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Steering magnonic dynamics and permeability at
exceptional points in a parity–time symmetric
waveguide
Xi-guang Wang1,2, Guang-hua Guo1 & Jamal Berakdar 2✉

Tuning the magneto optical response and magnetic dynamics are key elements in designing

magnetic metamaterials and devices. This theoretical study uncovers a highly effective way

of controlling the magnetic permeability via shaping the magnonic properties of coupled

magnetic waveguides separated by a nonmagnetic spacer with strong spin–orbit interaction

(SOI). We demonstrate how a spacer charge current leads to enhancement of magnetic

damping in one waveguide and a decrease in the other, constituting a bias-controlled mag-

netic parity–time (PT) symmetric system at the verge of the exceptional point where mag-

netic gains/losses are balanced. We find phenomena inherent to PT-symmetric systems and

SOI-driven interfacial structures, including field-controlled magnon power oscillations, non-

reciprocal propagation, magnon trapping and enhancement as well as an increased sensitivity

to perturbations and abrupt spin reversal. The results point to a new route for designing

magnonic waveguides and microstructures with enhanced magnetic response.
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Nanomagnetism is the backbone of spin-based memories,
data processing, and sensorics. In a generic magnet, the
permeability, meaning the magnetic response to a weak

external perturbation is governed by the behavior of the spin
waves which are collective transverse oscillations (with their
quantum termed magnon) around the ground state. Miniaturized
magnonic logic circuits1–6 and waveguides operated at low energy
cost with negligible Ohmic losses were demonstrated as channels
for magnon-based information transfer and processing. Geo-
metric confinements, nanostructuring, and material design allow
furthermore a precise spectral and dispersion shaping.

Here, using analytical methods and full micromagnetic simu-
lations, we present predictions for a special type of magnonic
waveguides that exhibit a gain-loss mechanism resulting in
extraordinary magnonic and magneto-optical properties.

At zero bias, a normal-metal spacer sandwiched between two
magnetic layers results in a Ruderman–Kittel–Kasuya–Yosida
(RKKY) coupling between the magnetic layers which can be ferro
or antiferromagnetic depending on the spacer layer thickness7–9.
The RKKY interaction is the result of the spin sensitivity of the
spacer’s itinerant electron scattering from the two magnetic lay-
ers10 causing a dependence of the formed standing electron wave
on the magnetic states of the confining layers. Hence, for a
nanoscale spacer, the RKKY coupling depends substantially on
the spacer thickness and the relative orientations of the layers’
magnetizations, as has been confirmed experimentally11.

A further key feature exploited here is that for a DC-biased
spacer with a strong spin–orbit coupling the charge current (cf.
Fig. 1a) generates spin accumulations with opposite polarizations
T at the boundaries to the magnetic layers12–16. The strength of
the spin accumulations is quantified by the so-called spin-Hall
angle. In turn, these spin accumulations exert torques on the
magnetizations of the waveguides which are termed spin–orbit
torques (SOTs) and have opposite signs at the two spacers/
magnetic layer interfaces. An interesting feature is that when the
layers’ magnetizations are excited as to generate magnons, SOT
adds to the intrinsic damping of magnetic dynamics, enhancing
or decreasing it, as detailed below (cf. for instance Eq. (1)). It is
this key feature that serves to achieve a case where magnetic
losses in one waveguide are balanced by antidamping in the other
waveguide, constituting so a typical setting of a PT-symmetric
system, as realized for instance in optical waveguides17–22.

Originally, PT-symmetry in the present context was addressed
for a mechanical system governed by the Hamiltonian Ĥ ¼
p̂2=2mþ VRðr̂Þ þ iλV Iðr̂Þ (where r̂ and p̂ are position and
momentum operators) with the real functions VR and VI

describing the generally complex potential. PT symmetry requires
that VR is symmetric (even) while VI must be antisymmetric
(odd) under a parity operation for ½PT; Ĥ� ¼ 0 to be valid23–25.
For λ = 0, the Hamiltonian is Hermitian and the spectrum is real.
For a finite λ, meaning a non-Hermitian but PT-symmetric H the
spectrum remains real as long as λ is below a certain threshold
λth23–25. At this critical point λth, referred to as the exceptional
point (EP) and beyond it, the emergence of finite imaginary parts
of the eigenvalues of H marks the phase transition from the exact
to a broken PT-symmetry phase. Most experimental demon-
strations for this phase transition were so far for optical sys-
tems18–22,26–31. Considering photonic waveguide, for instance,
the guided modes may well be described with a Schrödinger-type
wave-equation with the role of VR (and VI) being played by the
refraction index gradients across the waveguide materials and the
cladding. By optical materials, engineering power loss may be
introduced to control VI. In our case, it is the bias-induced charge
current that drives the system to the EP very precisely and
without material modifications. The nanoscale dispersion shaping

