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Phase separation by the polyhomeotic sterile alpha
motif compartmentalizes Polycomb Group proteins
and enhances their activity
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Polycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene

expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1

(PRC1) subunit Polyhomeotic (Ph) has been shown to play an important role in chromatin

compaction and large-scale chromatin organization. Ph SAM forms helical head to tail

polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to

compact chromatin and mediate long-range interactions. To understand the underlying

mechanism, here we analyze the effects of Ph SAM on chromatin in vitro. We find that

incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in

formation of concentrated, phase-separated condensates. Ph SAM-dependent condensates

can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone

H2A. We show that overexpression of Ph with an intact SAM increases ubiquitylated H2A in

cells. Thus, SAM-induced phase separation, in the context of Ph, can mediate large-scale

compaction of chromatin into biochemical compartments that facilitate histone modification.
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Polycomb group (PcG) proteins repress gene expression by
modifying chromatin at multiple scales, ranging from post-
translational modification of histone proteins to organiza-

tion of megabase- scale chromatin domains1–5. Two main PcG
complexes, PRC1 and Polycomb Repressive Complex 2 (PRC2),
are central to PcG function and conserved across evolution1–4.
Both complexes can carry out post-translational modification of
histones (methylation of histone H3 on lysine 27 (H3K27me) for
PRC2 and ubiquitylation of lysine 118/119 of histone H2A (H2A-
Ub) for PRC1). PRC1, and to a lesser extent, PRC2, are also
implicated directly in long-range organization of chromatin and
clustering of PcG proteins into foci in cells6–11. Two classes of
PRC1 complexes have been defined, canonical (cPRC1) and
noncanonical (ncPRC1). Both types of complexes contain two
ring-finger proteins required for E3 ubiquitin ligase activity
toward H2A (Psc and dRING in Drosophila, Pcgf and Ring1A or
B in mammals)3,4. cPRC1 additionally contains a Cbx protein (Pc
in Drosophila), and a PHC (Ph in Drosophila). In ncPRC1, RYBP
replaces the Cbx protein, PHCs are absent, and other accessory
proteins are variably present, depending on the Pcgf subunit4. At
least in mouse embryonic stem cells, ncPRC1 is responsible for
the bulk of ubiquitylated H2A12–14. This suggests that histone
modification and chromatin organization may be partitioned
between nc and cPRC1s, although both types of complexes share
many genomic targets12,13,15,16. All cPRC1 subunits can interact
with DNA and/or chromatin, and both canonical and ncPRC1s
can compact chromatin in vitro15,17, but polyhomeotic (Ph), and
thus cPRC1, is the most implicated in large-scale chromatin
organization3,10,11,18–21.

Ph is a core subunit of canonical PRC1, and its most notable
feature is the presence of a conserved sterile alpha motif (SAM) in
its C terminus that can assemble into head-to-tail helical poly-
mers22. SAMs are present in many different types of proteins and
in many cases can mediate protein polymerization23. The SAM of
Ph is required for Ph function in Drosophila, and its full poly-
merization activity is important for gene repression24,25. PRC1
forms visible foci both in Drosophila and in mammalian cells7,11,
and, in Drosophila cells, a much larger number of diffraction-
limited clusters10. Disrupting the Ph SAM impairs formation of
PcG protein clusters and reduces long-range contacts among
PcG-bound loci, suggesting that the two processes are related10,11.
Despite the wealth of in vivo data supporting the critical function
of Ph SAM in large-scale organization of PcG proteins and
chromatin, and in gene regulation, the biochemical mechanisms
by which Ph SAM links protein and chromatin organization are
not known.

In recent years, an important role for liquid–liquid-phase
separation (LLPS) in organizing macromolecules in cells has been
defined26–29. This mechanism is increasingly accepted as being
important in formation of protein–RNA membraneless orga-
nelles29,30, and has more recently been implicated in chromatin
compartmentalization and genome organization31–35, transcrip-
tion activation36–38, DNA repair39,40, and PcG protein organi-
zation41–43. LLPS by nuclear-/chromatin- associated proteins may
concentrate proteins and RNAs, enhance or inhibit reactions,
exclude other factors, and even physically move genomic
regions26,28,44. Nucleated phase separation at superenhancers
mediated by disordered regions in transcription factors and
coactivators is believed to be important for driving cycles of active
transcription36,37. Phase separation is also implicated in the for-
mation of heterochromatin and its function as a distinct chro-
matin environment33,35, although the precise role of LLPS is
debated45. The mammalian PcG protein Cbx2 (part of certain
cPRC1s) has also been shown to undergo LLPS in vitro with
chromatin, and to form foci in mammalian cells, suggesting a link
between LLPS and PcG function41,43.

Here, we consider the hypothesis that Ph SAM can organize
chromatin through phase separation by analyzing Ph-chromatin
interactions in vitro. We find that a truncated version of Ph
containing the SAM, HD1, and FCS domains connected by a
disordered linker forms phase-separated condensates with chro-
matin or DNA. Condensate formation depends on Ph SAM, and
is facilitated by its polymerization activity. Ph SAM-dependent
condensates can recruit PRC1 components from extracts, and
enhance the ubiquitin ligase activity of PRC1 toward histone
H2A. In cells, overexpressed Ph forms foci, and increases H2A-
Ub levels. Thus, phase separation is an activity of Ph SAM that
can condense chromatin and enhance PRC1 activity.

Results
A truncated version of Ph, Mini-Ph, forms phase-separated
condensates with DNA or chromatin. In Drosophila melanoga-
ster, the Ph gene is present as a tandem duplication in the gen-
ome; the two genes (Ph-p and Ph-d) encode highly related
proteins with largely redundant function46. Drosophila Ph is a
large protein (1589 amino acids for Ph-p), the majority of which
is disordered (Fig. 1a), and which is difficult to work with in vitro.
To focus on the function of the domains conserved in Ph
orthologs, particularly the SAM, and to facilitate biochemical
analysis, we used a truncated version of Drosophila Ph-p, termed
Mini-Ph5. Mini-Ph (aa1289–1577) contains the three conserved
domains—from amino- to carboxyterminus: the HD1, the FCS
zinc finger that can bind nucleic acids47, and the Ph SAM
(Fig. 1a). An unstructured linker connects the FCS to the SAM,
and restricts Ph SAM polymerization5. Thus, while Ph SAM alone
forms extensive helical polymers in vitro, Mini-Ph exists mainly
as short polymers of 4–6 units (Fig. 1b, c), even at high
concentrations5.

We expressed Mini-Ph in Escherichia coli, purified it
(Supplementary Fig. 1A), and tested whether it can form phase-
separated condensates, alone or with chromatin. Chromatin was
prepared on a circular plasmid containing 40 copies of the
Lytechinus 5S rDNA nucleosome-positioning sequence48 using
histone octamers fluorescently labeled with Cy3 on histone H2A
(Supplementary Fig. 1C–E). Neither Mini-Ph alone, nor chro-
matin alone form condensates in buffer (Fig. 1d, e). When Mini-
Ph is mixed with chromatin, or plasmid DNA, large, round,
phase-bright drops are observed (Fig. 1f; Supplementary Fig. 2A).
Drops formed with either DNA or chromatin undergo fusion
(Fig. 1g, Supplementary Fig. 2B; Supplementary Movies 1–3), and
settle to the bottom of the imaging plate where they flatten and
continue to fuse (Fig. 1h). Under phase-separation conditions,
Mini-Ph and DNA can be pelleted by centrifugation (Supple-
mentary Fig. 2C, D), consistent with them forming a denser
phase. Mini-Ph–DNA solutions also become turbid, as measured
by OD340 (Supplementary Fig. 2E). To evaluate the relationship
between the concentration of chromatin or DNA and Mini-Ph,
and phase separation, we titrated both Mini-Ph and DNA or
chromatin, and manually scored each point in the resulting
matrix as one or two phases (Fig. 1i, j; Supplementary Fig. 2F, G).
This produces a limited coarse-grained delineation of the
boundary between one- and two-phase regimes. Phase separation
is sensitive to the concentration of both components, and the
ratio between the two. This is most notable for Mini-Ph–DNA
titrations, where we are able to add high concentrations of DNA,
which prevent phase separation (Supplementary Fig. 2F, G).
From similar titrations of NaCl and Mini-Ph at a fixed DNA
concentration, we find that phase separation is observed in NaCl
concentrations up to 125mM (Supplementary Fig. 3). We
conclude that Mini-Ph forms phase-separated condensates with
either DNA or chromatin.
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Fig. 1 Mini-Ph forms phase-separated condensates with chromatin. a Schematic of Polyhomeotic–proximal and Mini-Ph, which spans aa 1389–1577
and includes the 3 conserved domains and an unstructured linker. The gray line indicates predicted disordered sequence (using PONDR-VSL2)92.
Note that 91.9% of the sequence is predicted to be disordered (disregarding segments less than 30 amino acids), with only the SAM predicted
to be ordered. b Schematic depicting the oligomeric state of Mini-Ph, which forms limited polymers of 4–6 units (6 are shown)5. c Structure of
nine units of the Ph SAM polymer demonstrating its helical architecture. The N terminus, from which the linker extends, is shown in cyan. PDB
1D 1KW4. d, e Neither chromatin (d) nor Mini-Ph (e) form condensates in buffer. f Mini-Ph forms phase-separated condensates with chromatin.
This observation was repeated with three different preparations of Mini-Ph and more than ten different chromatin preparations. g Time lapse of
droplet fusion of Mini-Ph-chromatin condensates, visualized with Alexa-647-labeled Mini-Ph. h 3D reconstruction of confocal stack of images
demonstrating that Mini-Ph-chromatin condensates form a fused layer on the bottom of the imaging plate. Scale is in microns. i Representative
images from a matrix of Mini-Ph and chromatin showing the relationship between protein and chromatin concentration and condensate formation.
[Nucleosomes] assume 8 fmol of nucleosomes per 1 ng of DNA. Images are representative of two independent experiments. j Graph depicting the
conditions where one phase and two phases were scored in two experiments like the one shown in (i). See also Supplementary Figs. 1–3 and
Supplementary Movies 1–3.
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The disordered linker connecting Ph SAM to the FCS domain
was previously demonstrated to restrict Ph SAM polymerization,
possibly due to its ability to contact Ph SAM in trans5. A
scrambled linker has the same effect, implicating amino acid
composition rather than organization5. The sequence properties
of linkers that connect a structured domain play a central role in
phase separation28, by restricting or promoting interactions
between structured domains, and by contributing weak interac-
tions49. We therefore analyzed the sequence properties of the
linker (Supplementary Fig. 4), both in Drosophila Ph, and in
the three human homologs (PHC1–3). The Ph linker is acidic (pI
3.9), but relatively uncharged (fraction-charged residues (FCR)=
0.15), and does not have strongly segregated charge (Supplemen-
tary Fig. 4B, E, Supplementary Data 1). Overall, the Ph linker is
expected to be collapsed (Supplementary Fig. 4D).

