improve microbial descrip-
tions in global biogeochemical models. However, the approach
does have its limitations, which generally increase in significance
with increased temporal or spatial resolution.

Modeling metabolic diversity with functional type populations
requires choosing how metabolisms are distributed among the
populations. This has consequences when interpreting time-
varying states: model solutions become dependent on the
partitioning of metabolism among the functional types as the
timescales of physical change approach the timescales of
microbial growth (see Supplementary Note 4, Supplementary
Fig. 3, and Supplementary Fig. 4 for a detailed example). Other
species-specific time-varying phenomena such as the lag response
of organisms to substrate availability also become relevant83. On
one hand, this is beneficial for resolution of microbial processes in
fine-grained ocean circulation models where flow can vary on the
order of days. However, incorporating another constraint, such as
proteome allocation69, is necessary to inform these choices. For
example, considering enzymatic allocation in combination with
energetics allowed for the prediction of both the division of
nitrification into a two-step process in mixed environments and
the combined, complete pathway in one organism (comammox)
in biofilms, which preceded observations of the latter84–86.

Uncertainty in distributions of metabolism lies not only in the
length of a metabolic pathway, but also in the degree of metabolic
versatility (metabolic mixotrophy). Such versatility characterizes
key players in large-scale biogeochemistry, such as nitrite-
oxidizing bacteria and photoheterotrophs87–89. Mixotrophic
lifestyles can increase the fitness of populations in their
environments, impacting overall ecosystem function90. In one
sense, the approach here provides a prediction of where we might
expect such mixotrophy by resolving stable coexistences of
diverse metabolisms. In Fig. 3, for example, syntrophic coex-
istence occurs at depth among heterotrophs, ammonia oxidizers,

and nitrite oxidizers, and future work could investigate what
determines which combinations of these coexistences remain as
passive interactions, which develop into mutualistic dependencies
as active interactions91, and which evolve into mixotrophic
phenotypes or endosymbionts. Additionally, by considering the
potential to carry out a metabolism as a trait, we can use the
current framework along with an additional constraint to
investigate implications of metabolic mixotrophy. For example,
Coles et al.17 impose a trade-off between the degree of metabolic
diversity of a single functional type and growth rate, enabling the
exploration the consequences of distribution of metabolism on
the biogeochemical state.

Also, the metabolic functional type approach resolves only
active functional biomass, while evidence suggests that less than
10% to more than 75% of the microbial community may be
inactive92. Some seemingly inactive populations may slowly
metabolize over long timescales, requiring longer model integra-
tion times and careful attention to their loss rates for resolution,
while some populations are periodically active as revealed by
high-resolution observations in time37.

The proposed modeling approach relies on estimates of the
limiting uptake rates of required substrates. In lieu of suitable
theoretical descriptions, the use of empirically derived uptake
kinetic parameters still employs the benefits of the redox-
informed yields (Supplementary Note 2). However, underlying
physical constraints to substrate acquisition can in principle be
exploited to develop more universally applicable descriptions for
a variety of substrates and contexts. Uptake kinetics are complex,
but for many limiting resources, encounter effectively controls the
uptake, and the physics of encounter has been relatively well
described. For example, uptake rates estimated from diffusive
supply of substrate, cellular geometry, and membrane physiol-
ogy64–66 have been empirically supported93. For organic matter,
future work is needed to develop suitable descriptions of
consumption rates, whether empirical or theoretical. For example,
descriptions require attention to the hydrolysis of organic
compounds by extracellular enzymes and the ecology of sinking
marine particles—the diffusion of monomer away from the
particle, within-particle transport, and dynamic ecological inter-
actions on particle surfaces, among other processes11,74,94,95.

In Fig. 3, the electron-balanced description consists of an
average stoichiometry and electron fraction for one sinking pool
of organic matter in the ocean, which, as mentioned above, is not
sufficient to accurately resolve the carbon storage that is shaped
by a distribution of turnover rates. As one of the many factors
impacting the rates, an energetics-based perspective can serve as a
tool for further deciphering organic matter complexity. For
example, organic matter may be partially organized by the
nominal oxidation state of its carbon atoms, which relates to a
measure of free energy and accessibility96,97. This could be used
to improve the phenomenological description of organic matter
in models as labile vs. non-labile, for example, with a more
mechanistic underpinning.

Descriptions of phytoplankton are currently much more
sophisticated than of bacteria and archaea in models, reflecting
a longer history of comprehensive sets of observations. However,
further work could develop simple descriptions of photoauto-
trophic metabolisms from underlying energetics by connecting
the supply of photons to available energy for biosynthesis within
the cell. Many biogeochemical models account for an inefficiency
of phytoplankton metabolism with a parameter that dictates their
excretions of dissolved organic matter98. Incorporating this
excretion into an energetic framework would enhance studies of
phytoplankton ecology, such as studies of photoautotrophic-
heterotrophic interactions in the ocean surface or
photoautotrophic-chemoautotrophic interactions at the base of
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the euphotic zone where some phytoplankton excrete nitrite due
to incomplete reduction of nitrate99.

As a more radical extension, can we progress past population
modeling and model microbial consortia as one aggregate
community biomass34,100? This may improve resolution of time-
varying metabolic versatility. However, if both steps of nitrification
were a part of such a consortium, would the characteristic
accumulation of nitrite be predicted (Supplementary Fig. 2)? We
leave these questions for future research and conclude that the best
choice for the degree of resolution of metabolism will depend on the
specific research question and the available observations.

We have described a useful approach for understanding and
anticipating microbial control of biogeochemical cycling that is
suitable for global applications. The approach aims to represent
microbial growth and respiration explicitly and consistently from
knowledge of chemical gradients in the environment, towards a
goal of building an independently constructed theoretical
ecosystem model that can then be compared to observations.
Describing microbial communities with underlying energetic
constraints connects metabolisms dynamically with global
geochemical distributions, such as those of carbon dioxide,
oxygen, and biologically available nitrogen. This deepens our
understanding of microbial ecosystems and enables the incor-
poration of the feedbacks of microbial activity to changes in
global biogeochemistry and the climate system.
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