of magnons is an additional advantageous feature of PT-
symmetric magnonics. The PT-symmetric magnonic wave-
guides proposed here are accurately tunable by external field
parameters without any permanent material changes. As evi-
denced by explicit simulations and explained analytically within
simplified models. The predicted phenomena are generic and
appear for metallic as well as for insulating waveguides and do
not require special precise tuning of the various internal inter-
actions and material parameters. The dynamics can be readily
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Fig. 1 PT symmetry. a Two magnetic layers (for example, YIG films) serve
as magnonic waveguides labeled WG1 and WG2. The interlayer coupling is
mediated by a metallic spacer with a large spin-Hall angle (for instance, Pt
spacer). Driving a charge current jPt along the spacer (x direction) results in
spin-Hall torques acting on the magnetic waveguides. The torques damp or
antidamp the magnetic dynamics in WG1 and WG2 resulting so in a PT-
symmetric structure that exhibits special features of magnon propagation
and magnetic permeability. Magnon wave packets launched locally at one
end of WG1 or WG2 (left side in the figure) are steered, amplified, or
suppressed by external fields that tune the waveguides from the PT-
symmetric to the PT-symmetry broken phase at the exceptional point,
where magnetic losses in WG1 balance magnetic antidamping in WG2. This
is achieved for instance, by changing the ratio between the waveguides'
coupling strength κ and the magnitude of the spin-Hall torques ωJ. b Real
and c imaginary parts of two magnon eigenmode frequencies f = ω/(2π) as
we scan ωJ/κ for the wave vector kx = 0.1 nm−1. d–f Spatial profiles of
propagating spin-wave amplitude for a different loss/gain balance. The
color change from blue to red corresponds to a linear amplitude change
ranging from 0 to the maximum input signal. The local microwave field
excites spin waves at the left side of the waveguide and has a frequency of
20 GHz. The length (along x axis) of waveguides in d–f is 580 nm.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19431-3

2 NATURE COMMUNICATIONS |         (2020) 11:5663 | https://doi.org/10.1038/s41467-020-19431-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


driven from the linear to the non-linear regime and the external
fields such as the voltage bias can be pulsed, allowing so to study
the magnon dynamics due to the temporal appearance or dis-
appearance (quenching) of the EP. In addition to the documented
advantages of magnons, the theoretical results point to func-
tionalities that can be integrated in optomagnonic, spintronics,
and magnonic circuits.

It should be noted, that PT-symmetry was also studied in other
fields such as optomechanics32,33, acoustics34,35, and electro-
nics36–39. PT symmetry in magnetism was theoretically discussed
for macrospins involving balanced loss (due to intrinsic damping)
and gain (imparted by parametric driving or spin-transfer tor-
ques)40–43. An experiment study was conducted on layers with
graded intrinsic damping44. Further reports are on cavity
magnon-polaritons involving phonon dissipation or electro-
magnetic radiation and parametric driving or SOT effects45–47.

Results and discussion
Spin-torque-driven PT-symmetric waveguides. Technically, our
magnon signal propagates along the x direction in two planar
parallel magnetic waveguides (the waveguide plane defines the
x − y plane). The two magnetic waveguides are coupled via the
RKKY exchange interaction (cf. Fig. 1a). A charge current flowing
in a spacer with a large spin-Hall angle (such as Pt) generates a
SOT T1∥y on first waveguide enhancing the effective damping,
and a SOT T2∥ − y on second waveguide weakening the effective
damping. The spin density accumulated at the spacer/magnetic
layers boundaries derives from T1 = z × jPt in WG1, and
T2 = (−z) × jPt in WG2 where jPt is the charge current density in
the spacer. In a generic ferromagnet and for the long-wavelength
spin excitations of interest here, to describe the magnetic
dynamics it is sufficient to adopt a classical continuous approach
and solve for the equations of motion of the magnetization vector
fields Mp(r, t) (p = 1, 2 enumerates the two waveguides), which
amounts to propagating the Landau–Lifshitz–Gilbert (LLG)
equation12–15,

∂Mp

∂t
¼ �γMp ´Heff ;p þ

Mp

Ms
´ α

∂Mp

∂t
þ γcJTp ´Mp

� �
: ð1Þ

The waveguides are located at z = +z0 and z = −z0, and α is the
conventional Gilbert damping inherent to magnetic losses in each
of the waveguides. γ is the gyromagnetic ratio. Let us define the unit
vector fieldmp =Mp/Ms, whereMs is the saturation magnetization.
The effective field Heff ;p ¼