The linker region is conserved between the two Drosophila Ph
homologs (Supplementary Fig. 4F), but both the sequence and
charge properties of the linker in mammalian PHCs are distinct
(Supplementary Fig. 4C–E, G; Supplementary Data 1). The
human PHC linkers are basic (pI > 10), more charged (FCR:
0.25–0.34), have more segregated charges, and have a higher
fraction of expansion-promoting residues (Supplementary Fig. 4C,
E). They occupy a distinct position on the Das–Pappu diagram of
states (Supplementary Fig. 4D), predicting context-dependent
collapse or expansion. Previous analysis indicates that the PHC3
linker promotes polymerization of either PHC3 or Ph SAM, and
does not interact with the PHC3 SAM in trans5. A synthetic
linker designed to be unstructured (Rlink5) promotes polymer-
ization of both Ph and PHC3 SAM, and shares properties with
PHC linkers, including a basic pI (Supplementary Data 1).
Evolutionary tuning of the linker sequences is likely to affect
phase-separation properties of PHCs, although this will need to
be tested experimentally.

Chromatin is highly concentrated in Mini-Ph condensates. One
potential function of phase separation is to concentrate (compact)
chromatin. To measure the concentration of chromatin in Mini-
Ph-chromatin condensates, we first prepared calibration curves
using the same Cy3-labeled histone octamers (labeled on H2A)
that were used to assemble chromatin (Supplementary Fig. 5A).
The concentration of nucleosomes in Mini-Ph condensates,
starting from a mixture of 150 nM nucleosomes, and 5 µM Mini-
Ph, was measured as 22.5 ± 4.4 µM (SD) (Supplementary Fig. 5B).
We note that this value is lower than the reported concentration
of chromatin in pure chromatin condensates induced by mono-
valent cations (~340 µM31). The reported measurements used free
dye to prepare the calibration curve. When we imaged calibration
curves prepared from free Cy3, although the curves are linear,
they predict at least a 60× higher concentration than curves
prepared with labeled histone octamers using the same imaging
parameters. Because ladders prepared with free Cy3 do not
accurately predict known concentrations of Cy3-labeled histone
octamers in our hands, we believe that the chromatin con-
centrations measured using the Cy3-labeled histone-calibration
curve (Supplementary Fig. 5) are correct for Mini-Ph–chromatin
condensates.

Mini-Ph is dynamic in condensates, but chromatin intermixes
slowly. A characteristic of liquid condensates is that the com-
ponents are dynamic. We carried out fluorescent recovery after
photobleaching (FRAP) experiments with Mini-Ph–chromatin
condensates. A fraction of Mini-Ph is mobile and exchanges in
condensates, so that bleached Mini-Ph drops partially recover
fluorescence within several minutes (Fig. 2a, b; Supplementary
Fig. 6A–D). In contrast, when the histones (labeled with H2A–Cy3)

were bleached, less than 15% of the fluorescence is recovered after
several minutes (Fig. 2b, Supplementary Fig. 6E, F). We quantified
our FRAP data with user-selected region of interest (ROI) for the
bleach area and background, and fit the data with a double-
exponential function (Eq. (1)). Recent work has drawn attention to
the complexity of FRAP measurements in phase-separated con-
densates, and in selecting and applying the appropriate biophysical
model to the data50. Because of the complexities cited above, we
interpret the FRAP curves qualitatively. Although we have calcu-
lated the half-times of the fast and slow populations and mobile
fractions from our data (Supplementary Fig. 6A–D), we do not
think that these numbers can be used to compare with other sys-
tems, or with the measured FRAP behavior of Ph in vivo51.
Nevertheless, they indicate that Mini-Ph and chromatin have very
different kinetics in condensates. Similar behavior has been dis-
sected in a model system of lysine or argnine-rich peptides and
homopolymers of RNA52. In this case, slow kinetics for the RNAs
could be explained by RNA–RNA interactions52. It is possible that
nucleosome–nucleosome interactions contribute to the slow kinet-
ics of chromatin. However, it must also be emphasized that the
chromatin templates used in these experiments are large (11 kb of
DNA, ~55 nucleosomes, ~13,750 kDa). This system may partially
mimic chromatin in vivo, which also does not freely intermix
(discussed in ref. 53). Experiments with 12-nucleosome linear arrays
(more than 4× smaller than the templates used here) indicate that
while chromatin alone can form a liquid-like state that shows (slow)
recovery in FRAP experiments31, in most conditions, chromatin
forms condensates that behave as solids and do not recover in
FRAP experiments, similar to chromatin in vivo54.

To further understand how chromatin intermixes in conden-
sates, we used two-color chromatin experiments (Fig. 2c–h). Mini-
Ph was incubated separately with chromatin labeled with Cy3 or
Alexa 647. Once condensates had formed, the two sets were mixed
together, and images collected as the condensates fused (Fig. 2c–h).
Although condensates of both colors fused, ultimately forming a
fused network at the bottom of the imaging plate (Fig. 2g, h),
distinct Cy3 and Alexa-647 regions remained, indicating that the
chromatin in preformed condensates does not fully intermix when
the condensates fuse, at least over 60min that we monitored
(Fig. 2h). This is in clear contrast to control experiments in which
the two chromatins are mixed prior to addition of Mini-Ph, where
all structures contain a uniform mix of both fluorophores (Fig. 2c,
d). These experiments are consistent with the coexistance of
different dynamics in Mini-Ph-chromatin condensates. The
persistence of unmixed regions could also reflect dynamically
arrested phase separation in the preformed condensates. We note
that in the mixtures shown in Fig. 2c–h, the Alexa-647-labeled
chromatin (white in Fig. 2) has a slightly lower nucleosome density
than the Cy3 (red)-labeled chromatin. The persistent unmixed
regions tend to be red regions at the junctions of fused drops. This
raises the possibility that nucleosome density affects chromatin
dynamics in condensates, due to nucleosome–nucleosome inter-
actions, or nucleosome–Mini-Ph interactions. We conclude that
although a fraction of Mini-Ph in Mini-Ph–chromatin condensates
is mobile, the chromatin polymers mix slowly and incompletely, a
process that could maintain partial compartmentalization of Mini-
Ph-bound chromatin over short timescales.

Ph SAM, but not its polymerization activity, is required for
formation of phase-separated condensates. To test whether Ph
SAM is important for condensate formation by Mini-Ph, we pre-
pared Mini-Ph lacking the SAM (Mini-PhΔSAM), or lacking the
HD1/FCS domains (Mini-PhΔFCS) (Fig. 3a; Supplementary
Fig. 1A). The structure of Ph SAM, including its two polymerization
interfaces, termed end helix (EH) and mid loop (ML), is well
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characterized22 (Fig. 3b). Mutation of these interfaces blocks SAM
polymerization in vitro and impairs Ph function in vivo5,22,24. We
therefore prepared Mini-Ph containing a point mutation that dis-
rupts the EH interface (L1565R) (Mini-Ph EH), or a single point
mutation that weakens but does not fully disrupt the ML interface
(L1547R) (Mini-Ph-ML) (Supplementary Fig. 1A). Previous AUC
experiments with these mutants indicate that Mini-Ph-ML forms
shorter polymers than Mini-Ph, and Mini-Ph EH is largely

monomeric, at most forming some dimers at high concentrations
(see Fig. 3 of ref. 5) We first measured the DNA-binding activity of
each of these proteins using double-filter binding with a 150-bp
DNA probe (Fig. 3c, d; Supplementary Fig. 7A). Mini-Ph binds
DNA with an apparent Kd (Kdapp) of 37 (95% CI: 25–55) nM
(calculated with Eq. (2)). Partial disruption of polymerization
activity with the single ML mutation increases the Kdapp to 190
(95% CI: 158–229) nM. The more severe EH mutation further
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increases the Kdapp to 706 (95% CI: 547–910) nM, similar to the
Kdapp of Mini-PhΔSAM (990 (95% CI: 549–1806) nM). DNA
binding was not detected with Mini-PhΔFCS by filter binding or
EMSA (Supplementary Fig. 7B), indicating that Ph SAM does not
bind DNA. Consistent with this conclusion, the Kdapp of Mini-
PhΔSAM is similar to that for Mini-Ph EH. The much lower Kdapp
of Mini-Ph presumably reflects cooperative binding by Mini-Ph
oligomers. We do not know what the oligomeric state of Mini-Ph is
at the concentrations where DNA binding is observed. The Kdapp of
the SAM–SAM interaction was previously measured as ~200 nM
using an immobilized SAM22, but it is possible that Mini-Ph oli-
gomerization occurs at lower concentrations, which would be
consistent with the observed high-affinity binding. We conclude
that the polymerization activity of Ph SAM increases the affinity of
Mini-Ph for DNA.

Neither Mini-PhΔSAM nor Mini-PhΔFCS forms condensates
with chromatin or with DNA (Fig. 3e, f). A mixture of the two
proteins also does not form condensates with DNA (Fig. 3f).
Thus, both the SAM and the HD1/FCS domains are required for
phase separation. We then tested the Mini-Ph polymerization
mutants (Mini-Ph-ML and Mini-Ph EH). We find that both form
phase-separated condensates with chromatin or DNA under the
same conditions as Mini-Ph (Fig. 3g, Supplementary Fig. 8).
While the concentration of nucleosomes in condensates is similar
(Fig. 3h), condensates formed with Mini-Ph EH are smaller
(Fig. 3i, j).

To look more carefully at the effects of the Ph SAM
mutations, we titrated Mini-Ph EH or Mini-Ph-ML with DNA
over a range of NaCl concentrations, and scored each reaction as
one- or two-phase (Supplementary Fig. 8). We find that both
mutants are more sensitive to NaCl than Mini-Ph (Supplemen-
tary Figs. 3A, B and 8A–C). ATP has been shown to dissolve
many protein–RNA condensates, and is hypothesized to have a
physiological role in regulating phase separation55. To test
whether ATP might also regulate Mini-Ph-chromatin conden-
sates, we formed condensates with Mini-Ph, Mini-Ph-ML, or
Mini-Ph EH, and challenged them with 2 mM ATP for 15 or
60 min (Supplementary Fig. 9A). Condensates are smaller after
ATP treatment, and Mini-Ph EH is more sensitive than either
Mini-Ph or Mini-Ph-ML (Supplementary Fig. 9B–E). Treatment
of Mini-Ph condensates with 8 mM ATP completely dissolves
them (Supplementary Fig. 9F). We conclude that the Ph SAM,
and the HD1/FCS regions are both required for condensate
formation, while Ph SAM polymerization activity, which
increases DNA-binding affinity and changes the oligomeric
state of Mini-Ph, enhances condensate formation but is not
required for it. Although this result may seem surprising, it is
consistent with Mini-Ph existing in a limited oligomeric state
prior to condensate formation that cannot be increased further.

Mini-Ph EH and Mini-PhΔSAM have similar DNA-binding
activities (Fig. 3c), but different abilities to form condensates
(Fig. 3d–f). This indicates that the SAM imparts an activity
(presumably protein–protein interactions) that is distinct from
the effect on DNA binding and polymerization, but essential for
condensate formation. The unstructured linker that connects the
FCS/HD1 to the Ph SAM (Supplementary Fig. 4A) was previously
shown to interact with the SAM (in trans) by nuclear magnetic
resonance5. This linker–SAM interaction may allow homotypic
interactions between Mini-Ph molecules, even when SAM–SAM
interactions are disrupted (as in Mini-Ph EH) and contribute to
phase separation. It is also possible that weak SAM–SAM
interactions can occur in the EH mutant5 and contribute to
phase separation. Ph SAM polymerization may thus indirectly
contribute to phase separation by clustering the DNA-binding
FCS domains (increasing multivalency) and increasing the
affinity for DNA/chromatin. Supplementary Fig. 10 summarizes

the known and hypothesized interactions that may underlay
phase separation by Mini-Ph and DNA or chromatin.

DNA binding and phase separation modify lysine accessibility
in Mini-Ph. To explore how Mini-Ph interactions change on
formation of phase-separated condensates, and how SAM poly-
merization affects them, we used a mass spectrometry-based
protein-footprinting method to probe accessible lysines in Mini-
Ph (Fig. 4a). We incubated Mini-Ph alone, or with three different
amounts of DNA. In the 1× DNA condition (1 Mini-Ph per
10 bp) and 2× DNA conditions, phase- separated condensates
form, while increasing the DNA amount to 16× prevents their
formation (Fig. 4b). To display the data, we generated a heat map
of the average accessibility at each lysine under each condition
using Eq. 3 (Fig. 4c). To compare these values, we used two-sided
student’s t tests at each lysine position. Accessibility of lysines in
the HD1 and FCS domains of Mini-Ph is changed on binding
DNA: K1302 and K1340 of HD1 in Mini-Ph are less accessible in
the 2× DNA conditions (condensates present), while K1298 and
K1302 are less accessible in the 16× DNA condition (Fig. 4c). As
the ratio of DNA to Mini-Ph increases, the accessibility of three
lysines in the FCS domain (K1370, K1376, and K1380) decreases
relative to Mini-Ph alone (Fig. 4c). These decreases in accessibility
are consistent with this region being protected by binding to
DNA, and indeed, K816 of PHC1 (equivalent to K1380 in Ph)
was previously identified as a nucleic acid-binding residue47

(Supplementary Fig. 12A, B). Changes in accessibility could also
reflect changes in protein conformation, particularly in HD1,
which is not known to bind DNA. The accessibility of the three
lysines in the linker region is low, and does not significantly
change with addition of DNA. This is consistent with the linker
being in a collapsed state (Supplementary Fig. 4), although the
low number of lysines in the linker limits the resolution of the
analysis. The accessibility of lysines in the SAM is low both with
and without DNA, with no significant changes (Fig. 4c).

To validate global changes in accessibility, we also compared
average accessibility of all lysines in each domain under the
different conditions (Supplementary Fig. 11C). This confirms the
reduction in accessibility of the HD1 and FCS under conditions
where condensates form, and no change in the accessibility of the
SAM (Supplementary Fig. 11C). These data are consistent with
the SAM maintaining its folded structure and pre-existing
polymeric state on binding DNA and in condensates. Prolonged
incubation in sulfo-NHS acetate leads to dissolution of con-
densates (Supplementary Fig. 12A–C), likely by disrupting
binding of Mini-Ph to DNA. Indeed, if Mini-Ph is fully acetylated
with sulfo-NHS acetate, it does not bind DNA, and does not form
condensates with DNA (Supplementary Fig. 12D–F).

We then compared accessibility of lysines in Mini-Ph to that in
Mini-Ph EH, which does not form polymers. The pattern of
lysine accessibility in Mini-Ph EH is distinct from that of Mini-
Ph, and differences are not restricted to the SAM (Fig. 4d). Three
lysines in the HD1, one in the FCS, and one in the SAM, are
significantly altered in Mini-Ph EH vs. Mini-Ph. When
differences are considered over each domain, they are more
striking (Fig. 4e). While the overall accessibility of the HD1 is the
same between the two, probably because both increases and
decreases in accessibility are observed, the FCS is less accessible in
Mini-Ph EH than in Mini-Ph, while the linker and the SAM are
more accessible (Fig. 4d–f). The accessibility of the SAM is
consistent with the expected monomeric state of Mini-Ph EH and
the positions of the lysines in the SAM polymer structure
(Fig. 4f). However, the changes in the other domains of Mini-Ph
EH indicate that SAM polymerization likely affects the whole
conformation of Mini-Ph and the interactions available for phase
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Fig. 4 Lysine accessibility in Mini-Ph-DNA condensates. a Schematic of lysine-footprinting assay. Mini-Ph or Mini-Ph EH alone, or in the presence of 1×,
2×, or 16× DNA, is treated with sulfo-NHS acetate to acetylate-accessible lysines. The protein is denatured and treated with propionic acid to propionylate
unacetylated lysines. Samples are processed for mass spectrometry, and accessibility is quantified as fraction acetylated for each lysine position (Eq. (3)).
b Mini-Ph-DNA condensates before and after 15 min of acetylation reaction. c Heat map showing accessibility for Mini-Ph alone or with the indicated DNA
amounts (Mini-Ph alone, 2× DNA, 16× DNA, n= 6; 1× DNA, n= 3 independent experiments). d Heat map comparing lysine accessibility in Mini-Ph vs.
Mini-Ph EH (Mini-Ph, n= 6; Mini-Ph EH, n= 3 independent experiments). Heat maps are not scaled so that accessibility can be compared across rows and
columns. Color scale is from blue (low accessibility) to yellow (high accessibility; the range is 0–1). Asterisks indicate significant differences between
samples with and without DNA by two-tailed student’s t test with Holm–Sidak correction for multiple comparisons (green= 2× DNA vs. no DNA, black=
16× DNA vs. no DNA, and gray=Mini-Ph vs. Mini-Ph EH). e Average accessibility of lysines in each Mini-Ph region compared between Mini-Ph and Mini-
Ph EH. Accessibility of all residues in each region was averaged for each replicate and the averages compared across conditions by two-tailed student’t t
test with Holm–Sidak correction for multiple comparisons. n Values are as stated in (c, d). Error bars are SEM. f Structure of the Ph-p SAM polymer (PDB
1D 1KW4) with lysine side chains shown and labeled for the central SAM unit. Red highlights the residue with significantly changed accessibility in Mini-Ph
vs. Mini-Ph EH. Structural data are not available for the HD1 residues studied in the footprinting assay. See also Supplementary Figs. 11–13.
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separation. The changes in the HD1 both on condensate
formation and between Mini-Ph and Mini-Ph EH also raise the
possibility that this domain contributes interactions to phase
separation, which will need to be directly tested. Whether Ph SAM
would also affect the conformation of Ph in the context of the full-
length protein, or when it is in PRC1 (an interaction mediated by
HD1) remains to be determined. Finally, we attempted to analyze
lysine accessibility in Mini-Ph EH condensates (Supplementary
Fig. 13), but the condensates dissolved within 5 min of adding the
acetylation reagent. About 5 min of acetylation results in most of
the protein being inaccessible (Supplementary Fig. 13C, D). After
15min of acetylation, accessibility is similar with and without
DNA (Supplementary Fig. 13E), consistent with DNA binding
being completely disrupted. Comparison of Mini-Ph EH alone
after 5 min or 15min of acetylation indicates that lysines in the
HD1 and FCS domains may be more accessible than the linker
and SAM (Supplementary Fig. 13C, F). This is consistent with
SAM–SAM and/or linker–SAM interactions (Supplementary
Fig. 10), although other explanations are possible.

Ph SAM polymerization affects the mobility of Mini-Ph in
condensates. The experiments presented above indicate that Ph
SAM polymerization increases the DNA-binding affinity of Mini-
Ph (Fig. 3c), increases the driving forces for phase separation
(Fig. 3f–j, Supplementary Figs. 8 and 9), and changes the acces-
sibility of Mini-Ph (Fig. 4). To determine whether the polymeric
state of Mini-Ph also affects the material properties of con-
densates, we compared Mini-Ph and Mini-Ph EH mobility in
condensates formed with chromatin (Supplementary Fig. 14). In
side-by-side experiments, recovery of fluorescence is consistently
faster with Mini-Ph EH (Supplementary Fig. 14A, C, D). We fit
FRAP data to a double-exponential function (Eq. (1)). The T1/2
for both slow populations is lower for Mini-Ph EH, the % of
molecules in the fast fraction is higher for Mini-Ph EH, and the
mobile fractions are similar for both (Supplementary Fig. 14G–J).
To analyze chromatin mobility, we analyzed the Cy3 label on
H2A in the same condensates used to collect FRAP traces for
Alexa-647-labeled Mini-Ph or Mini-Ph EH before and after
bleaching (Supplementary Fig. 14B, E, F). Less than 10% of the
fluorescence is recovered over the 5-min experiment for con-
densates formed with Mini-Ph and Mini-Ph EH (Supplementary
Fig. 13B). Thus, consistent with Fig. 2, chromatin and Mini-Ph or
Mini-Ph EH have distinct kinetics in condensates. The slow
kinetics of chromatin may be intrinsic to the template since the
EH mutation in Mini-Ph does not affect them. We conclude that
assembly of Mini-Ph into polymers not only increases the driving
force for phase separation, but influences the material properties
of the condensates that are formed.