2Aex
μ0Ms

∇2mp þ
JRKKY
μ0Mstp

mp0 þ H0y consists

of the internal exchange field, the interlayer RKKY coupling field,
and the external magnetic field applied along the y axis, where
p; p0 ¼ 1; 2, and p0 ≠ p. Aex is the exchange constant, JRKKY is the
interlayer RKKY exchange coupling strength, tp is the thickness
(along z axis) of the pth layer film (lying in the x − y plane), and μ0
is the vacuum permeability. Of key importance to this study is the
strength cJ ¼ TθSH

_ Je
2μ0e tpMs

of SOT, which is proportional to the

charge-current density Je and the spin-Hall angle θSH in the spacer
layer. For instance, at an exceptional point discussed below we use,
cJ = 1 × 105 A/m corresponds to a charge current density of
Je = 9 × 108 A/cm2 in Pt16. T is the transparency at the interface,
and e is the electron charge. Our proposal applies to a variety of
settings, in particular synthetic antiferromagnets48 offer a good
range of tunability. To be specific, we present here numerical
simulations for Pt interfaced with a Yttrium–Iron–Garnet (YIG)
waveguides as experimentally realized for instance in ref. 16

corresponding to the following values Ms = 1.4 × 105 A/m,
Aex = 3 × 10−12 J/m (technical details of the numerical realization
and settings for other materials including metallic waveguides, are
in the Supplementary Information). For the Gilbert damping, we

use α = 0.004, but note that depending on the quality of the
waveguides α can be varied within a wide range, down to two orders
of magnitude smaller. The interlayer exchange constant is
JRKKY = 9 × 10−5 J/m2, which is in the range for typical
materials49. The interlayer coupling is more pronounced for a
spacer thickness in the range of 5 nm. As established, JRKKY
oscillates with the spacer thickness10. Here, we mainly focus on the
case with ferromagnetic coupling JRKKY = 9 × 10−5 J/m2

corresponding to an exchange field of JRKKY
μ0Mstp

� 1 ´ 105 A/m.

Experimentally, fabrication of a certain spacer thickness is well
under control and allows so to tune to certain JRKKY. The results for
different JRKKY are discussed in Supplementary Information where
also the role of further magnetic interaction such as dipolar fields is
discussed. Below, we consider a multilayered waveguide film
thickness of t1,2 = 4 nm (along z axis) and assume that a
sufficiently strong magnetic field H0 = 2 × 105 A/m is applied in
plane along the +y direction to drive the WGs to the remnant state.
Equation (1) describes the linear and the non-linear transversal spin
excitations; below we illustrate the non-linear dynamics by full
numerical simulations. Before that, it is instructive to consider the
linear (small transversal excitations) regime which allows for direct
analytical insight into the PT-behavior of our system.

Magnonic coupled wave-guide equations with spin–orbit tor-
que. For an interpretation of the full-fledge numerical simulations
presented below let us formulate a simplified analytical model by
considering small deviations ofms,p = (δmx,p, 0, δmz,p) away from
the initial equilibrium m0,p = y. Introducing ψp = δmx,p + iδmz,p,
we deduce from linearizing Eq. (1) the coupled waveguide
equations

i ∂ψ1
∂t � ½ðω0 � αωJÞ � iðωJ þ αω0Þ�ψ1 þ qψ2 ¼ 0;

i ∂ψ2
∂t � ½ðω0 þ αωJÞ þ iðωJ � αω0Þ�ψ2 þ qψ1 ¼ 0:

ð2Þ

For convenience, we introduce in addition to the coupling
strength q ¼ γJRKKY

ð1þiαÞμ0Mstp
, the SOT coupling at zero intrinsic

damping κ = γJRKKY/(μ0Mstp) = q∣α→0. The intrinsic frequency of
the waveguides is given by ω0 ¼

γ
1þα2 ðH0 þ

2Aex
μ0Ms

k2x þ
JRKKY
μ0Mstp

Þ,
which is for the material studied here is in the GHz (kx is
wavevector along the x direction). The SOT-dependent gain-loss
term ωJ ¼

γcJ
1þα2 is essential for the PT-symmetry-related effects

that we discussed here. Equation (2) admits a clear interpretation:
the magnonic guided modes in the first waveguide (WG1) are
subject to the confining complex potential V(z) = VR(z) + iVI(z)
with VR(z0) = ω0 − αωJ and VI(z0) = −ωJ − αω0. In WG2, the
potential is VR(−z0) = ω0 + αωJ and VI(−z0) = ωJ − αω0. The
mode coupling is mediated by q, which determines the periodic
magnon power exchange between WG1 and WG2 in absence
of SOT.