Mini-Ph–chromatin condensates recruit PRC1 from nuclear
extracts. One function of phase separation is to create biochemical
compartments that are enriched for specific components, and can
stimulate or inhibit biochemical reactions26. To determine whether
Mini-Ph–chromatin condensates can create unique biochemical
compartments, we asked whether condensates can recruit proteins
from nuclear extracts (Fig. 5a). We prepared nuclear extracts from
Drosophila S2R+ cells, and used an anion-exchange resin to
deplete nucleic acids from the extracts. Even after depletion, the
nuclear extracts contain substantial amounts of RNA (Supple-
mentary Fig. 15A). Treatment of extracts with RNAseA resulted in
precipitation of most of the protein from the extracts, so that we
used extracts containing RNA for our experiments. Chromatin
alone forms a few tiny structures in extracts (Fig. 5b, c, reaction 1).
Mini-Ph does not form condensates in buffer (e.g., Fig. 1c), but
does form small condensates in extracts, likely by binding to RNA,

since the condensates stain with YOYO-1 (Fig. 5b, c, reaction 2).
When Mini-Ph is incubated with chromatin to form condensates,
and then nuclear extracts are added, the condensates are preserved,
although they are smaller than condensates in equivalent reactions
incubated in buffer (Fig. 5b, c, compare reactions 3 and 4).
Although the condensates are smaller, the concentration of chro-
matin in them is similar to that in condensates incubated in buffer
(Fig. 5d). We do not know why the condensates are smaller after
incubation in nuclear extracts. Post-translational modifications can
influence phase separation42, but the small-molecule substrates
needed for enzymes that mediate them should be depleted in our
desalted extracts. The presence of nucleic acids in the extracts
could disrupt condensates, analogous to what is observed at high
concentrations of DNA (Supplementary Fig. 2F, G). Alternatively,
proteins in the extracts that bind to Mini-Ph and/or chromatin
may disrupt interactions required for condensates.

We used low-speed centrifugation to isolate condensates
(2 min @ 2500g) and analyzed their nucleic acid content on
agarose gels. When Mini-Ph is incubated with extracts in the
absence of chromatin, the pelleted condensates contain RNA
(Fig. 5e). When Mini-Ph is incubated with chromatin, and the
extract added subsequently, the isolated condensates contain both
chromatin and RNA (Fig. 5e). Since the amount of RNA that is
pelleted with Mini-Ph is similar with and without chromatin, we
infer that Mini-Ph condensates in extracts can contain both RNA
and chromatin (Fig. 5e–g). To confirm this, we analyzed
colocalization of fluorescently labeled Mini-Ph with chromatin
after incubation in buffer, or in nuclear extracts (Supplementary
Fig. 15B–D). Most Mini-Ph-containing structures also contain
chromatin. This is consistent with chromatin condensates
recruiting RNA from the extracts, rather than formation of a
separate class of Mini-Ph–RNA condensates.

To analyze the protein components of Mini-Ph condensates in
nuclear extracts, we used Western blotting. PRC1 components are
enriched in condensates formed in extracts with or without
chromatin, while the PRC2 subunits Su(Z)12 and p55, the single-
strand DNA-binding protein RPA70, and the chromatin-
remodeling complex subunit ACF1 are not enriched (Fig. 5h, i).
Thus, Mini-Ph condensates can concentrate endogenous PRC1
provided by nuclear extracts.

Mini-Ph-chromatin condensates enhance ubiquitylation of
histone H2A. To determine whether the PRC1 recruited to Mini-
Ph condensates is active, we tested whether chromatin present in
condensates is ubiquitylated on histone H2A. When extracts were
supplied with ATP and ubiquitin, very low levels of ubiquitylated
H2A (H2A-Ub) were detected. Addition of the E1 ubiquitin-
activating enzyme and E2 ubiquitin-conjugating enzyme along
with ATP and ubiquitin resulted in detectable H2A-Ub in extracts
(Fig. 6a, b). Formation of Mini-Ph–chromatin condensates prior to
incubation in extracts increased H2A-Ub by about twofold. This
suggests that PRC1 recruited to condensates is functional, and that
Mini-Ph–chromatin condensates enhance the ubiquitylation reac-
tion (Fig. 6b, c).

To determine if the Ph SAM polymerization state can influence
condensate formation in the more physiological environment of
nuclear extracts, we prepared condensates with Mini-Ph-ML or
Mini-Ph EH, and added nuclear extracts to them. Mini-Ph-ML
condensates behave similar to those formed with Mini-Ph in
extracts (Supplementary Fig. 16). In contrast, incubation of Mini-Ph
EH condensates in extracts transforms them into diffuse structures
that occupy a larger area but have a reduced chromatin
concentration relative to condensates incubated in buffer (Supple-
mentary Fig. 16). We tested histone ubiquitylation in extracts in the
presence of Mini-Ph-ML or Mini-Ph EH, and find that neither
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mutant stimulates histone ubiquitylation (Fig. 6b, c). We do not
know if this is because the condensates formed by the polymeriza-
tion mutants have different properties (e.g., Supplementary Fig. 14),
or because they recruit less PRC1, as might occur if SAM–SAM
interactions (between Mini-Ph and Ph in PRC1) are directly
involved in recruiting PRC1 to chromatin.

The observation that Mini-Ph condensates increase histone
ubiquitylation might reflect the increased concentration of PRC1

in condensates (Fig. 5h, i). It is not necessarily predicted, however,
that the environment of condensates, in which chromatin is
compacted, would enhance enzyme activity. Thus, to determine
whether Mini-Ph-chromatin condensates enhance PRC1 activity
under optimal conditions, we reconstituted the ubiquitylation
reaction in vitro, using chromatin alone or Mini-Ph–chromatin
condensates as the substrate (Supplementary Fig. 17). We used
PRC1ΔPh for these experiments (Supplementary Fig. 1B), which
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can interact with Mini-Ph via the HD1 domain (but unlike PRC1
found in extracts, not via SAM–SAM interactions), and is fully
active as an E3 ligase. PRC1ΔPh catalyzes formation of H2A-Ub
on chromatin in a dose-dependent manner (Fig. 6d; Supplemen-
tary Fig. 17C, D). When Mini-Ph–chromatin condensates are used
as the substrate, the activity of PRC1ΔPh is increased by about
twofold over the entire titration, indicating that condensates
stimulate PRC1ΔPh activity (Fig. 6d, e). We also analyzed
condensates at the end of the reactions to confirm that they
persist under reaction conditions (Fig. 6f, g). Because a high
fraction of the histones is ubiquitylated in these experiments
(Fig. 6d, e), these results indicate that H2A-Ub does not disrupt
condensates.

Ph SAM affects ubiquitylation of H2A in vivo. To test whether
the activity of Ph SAM is important for histone ubiquitylation
in vivo, we used Drosophila S2 cell lines that express Ph or Ph
with the double ML mutation (L1547R/H1552R), which disrupts
Ph SAM polymerization as effectively as the EH mutant used in
our in vitro studies, under control of an inducible promoter10.
We isolated histones from control S2 cells and cells induced to
overexpress Ph or Ph-ML, and measured the levels of H2A-Ub
(Fig. 7a–d). Cells overexpressing Ph have an approximately
twofold increase in overall H2A-Ub relative to control cells
(Fig. 7b). Cells overexpressing Ph-ML have increased H2A-Ub in
some experiments, but this difference was not significant, even
though Ph-ML is expressed at higher levels than Ph (Fig. 7a, c).

Because we find that Ph SAM polymerization activity is not
strictly required for phase separation in vitro, we wondered if Ph-
ML might be able to phase-separate in vivo, particularly when
present at high concentrations. Formation of highly concentrated
foci in cells is consistent with phase separation, although it can
arise through other mechanisms, as has been pointed out37. To
test whether Ph-ML can form foci in cells, we transiently
transfected Drosophila S2 cells with Venus-tagged Ph, Ph-ML, or
PhΔSAM under control of the heat-shock promoter. After heat-
shock induction, Venus-Ph forms large, round, bright foci. These
foci are mainly (although not exclusively) nuclear, and little
Venus signal is observed in the nucleoplasm outside the foci
(Fig. 7e). In contrast, Venus-PhΔSAM is uniformly distributed in
the nucleus, and does not form foci (Fig. 7f). Venus-Ph-ML forms
foci but is also distributed throughout the nucleus (Fig. 7g). Thus,
foci formation in vivo and phase separation in vitro are correlated
with each other and with enhanced histone ubiquitylation. We
tested Venus-Mini-Ph in Drosophila S2R+ cells, and find that,
unlike Venus-Ph, it does not form foci in most cells. In about 7%
of the cells, it forms a single focus, which can be quite large
(Supplementary Fig. 18A, B, D); these unusual foci are not
observed with Venus-Mini-PhΔSAM (Supplementary Fig. 18C,
D). Thus, although Ph SAM is required for foci formation in cells,
the other disordered regions of Ph shape its behavior in cells as
has been observed for other proteins that can undergo LLPS42.

Discussion
We have identified phase separation as a new activity of the Ph
SAM, the domain that is most clearly implicated in large-scale
chromatin organization by PcG proteins. Our data are consistent
with two possible functions of Ph SAM-dependent phase separa-
tion: (1) formation of a compacted chromatin state with dynamic
components and (2) creating a unique biochemical compartment
that enhances PRC1-mediated histone modification.

In developing Drosophila embryos, Ph lacking the SAM cannot
rescue any Ph functions, while Ph with a polymerization interface
mutated can partially rescue Ph function, although with defects in
transcriptional repression24. In vitro, Mini-Ph lacking the SAM
does not form phase-separated condensates, while Mini-Ph with
the polymerization interface mutated (Mini-Ph EH) does form
condensates although they are smaller. In Drosophila tissue cul-
ture cells, Ph lacking the SAM does not form foci, while
polymerization-defective Ph (Ph-ML) can form foci when over-
expressed (Fig. 7). Thus, foci formation in vivo, and phase
separation in vitro, are correlated with full Ph function, and the
LLPS activity of Ph SAM may be the critical function of the SAM
that remains even when polymerization is disrupted.

Previous work implicates Ph polymerization in both tran-
scription repression and chromatin organization5,10,11,24,25.
Analysis of PcG proteins in normal Drosophila tissue culture cells
or those that mildly overexpress Ph or Ph-ML using stochastic
optical reconstruction microcsopy (STORM) showed that normal
Drosophila tissue culture cells contain hundreds of nanoscale
clusters, although only a few large PcG bodies are visible by
conventional microscopy10. Mild overexpression of Ph increased
the number but not the size of clusters, and increased long-range
contacts, while overexpression of the strong Ph-ML mutant dis-
rupted clusters and reduced long-range contacts. This work and
work in mammalian cells11 directly implicates Ph SAM poly-
merization in the nanoscale organization of PcG proteins and
large-scale organization of chromatin.

Although Ph SAM alone can form open-ended polymers, the
extent to which long SAM polymers occur in the context of the
full protein is unclear. In vitro, the oligomeric state of Mini-Ph is
limited to four to six units5; this can be explained by the action of
the unstructured linker that separates Ph SAM from the FCS in
conjunction with the helical configuration of SAM polymers22.
Steric considerations suggest that Ph SAM polymerization may be
even further restricted in the context of PRC1. Thus, the con-
tribution of polymerization to LLPS may be much subtler than
would occur with an actual open-ended Ph SAM polymer. The
linker connecting the SAM to the FCS is not conserved in Ph
homologs (Supplementary Fig. 4). The linker of PHC3, unlike the
Drosophila Ph linker5, does not bind the PHC3 SAM in trans5,
and allows much more extensive SAM polymerization than that
of Ph5. It is therefore possible that the linker has been tuned
across evolution to control polymerization and its interplay with
phase separation. This is consistent with modeling-based analysis,
indicating that the properties of linkers connecting interacting

Fig. 5 Mini-Ph condensates recruit PRC1 from extracts. a Scheme for isolating Mini-Ph-chromatin condensates from nuclear extracts. b Representative
images of condensates formed in each of the four indicated reactions. c Quantification of phase-separated condensates (% area covered by condensates,
nine images analyzed for each of three experiments using YOYO-1 staining). p Values are for one-way ANOVA with Tukey’s correction for multiple
comparisons. d Ratio of average intensity in condensates formed by Mini-Ph+ chromatin+ nuclear extracts (reaction 3) vs. Mini-Ph+ chromatin (reaction
4) for 3 experiments. p Value is for one-sample t test comparing the ratio to the expected value of 1. e SYBR Gold stained gel of nucleic acid content of
pelleted reactions. Reactions 1–4 are as indicated in panel B for (c–i). Summary of three experiments quantifying the fraction of chromatin (f) and RNA (g)
in the pellet. p Values are for paired two-tailed t test between reactions 3 and 4. h Representative Western blots of one experiment analyzing the content of
pelleted condensates. Equal amounts of pellet and supernatants were loaded. i Summary of three experiments analyzing the content of condensates
formed in extracts. Su(Z)12 was only analyzed in two experiments. One-way ANOVA was used to compare all three samples for each antibody with
Tukey’s multiple-comparison test. All bar graphs show mean, and error bars are SEM. See also Supplementary Fig. 15.
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domains tune phase-separation properties28. Two other PcG
proteins, SCM and Sfmbt, also have SAMs, and the three SAMS
have been shown to co-assemble56; joining of SAM-mediated
polymers of these three proteins could allow formation of large
and diverse polymers. Evaluating the phase-separation activity of
these other PcG SAMs, alone or in combination, and of Ph
homologs, will be an important future goal.

The phase-separation activity of Ph SAM is also likely subject to
negative regulation. A disordered, serine-/threonine-rich sequence
adjacent to HD1 undergoes O-linked glycosylation mediated by
the PcG protein Sxc24,57. This region and Sxc are both important
for Ph function in regulation of some genes24,57. In the absence of

glycosylation, Ph undergoes SAM-dependent “non-productive
aggregation,” which is not alleviated by mutating the Ph SAM
polymerization interfaces24. It is possible that “non-productive
aggregation” in fact reflects SAM-dependent phase separation (or
maturation of phase-separated protein into stable, insoluble aggre-
gates)26. The glycosylated sequence is not part of Mini-Ph. Mini-Ph
is produced in E. coli, and is not glycosylated, yet Mini-Ph is soluble.
It therefore seems likely that the effect of glycosylation, although
dependent on Ph SAM, also involves other sequences in Ph. We
speculate that the glycosylated region may restrict Ph SAM-
mediated phase separation, and preliminary in vitro data support
this idea (E.S and N.J.F., unpublished observation).
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A hallmark of LLPS is that it depends on weak, multivalent
interactions that allow rapid reorganization and unrestricted
stoichiometry. The polymerization activity of Ph SAM may
contribute multivalent interactions. However, additional interac-
tions are required to cross-link SAM-mediated polymers58, which
(at least in Mini-Ph) involve HD1 and/or the FCS. Based on the
comparison between Mini-Ph and Mini-Ph EH, linker–SAM and
(possibly) SAM–SAM interactions that do not require an intact
polymerization interface likely also contribute (Supplementary
Fig. 10). In vitro, dynamic SAM polymerization is not likely to
directly drive phase separation by Mini-Ph because the Kd for
polymerization is so much lower than the saturation concentra-
tion at which phase separation occurs. However, in the poly-
merization mutants, and in vivo where the concentration of Ph is
lower51,59, dynamic polymerization of Ph SAM could control
phase separation. In LLPS of Mini-Ph with chromatin or DNA,
the role of the FCS is likely nucleic acid binding; however, HD1
and/or the FCS may form additional protein–protein interactions
(Fig. 4). It is interesting to note that Sfmbt and SCM, the other
two SAM-containing proteins also contain an FCS, although the
distance and additional motifs separating the FCS from the SAM
varies. The combination of an FCS (i.e., a nucleic acid-binding
domain) and a SAM could allow these proteins also to undergo
phase separation. In support of this idea, the Caenorhabditis
elegans SOP-2 protein functions as a PcG protein60, and forms
large nuclear bodies32. Although it is not a clear sequence
homolog of Ph, SOP-2 consists of an RNA-binding motif, an
intrinsically disordered region (IDR), and a SAM32. Recently, the
IDR of SOP-2 was shown to undergo LLPS in vitro, induced by
crowding agents or RNA42. Addition of the SAM to the IDR still
allowed LLPS, but resulted in formation of smaller condensates
that showed lower recovery in FRAP experiments42.

A model for the function of Ph SAM that can reconcile the
seemingly different requirements for the SAM and its poly-
merization activity in different contexts is that Ph SAM drives at
least three different states. First, Ph SAM polymerization activity
may drive formation of tiny PcG clusters that mediate local
repression of transcription simply through cooperative binding
interactions. This is consistent with our finding that Ph SAM and
its polymerization activity increases the DNA-binding affinity of
Mini-Ph, at concentrations well below the range where phase
separation occurs (Fig. 3). It is also consistent with the depen-
dence of Ph-repressive activity when targeted to a reporter gene
on Ph SAM polymerization activity5. Second, bridging of
nucleosomes mediated by the polymerization interfaces of Ph
SAM associated with chromatin-bound PRC1 may drive collapse
of the chromatin polymer over larger regions of PRC1-bound
chromatin10,45,61,62. Indeed, a model of this process could explain
the observed effects of overexpressing Ph with the strong ML
mutation or wild-type Ph, which increases the number but not
size of Ph clusters10. In cases where the local concentration of Ph
is very high, Ph may undergo LLPS mediated by multivalent
interactions among Ph molecules and between Ph and chromatin
(or Ph and RNA), as captured by our in vitro assays, and possibly
in the foci observed when Venus-Ph is overexpressed in cells
(Fig. 7). Which mechanism dominates in any situation could be
modulated by the local concentration of PcG proteins (i.e., how
strong a PcG recruitment site is, or the density of recruitment
sites). This could be analogous to the distinction between
enhancers and superenhancers, which recruit higher levels of
transcription factors and cofactors, and where LLPS is believed to
occur36,63. There is also no reason at this time to exclude hybrid
models53. For example, LLPS could be a mechanism to create
biochemical compartments, and within these domains, strict
SAM–SAM interactions could establish precise chromatin con-
tacts required for gene repression. LLPS may also represent an

extreme and transient state, used to silence large chromatin
domains rapidly during development18,64, or as a step in re-
establishing gene expression patterns during the cell cycle. All of
these possibilities remain to be tested, but the separation of phase
separation and polymerization activity revealed by our simple
in vitro assays may provide a means to do so.

Many proteins with diverse localizations and functions have
SAMs. Some SAMs have been shown to polymerize in a
concentration-dependent manner, while others require additional
recruitment mechanisms to induce polymerization. The SAMS of
a subset of proteins, including Ets1, Fli1, and p6365, has not been
observed to polymerize. It is therefore possible that phase
separation is a property of the SAM that is distinct from poly-
merization, a hypothesis that is testable by measuring the phase-
separation activity of proteins with monomeric SAMs.

We find that Ph SAM-driven chromatin condensates can
enhance PRC1-mediated histone ubiquitylation. We do not know
what the mechanism of stimulation of H2A-Ub is. It is unlikely to
be concentration of the reaction components in condensates
because all of the components (except PRC1ΔPh) are present at
saturating concentrations in these reactions. PRC1ΔPh binds
chromatin tightly (Kd for 150-bp DNA is ≤1 nM66) so that Mini-
Ph is also not needed to recruit PRC1ΔPh to chromatin.
Although further experiments will be needed to determine the
mechanism, the environment of condensates may stimulate steps
in the reaction subsequent to substrate binding, which could
include the actual ubiquitin transfer or steps affecting pro-
cessivity67. It has recently been shown that H2A-Ub mediated by
PRC1 is stimulated by chromatin compaction68, and that
spreading of H2B-Ub along chromatin is facilitated by formation
of structured, phase-separated compartments by the ubiquityla-
tion machinery69, which may be relevant to our observations.
Formation of protein–chromatin condensates with the hetero-
chromatin protein HP1 alters the conformation of the nucleo-
some, rendering specific regions of the histone proteins more
accessible70. It is possible that nucleosome conformation is also
changed in Mini-Ph condensates, and that these changes facilitate
histone ubiquitylation. Detailed characterization of chromatin in
condensates will be an important future goal.

Stimulation of H2A-Ub is unlikely to be the essential function
of the Ph SAM in Drosophila, since the modification is not
required for PRC1-dependent gene repression in vivo, including
repression of genes that depend on Ph SAM71,72. However, H2A-
Ub is required for full development71,72. Drosophila cPRC1 also
does not seem to mediate most H2A-Ub in tissue culture cells,
and it is likely that another ncPRC1 containing L3(73)Ah, a
homolog of mammalian Pcgf3, in place of PSC, is present in these
cells73. This also means that in our experiments with nuclear
extracts, although we observe PRC1 recruitment to condensates,
we cannot be certain that it is responsible for the ubiquitylation
activity we observe (Fig. 6).

Histone ubiquitylation by PRC1 has been most intensively
studied in mouse embryonic stem cells (mESCs), where sys-
tematic analysis of the effect of disrupting PRC1 subunits
implicates ncPRC1 (i.e., non PHC-containing) in creation of most
H2A-Ub12–15. However, using an artificial tethering system that
allows PcG proteins to be reversibly targeted to a reporter gene so
that persistent effects on chromatin and gene expression (i.e.,
memory) can be measured, Moussa et al.74 found that heritable
gene repression and propagation of H2A-Ub depend on cPRC1.
Recent work indicates a central role for H2A-Ub in PcG-
dependent gene regulation in mESCs12–14, in seeming contrast
with observations in Drosophila; it will be interesting to deter-
mine how Ph SAM contributes to H2A-Ub activity in mammals.
The ability of Ph SAM to condense chromatin and to promote
H2A-Ub could be important for rapidly building PcG chromatin

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19435-z

14 NATURE COMMUNICATIONS |         (2020) 11:5609 | https://doi.org/10.1038/s41467-020-19435-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


domains, or restoring them at the end of mitosis. H2A-Ub is not
detected on mitotic chromosomes in mammalian cells75,76, sug-
gesting that it is reacquired after cells exit mitosis.

Finally, Cbx2, a member of some mammalian canonical (PHC-
containing) PRC1s, which has a strong chromatin-compacting
activity77, has also been shown to form phase-separated con-
densates with chromatin in vitro, and to form 1,6-hexanediol-
sensitive foci in ES cells41,43. This phase- separation activity is
mediated by a charged IDR in Cbx2 that is important for the
developmental function of Cbx278. Further, as shown in Sup-
plementary Fig. 17, Mini-Ph does not form foci in cells, indicating
that other sequences in Ph, all of which are predicted to be dis-
ordered, can regulate the activity of the Ph SAM. How the activity
of Ph SAM is regulated by other sequences in Ph and coordinated
with that of other components of PRC1, particularly that of PSC
which has a powerful chromatin-compacting activity analogous
to that of Cbx279, is an important question for future study.

Methods
Cloning. Cloning of Mini-Ph and the polymerization mutants was described
previously5. Mini-PhΔSAM (residues 1291–1507) and Mini-PhΔFCS (residues
1397–1577) were cloned into a modified pET-3c vector expressing a leader
sequence containing a hexahistidine tag followed by a TEV cleavage site. To
express Venus-tagged proteins in S2 cells, Ph, Ph-ML, or PhΔSAM were first
cloned into a house-modified gateway donor vector and full sequences confirmed.
Gateway LR Clonase II (Thermo Fisher) was used to perform LR recombination
with pHVW from the DGRC (stock # 1089) to produce the final expression
plasmids.

Protein purification. His-tagged Mini-Ph, Mini-Ph-EH, and Mini-Ph-ML were
expressed in Rosetta (DE3) E. coli. Cultures were grown at 37 °C to an OD of
0.8–1.0, and then shifted to 15 °C for overnight induction with 1 mM IPTG. Cells
were pelleted, flash-frozen, and stored at −80 °C. Cells were resuspended in 2 ml/g
lysis buffer (50 mM Tris, pH 8.5, 200 mM NaCl, 10 mM β-ME, 100 µM ZnCl2,
0.2 mM PMSF, and 0.5 mM benzamidine). Cells were incubated on ice for 10 min,
flash-frozen in liquid nitrogen, thawed at 37 °C, and sonicated 6*30 s at 30%
intensity. Freeze–thaw and sonication were repeated, and the lysate centrifuged for
1 h at 100,000*g and 4 °C. Cleared lysate was sonicated 6*30″ at 40% intensity, and
filtered through a 22-µm filter. Lysate (from 1 L) was applied to a 1-ml His-Trap
(all FPLC columns were obtained from GE Healthcare) column using an AKTA
FPLC, and eluted with a gradient of imidazole (from 10 to 300 mM) in lysis buffer.
Fractions with Mini-Ph were dialyzed overnight against 1 L of 20 mM Tris, pH 8.5,
50 mM NaCl, 100 µM ZnCl2, and 10 mM β-ME. Dialyzed fractions were cen-
trifuged for 10 min at 20,800*g, and loaded on a 1-ml HiTrapQ-HP column and
eluted with a gradient from 50mM to 1M NaCl in binding buffer. Fractions were
pooled and dialyzed overnight into 20 mM Tris, pH 8, 50 mM NaCl, 10 µM ZnCl2,
and 1 mM βME, aliquotted, and stored at −80°C. For one of the three preparations
used, Mini-Ph was further purified by size-exclusion chromatography using a
Superose 12 column.

Mini-PhΔSAM and Mini-PhΔFCS proteins were expressed in BL21 (DE3) Gold
cells pretransformed with the pRARE plasmid. The transformed cells were grown
at 37 °C in LB media to an OD600 of ~0.7–0.8 and induced overnight at 15 °C. Cells
harvested from 1 L of culture were resuspended with 10 ml of lysis buffer (50 mM
Tris, pH 8.0, 200 mM NaCl, 5 mM βME, 30 mM imidazole, pH 7.5, and 1 mM
PMSF) and lysed by sonication. The soluble lysates were introduced onto an Ni-
NTA column, washed with lysis buffer (without PMSF), and bound proteins eluted
using 300 mM imidazole, 200 mM NaCl, and 5 mM βME. The leader sequence was
cleaved using TEV protease, and the cleaved sequence and uncleaved proteins
removed by passing through a Ni-NTA column. Further purification was
performed using a HiTrapQ-HP column. Fractions containing protein were
pooled, buffer-exchanged into 50 mM Tris, pH 8.0, 100 mM NaCl, and 5 mM βME,
and concentrated. Mini-PhΔSAM was further purified on a Superdex 200 size-
exclusion column in 50 mM Tris, pH 8.0, 100 mM NaCl, and 5 mM βME. Purified,
concentrated proteins were stored at −80 °C.

The following plasmids were used to prepare the human ubiquitylation
machinery: human 6×-His-UBA1 (E1) (pET21d-Ube1, addgene #34965), Human
UbcH5c (E2) (pET28a-UbcH5c, addgene # 12643), and 6×His-Ubiquitin (pET15b-
His-Ub) (kind gift of B. Schulman). Proteins were expressed in E. coli and purified
essentially as described80,81. His-Ube1 was purified by Ni-NTA affinity followed by
Superdex 200 chromatography80. UbcH5c was purified on a HiTrap SP-XL column
followed by Superdex 20081. 6×-His-Ub was purified by Ni-NTA chromatography.

Xenopus laevis histones, including H2B-122C mutant, were expressed in and
purified from E. coli, using standard protocols82,83. Histones were expressed
individually, and purified from inclusion bodies using Q sepharose (to remove
nucleic acids) followed by SP sepharose under denaturing conditions. Histones
were dialyzed against H2O and lyophilized. All experiments were carried out with

histone H3 with Cys110 (the only cysteine natively present in the histones)
mutated to Ala.

Fluorescent labeling of histone H2A with NHS-Cy3 was carried out under low
pH conditions favoring labeling of the N-terminal amine. Lyophilized H2A was
resuspended in labeling buffer (20 mM Hepes, pH 6.2, 7 M Guanidium HCl, and
5 mM EDTA) to a concentration of 0.1 mM. NHS-Cy3 stock (in dimethyl
formamide) was added to a final ratio of 0.5:1 (dye to histone) and incubated at
room temperature for 90 min. Free dye was removed with Amicon concentrators,
after diluting with labeling buffer without Guanidium to reduce the Gu-HCl
concentration to 6M. In some cases, Zeba spin columns (Thermo Fisher,
7MWCO) were used instead to remove free dye. To label H2B-122C with
maleimide-Alexa 647, lyophilized histone was reconstituted in denaturing labeling
buffer (20 mM Tris-HCl, pH 7.0, 7 M guanidium HCl, and 5 mM EDTA) to a final
concentration of 0.1 mM followed by treatment with a 100-fold excess of TCEP for
30 min. Maleimide-Alexa 647 was added to a final ratio of 3:1 (dye:histone) and
incubated for 3 h at room temperature. The labeling reaction was quenched with
β-ME (final concentration 80 mM), and free dye removed as above. Octamer
reconstitutions and purification on a Superdex 200 size-exclusion column were
carried out as described82,83. Briefly, lyophilized histones were resuspended in
unfolding buffer (20 mM Tris-HCl, pH 7.5, 7 M guanidium HCl, and 10 mM DTT)
and mixed at a molar ratio of 1 H3, 1 H4, 1.2 H2A, and 1.2 H2B. When labeled
histones were used, they were mixed with the unlabeled histones in labeling buffer.
The mixture of histone subunits was adjusted to 1 mg/ml and dialyzed against 3
changes of octamer-refolding buffer (2M NaCl, 10 mM Tris, pH 7.5, 1 mM EDTA,
and 5 mM β-ME). Octamers were then concentrated and applied to a Superdex 200
size-exclusion column in octamer-refolding buffer. Octamer-containing fractions
were pooled and dialyzed against octamer- refolding buffer containing 50%
glycerol and stored at −80 °C.

PRC1ΔPh was purified from nuclear extracts of Sf9 cells infected with
baculoviruses for the three subunits (Flag-PSC, Pc, and dRING) for 3 days66.
Standard nuclear extracts were prepared, except that nuclei were purified through a
sucrose cushion prior to nuclear extraction exactly as described84. We find that this
step reduces co-purification of tubulin. During the purification, the 2M KCl wash
in the published protocol was replaced with a wash consisting of BC2000N+ 1M
urea (20 mM Hepes, pH 7.9, 2 0.4 mM EDTA, 2 M KCl, 1 M deionized urea, and
0.05% NP40, no glycerol). Additionally, prior to eluting the protein, anti-FLAG
beads were incubated with 3–5 volumes of BC300N (20 mM Hepes, pH 7.9,
300 mM KCl, 0.2 mM EDTA, 20% glycerol, and 0.05% NP40) with 4 mM ATP+
4 mM MgCl2 for 30 min at room temperature. This step reduces the amount of
HSC-70 that copurifies with PRC1ΔPh. Protein was eluted with 0.4 mg/ml FLAG
in BC300 without NP40, concentrated to ~1 mg/ml, and stored at −80 °C in
BC300N.

Fluorescent labeling and acetylation of Mini-Ph and other proteins. To
fluorescently label proteins, NHS-ester-Cy3 or Alexa-647 were used to randomly
label lysines. A Zeba column was used to buffer-exchange the protein into 20 mM
Hepes, pH 7.9, 200 mM NaCl for Mini-Ph, or BC300N for proteins expressed in
Sf9 cells (to remove Flag peptide used to elute the proteins); labeling was carried
out with a 0.5:1 (dye:protein) ratio for 15 min at room temperature. Labeling was
quenched by addition of lysine to 10 mM. Free dye was removed using two Zeba
columns, which were equilibrated in the labeling buffer. Labeled protein was mixed
with unlabeled at a ratio of between 1:10 and 1:25, depending on the labeling
efficiency, for imaging experiments. Acetylation of Mini-Ph was carried out exactly
as for fluorescent labeling, except that a ratio of 8:1 sulfo-NHS-acetate:lysine
residues in Mini-Ph was used and labeling was carried out for 1 h at room
temperature.

Preparation of nuclear extracts from Drosophila S2R+ cells. S2R+ cells
(Drosophila Genome Research Center) were grown in M3-BYPE media (Sigma)
with 10% fetal bovine serum (FBS) (Weisent). In total, 20*15-cm dishes were used
to prepare nuclear extracts as described85, except that nuclei were purified through
a sucrose cushion prior to extraction. Cells lysed in hypotonic buffer were layered
over two volumes of 30% sucrose in hypotonic buffer, and centrifuged 18′ @ 1400g.
Nuclei were washed once in hypotonic buffer, and extracted as described. The
high- salt-extraction buffer was 1.2 M KCl, and extracts were not dialyzed. To use
the extracts to treat condensates, up to 100 µl of extract was buffer-exchanged into
20 mM Tris, pH 8, 50 mM NaCl using a Zeba column. Extracts were centrifuged 2′
@ 20,000g and incubated for 15′ on ice with 60% volume of Q sepharose. Extracts
were spun through an empty column (2′ @ 10,000g), and then centrifuged 2′
@20,000g. All procedures were carried out on ice or at 4 °C and contained protease
inhibitors and 0.4× PhosStop (Sigma) phosphatase inhibitor.

Chromatin preparation. Most experiments were carried out with the plasmid
p5S*8, which contains 5 blocks of 8–5S nucleosome-positioning sequences (repeat
length 208 base pairs). Plasmids were assembled by salt-gradient dialysis as
described86. Chromatin was finally dialyzed into HEN (10 mM Hepes, pH 7.9,
0.25 mM EDTA, and 10 mM NaCl) buffer and stored at 4 °C. To measure chro-
matin assembly, 100 ng of each assembly was digested overnight with 10 U of
EcoRI in NEB buffer 2.1, and loaded on a 0.5× TBE, 5% acrylamide native gel. Gels
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were stained with Ethidium bromide and imaged on a Typhoon imager. For
quantification, the nucleosomal signal is multiplied by 2.5 to account for the
quenching effect of bound protein on Ethidium bromide87. For micrococcal
nuclease analysis, 800–1000 ng of chromatin was diluted into 40 µl of the following
buffer: 12 mM Hepes, pH 7.9, 0.12 mM EDTA, 60 mM KCl, and 2 mM MgCl2 and
split into 4 tubes. Micrococcal nuclease (Sigma, #N3755) (0.5 U/µl in 50 mM Tris,
pH 8, 0.05 mM CaCl2, and 50% glycerol) was diluted 1:18, 1:54, 1:162, and 1:486 in
MNase dilution buffer (50 mM Tris, pH 8.0, 10 mM NaCl, 126 mM CaCl2, and 5%
glycerol). 1 µl of each dilution was used to digest chromatin for 7 min at room
temperature. Reactions were stopped with DSB-PK (10× stock: 50 mM Tris, pH
8.0, 0.1 M EDTA, 1% sodium dodecyl sulfate (SDS), and 25% glycerol+ 10 mg/ml
Proteinase K), digested overnight at 50 °C, and analyzed on 1× TBE–1.5% agarose
(SeaKem) gels that were stained with Ethidium bromide and imaged on a Typhoon
Imager.

Phase-separation assays. Proteins and templates were routinely centrifuged full
speed in a microfuge for 2–5 min at 4 °C to remove aggregates before setting up
phase-separation assays. For phase-separation assays, reactions (10–20 µl) were
assembled in a 384-well glass-bottom imaging dish (SensoPlate, Greiner Bio-One).
Wells were not pretreated; precoating with bovine serum albumin (BSA) did not
influence phase separation by Mini-Ph. Phase separation was initiated by addition
of the protein or the DNA, and mixing the reaction by gently pipetting up and
down three times, with care taken not to introduce air. Reactions were incubated in
the dark for 15 min or up to several hours. For reactions where YOYO-1 (Thermo
Fisher) was used, it was added at the beginning of the reaction to a final dilution of
1:3000. Typical reaction conditions are 50 mM NaCl or 50 mM KCl, 20 mM Tris,
pH 8.0. Reactions were set up on ice, and transferred to room temperature for
15 min. Turbidity measurements were made in duplicate using a NanoDrop
spectrophotometer. Phase-separated condensates were pelleted by centrifugation at
14,000g for 2 min at 4 °C, and supernatants removed to fresh tubes. Pellets were
resuspended in 12 µl of 1.5× SDS-sample buffer, and 6× SDS-sample buffer was
added to the supernatant. About 10% of the pellet and supernatant were removed
and digested in DSB-PK for 2 h at 50 °C for DNA analysis. The remainder of the
sample was boiled and analyzed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE).

Imaging of condensates. All images were collected on a Zeiss microscope,
equipped with a Yokogawa CSU-1 spinning-disk confocal head. Zen 2012 software
was used for image acquisition with a 63× oil objective, or a 100× oil objective (for
movies and FRAP) and evolved EMCCD camera from Photometrics. The excita-
tion wavelengths for YOYO/Venus, Cy3/RFP, and Alexa 647 were 488, 561, and
639 nm, respectively.

Measuring nucleosome concentration in condensates. Images were collected at
25% laser power, 200-ms exposure for buffer, chromatin alone, a titration of labeled
histone octamers (in octamer-refolding buffer, which contains 2 M NaCl, and in
which histone octamers remain assembled), and Mini-Ph-chromatin condensates.
Histones are the same histones used to prepare chromatin; 43% of the histone
octamers are labeled (measured both using the NanoDrop and by loading histones
and free dye on SDS-PAGE gels), corresponding to a 21.5% labeling efficiency on
H2A (since there are two copies of H2A in each octamer). Image J measure was
used to measure the mean gray intensity for each of 9 images for each point.
Images were manually checked and images with bright artifacts removed, although
these had little impact on the measured intensities. A linear regression was fit to the
calibration curve and used to convert measured intensities to nucleosome con-
centrations. To measure intensities in condensates, Image J was used to threshold
the images (AutoThreshold-->Li); Analyze Particles was used to measure the mean
gray intensity in each thresholded structure. Particle size was set as 100-infinity
pixels. The mean gray intensity from the buffer image was subtracted from all
measurements, which were converted to nucleosome concentrations using the
calibration curve.

Fluorescent recovery after photobleaching. FRAP experiments were carried out
with Alexa-647-labeled Mini-Ph or Mini-Ph EH. Bleaching was done with a 595-
nm laser, for 1500 ms. This effectively bleaches both Alexa-647 Mini-Ph and Cy3-
H2A, although we were only able to record FRAP images from one channel. Two
prebleach images were collected, followed by an image every 5 or 10 s. All FRAP
analyses of Mini-Ph were done by bleaching single complete structures. Images
were analyzed in Image J (Fiji). An ROI was selected for the bleach area, back-
ground, and a nonbleached structure. Background-subtracted, normalized data
were fit with a double-exponential fit (Eq. (1)) using GraphPad Prism 8.

Y ¼ Y0þ SpanFast � 1� e�KFast �X� �þ SpanSlow � 1� e�KSlow �X� �
: ð1Þ

We excluded data sets that could not be fit, and obvious technical artifacts (e.g., if a
drop fuses with the bleached condensate during the experiment).

Image analysis of condensates. Images for display were prepared using Zen2
(blue edition). For quantification, images were exported as TIFs from Zen (original

data). Image J (Fiji) was used to threshold the images (Li algorithm); thresholds
were manually checked and images with too few structures to threshold were
removed. Areas and intensities of thresholded structures were measured using
Image J (Analyze Particles, size = 10-infinity pixels). For colocalization analysis,
the GDSC-- > Colocalization-- > Particle Overlap was used. Masks were created in
the Alexa 647 (Mini-Ph) and Cy3 (chromatin) channels, and overlap of Cy3 with
Mini-Ph structures measured.

Movies were created from .czi files in Image J (Fiji). Movies were saved as .avi
files at 1, 2, or 3 frames per second, and using PNG compression. Movies were
subsequently converted to .mp4 files using Movavi Video Converter 20.

Filter binding. Filter binding was carried out as described66,88. Briefly, a 150-bp
internally labeled DNA probe was prepared by PCR and gel-purified. The probe
was used at 0.02 nM. Reaction conditions were 60 mM KCl, 12 mM Hepes, pH 7.9,
0.24 mM EDTA, and 4% glycerol, in a 20-µl volume. Proteins were centrifuged for
2 min at full speed in a microfuge before preparing the dilution series. Binding
reactions were incubated for 1 h at room temperature. Hybond-XL was used as the
bottom membrane (binds DNA), and was pre-equilibrated in 0.4 M Tris, pH 8.0.
Nitrocellulose was used as the top membrane (binds protein+DNA), and was
pretreated with 0.4 M KOH for 10 min, neutralized by washing through several
changes of Milli-Q water, and equilibrated for at least 1 h in binding buffer. Filters
were assembled in a 48-well slot-blot apparatus, and each well washed with 100 µl
of binding buffer. The vacuum was turned off, and reactions loaded on the filters.
Slots were immediately washed with 2 × 100 µl of binding buffer. Filters were air-
dried, exposed to a phosphoimager screen, and scanned on a Typhoon Imager (GE
Healthcare). ImageQuant was used to quantify top (bound) and bottom (unbound)
filters, and fraction bound calculated in Excel. Curve fitting was done in GraphPad
Prism 8, using Eq. (2)

Y ¼ AB max � X
X þ Kd

þ b: ð2Þ

Protein-footprinting assay. The acetylation-footprinting assay is described in
detail in Kang et al.89. Phase-separation reactions were directly scaled up to use 4
µg of protein for each sample. Condensates were allowed to form at room tem-
perature for 15 min; an aliquot of each sample was removed to confirm phase
separation using microscopy. Sulfo-NHS acetate was dissolved immediately before
use, and added to a final concentration of 0.5 mM. An aliquot of each sample was
removed to monitor phase separation by microscopy, and reactions were stopped
after 15 min by addition of trifluoroacetic acid to a final concentration of 1%. For
Mini-Ph EH, acetylation of condensates was restricted to 5 min because these
condensates dissolved rapidly on exposure to Sulfo-NHS acetate. We therefore
analyzed Mini-Ph EH alone, and bound to DNA (16× DNA, Fig. 4) after both 5
and 15 min of acetylation. Samples were TCA-precipitated, denatured with 8M
urea, reduced with DTT (45 mM final concentration), treated with a final con-
centration of 10 mM iodoacetamide, and diluted 1:2 with H2O before treating with
propionic anhydride twice. Samples were dried, treated with propionic anhydride
again, dried, resuspended, and digested sequentially with trypsin and chymo-
trypsin. Samples were purified with a ZipTip and analyzed by LC–MS/MS on an
Orbitrap-Fusion mass spectrometer.

Mass spectrometry data90 were analyzed using Maxquant (v1.6.10.43) with
Acetyl(K) and Propionylation(K) as variable modifications. In total, ten missed
cleavages were allowed since lysine modification will block trypsin digest. All data
files were analyzed together, with the match between runs option. The intensities
for identified Acetyl and Propionyl sites were used for quantification. Accessibility
was calculated for each site (in Excel) using Eq. (3)

Accessibility ¼ intensityacetylated

� �
= intensityacetylated þ intensityprop þ 0:5
� �

:

ð3Þ
To compare accessibility between samples, GraphPad Prism 8 was used to conduct
student’s t test, assuming equal variance across samples, and with the Holm–Sidak
method of correction for multiple comparisons, with alpha= 0.05 (unpaired, two-
tailed test). Heat maps were prepared from averaged accessibilities using Morpheus
(https://software.broadinstitute.org/morpheus).

Analysis of condensates after incubation in nuclear extracts. Phase-separation
reactions were set up in 40 µl with 80 nM nucleosomes, 7.5 µM Mini-Ph, in 20 mM
Tris, pH 8.0, and 50 mM NaCl. After incubating for 10 min at room temperature,
12 µl of nuclear extracts were added, and reactions mixed by gently pipetting up
and down. About 7.5 µl were removed and diluted to 10 µl for imaging, and 7.5 µl
mixed with the uibiquitylation machinery to assay histone ubiquitylation. After
60 min of total incubation, samples were pelleted by centrifugation for 2 min at
2500g, 4 °C. Supernatants were removed and SDS–sample buffer added to 1×.
Pellets were resuspended in 2× SDS–sample buffer. About 2 µl of each pellet and
supernatant were removed and digested with Proteinase K for at least 1 h at 55 °C
before analysis on 1.2% agarose, 1× TAE gels, which were stained with SYBR
Gold to visualize nucleic acids. The remainder of the samples were boiled and
loaded on 8% SDS-PAGE gels, transferred to nitrocellulose, and used for Western
blotting. Membranes were blocked with 5% nonfat dry milk in PBST (PBS+ 0.3%
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Tween-20), and incubated with primary antibodies diluted in 5% milk-PBST
overnight at 4 °C. Membranes were washed 3*10 min in PBST, incubated in sec-
ondary antibody diluted in 5% milk-PBST for 1–2 h, washed 3*10 min in PBST,
and visualized using a Li-Cor Odyssey imaging system. Image J (Fiji) or Image-
QuantTL was used to quantify band intensities. Primary antibodies are as follows:
anti-Ph (Rb) (prepared in Francis lab) 1:2000; anti-Pc (Rb) and anti-Su(Z)12 (Rb
(gifts of J. Mueller)) 1:5000, 1:3000; anti-Acf1 (Rb) (gift of D. Fyodorov), 1:1000;
anti-RPA (Rb) (gift of P. Fisher), 1:3000; anti-p55 (Abcam), 1:1000.

Histone ubiquitylation assays. For ubiquitylation assays, 125 ng of chromatin per
5 µl was preincubated with 5 µM Mini-Ph (or buffer) for 15 min at room tem-
perature to induce phase separation, followed by addition of the ubiquitylation
machinery and PRC1ΔPh. The final reaction conditions are 40 nM nucleosomes,
20 mM Hepes, pH 7.9, 0.25 mM MgCl2, 0.25 mM ATP, 0.6 mM DTT, 60 mM KCl,
25 mM NaCl, 700 nM E1, 800 nM E2, and 500 ng of Ub. Titrations of the E1, E2,
and His-Ub indicate that none are limiting under these conditions. Reactions were
further incubated for 45 min at room temperature. Aliquots were removed for
imaging, and the remainder of the reaction stopped by addition of SDS–sample
buffer. Boiled samples were loaded on 16% SDS-PAGE gels, which were scanned
for Cy3 to detect H2A, and then stained with SYPRO Ruby (Lonza). Histone
ubiquitylation assays in nuclear extracts were carried out under the same condi-
tions, except that the preincubation of chromatin with Mini-Ph was 10 min,
nuclear extracts were added just before the ubiquitylation components, and reac-
tions were incubated for 80 min at room temperature.

Cell culture. Wild-type S2 cells (from Expression Systems, 94-005F) and S2 cell
lines harboring stable Ph or Ph-ML10 transgenes were grown in suspension in ESF-
921 media (Expression Systems) with 5% FBS. Protein expression was induced with
0.5 µM CuSO4 for 4 days. For whole-cell extracts, cells were resuspended in 2×
SDS–sample buffer and boiled. For histone extraction, we followed the protocol of
Abcam (https://www.abcam.com/protocols/histone-extraction-protocol-for-
western-blot); HDAC inhibitors were not included. Western blots were carried out
as described above, except that blots probed with anti-H2A-Ub were blocked with
5% BSA in PBST, and ImageQuant was used to quantify the bands. The antibodies
used were anti-Histone H3 (Rb) (Abcam ab 1791) 1:2000, anti-Histone H2A-Ub
(Rb) (Cell Signaling Technology, 8240S) 1:1000.

Live-cell imaging. For live-cell imaging, S2 (Fig. 7) or S2R+ (Supplementary
Fig. 17) cells were plated at 106 cells per well in 6-well plates the night before
transfection. Transfection was carried out using Trans-IT lipid (Mirus), according
to the manufacturer’s protocol. About 2 µg of each Venus-Ph construct was used
along with 0.5 µg of pAct5C-H2A-RFP91. One to two days after transfection, cells
were replated on ConA-coated imaging dishes (Ibidi). Heat shock was for 8 min
(S2R+) or 12 min (S2) at 37 °C, and cells were analyzed within 24 h of protein
induction. Confocal stacks of thick slices (3 µm) were collected on the spinning-
disk microscope described above using the 63× objective to capture foci throughout
the cell.

Image analysis of live cells. The .czi files of image stacks were opened in Image J
(Fiji), the channels split, and converted to maximum-intensity projections. The red
channel (H2A-RFP) was used to segment nuclei as follows. Images were thre-
sholded with the Li algorithm, followed by removing outliers less than 5 pixels, and
3 rounds of erosion. Thresholded images were converted to masks, processed with
a watershed algorithm, and Analyze Particles used with a size threshold of 200-
inifinity pixels to select nuclei. The green channel (Venus fusion proteins) was then
processed with “Find maxima” with the following parameters: Prominence: 20000;
strict; exclude edge maxima; output type: single points. The nuclei selected from
the red channel were used as ROIs, and the # maxima per ROI (i.e., # foci/nucleus)
obtained using Measure in the ROI tool, followed by dividing the raw integrated
density by 255. This entire pipeline is explained here https://microscopy.duke.edu/
guides/count-nuclear-foci-ImageJ. To compare the # foci per cell, cells with zero
foci were excluded; since Venus-PhΔSAM does not form foci, the majority of cells
were excluded.

Statistics and reproducibility. All observations were made in at least three
independent experiments, unless otherwise stated (e.g., titration matrices shown in
Fig. 1i, Supplementary Figs. 2F, 3A, and 8A, B were conducted twice). Statistics
were calculated using GraphPad Prism v8.4.3, using recommended settings,
including for correction for multiple comparisons. In cases where p values can be
one- or two-tailed, two-tailed values are always reported. Three different pre-
parations of Mini-Ph were tested, with identical results, and two different pre-
parations of PRC1ΔPh. For Mini-Ph EH, Mini-Ph-ML, Mini-PhΔFCS, and Mini-
PhΔSAM, a single preparation was used; for the latter two proteins, similar results
were obtained with these proteins prepared in Sf9 cells. Multiple preparations of
chromatin (greater than 10) were used over the course of these experiments.

Software used for data collection and analysis. ZenBlue, Image J Fiji, Image-
QuantTL, MaxQuant v1.6.10.43, GraphPad Prism v8.4.3, Excel, Morpheus

(https://software.broadinstitute.org/morpheus/), PONDR-VSL2 (http://www.
pondr.com/), localCIDER (http://pappulab.github.io/localCIDER/), and Movavi
Video Converter 20.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Mass spectrometry raw files are available at MassIVE under accession number
MSV000085717. All other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or from the
corresponding author upon reasonable request. Source data are provided with this paper.
The Source Data file includes measured intensities for ROIs for FRAP traces and fits of
these data (Fig. 2, Supplementary Figs. 6, 14), filter-binding data (fraction bound)
(Fig. 3c), nucleosome and condensate measurements (Fig. 3h–j), MaxQuant output
(intensities) and calculation of accessibility for acetylation-footprinting experiments
(Fig. 4), Western blots and quantification (Figs. 5, 7), ubiquitylation assay quantification
(Fig. 6), and foci counts (Fig. 7). A reporting summary for this article is available as a
Supplementary Information file. Source data are provided with this paper.
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