As outlined in the introduction, for a PT-symmetric system the
condition VR(z0) = VR(−z0) and VI(z0) = −VI(−z0) applies,
which is obviously fulfilled if the intrinsic damping is very small
(α → 0). Comparing the current and the photonic case, in the
latter the sign of the imaginary part of the WGs refractive indices
(effectively acting as the light confining potentials) is tuned. Here
we control with SOT the imaginary part of the permeability. This
finding is important for the design of gyrotropic and (PT-
symmetric) magneto-optical materials. For an explicit demon-
stration, we give below the expressions for the magnetic
susceptibility (cf. also the Supplementary Information). Hence,
the cases discussed here point to a promising route for designing
PT-symmetric magneto-photonic structures via permeability
engineering. We note, for a finite magnetic damping α a PT-
behavior is still viable as confirmed by the full numerical
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simulations that we discuss below and in the Supplementary
Information.

Magnon dynamics across the PT-symmetry breaking transi-
tion. The dispersion ω(kx) of the modes governed by Eq. (2) reads

ω ¼ ð1� iαÞω0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � ω2

J þ 2iαω2
J þ α2ω2

J

q
; ð3Þ

which describes both the acoustic and optical magnon modes50

and depends parametrically on ωJ and q. For α → 0 (in which
case q ≡ κ), the eigenvalues are always real in the PT-symmetric
regime below the gain/loss-balance threshold ωJ/κ < 1. At the
exceptional point ωJ/κ = 1, the two eigenvalues and eigenmodes
become identical. For ωJ/κ > 1 (by increasing the current density
for instance), we enter the PT-symmetry broken phase, and the
eigenvalues turn complex, as typical for PT-symmetric
systems31,51. The splitting between the two imaginary parts is

determined by 2κ½ðωJ=κÞ
2 � 1�1=2 and is tunable by external

fields. This fact is useful when exploiting the enhanced wave-
guides sensitivity, meaning achieving an enlarged magnetic
response to relatively small magnetic perturbations. Allowing for
a small damping α does not alter the modes behavior, as
demonstrated by the full numerical results in Fig. 1b, c. The full
magnon dispersions (Re½ω� versus kx curves) for ωJ/κ < 1 and ωJ/
κ = 1 are shown in Fig. 2. The symmetry of our waveguides
brings in a special behavior of the magnon signal transmission,
meaning the propagation of a superposition of eigenmodes:
Without charge current in the spacer (ωJ = 0), a signal injected at
one end in one waveguide oscillates between WG1 and WG2 (due
to the coupling κ) in a manner that is well-established in coupled
waveguide theory (cf. Fig. 1d). Exciting two magnon modes
(symmetric acoustic mode and antisymmetric optical mode) with
different finite kx, the interference between the two modes leads
to periodic exchange of energy between the two waveguides. The
coupling length is dependent on the wave vector difference of the
two modes2,20,51. The interference pattern results in a spatially
non-uniform spin-wave amplitude. Switching on the charge
current, ωJ/κ becomes finite and the beating of the magnon power
between WG1 and WG2 increases (cf. Fig. 1e), as deducible from
Eq. (2), and also encountered in optical waveguides51. Equation
(2) also indicates that near the exceptional point, a magnonic
wavepacket injected in one waveguide no longer oscillates
between the two waveguides but travels simultaneously in both
waveguides, as confirmed in Fig. 1f by full numerical simulations.
Passing EP (ωJ/κ > 1) the magnonic signal always propagates in
the waveguide with gain and is quickly damped in the waveguide
with loss. Some of our observations resemble those in optical
systems20. There, the confining potential for an electromagnetic
wave in a PT-symmetry study is realized typically by material
engineering of the spatial distribution of the complex refractive-
index such that the real part is spatially symmetric and the

imaginary part is antisymmetric with respect to an exchange of
the waveguides. Experimental sophisticated deposition techniques
of multilayered structure20,31 can imprint the desired variation of
the dielectric function. A magnonic realization offers a work-
around without a permanent material modification; by just
changing the voltage at the ends of Pt wire and tuning the current
density to the specific ratio ωJ/κ the EP vicinity is approached.
This flexibility allows not only for easy control of the PT-
symmetry-related features but also offers a way to study the
dynamics of EP-quench by applying voltage pulses that switch off
and on the EP. An example is shown below. Furthermore, the
influence of an external magnetic field adds yet another knob to
change the ratio ωJ/κ. Generally, we find a non-reciprocal pro-
pagation below the exceptional point.

Enhanced sensing at PT-symmetry breaking transition and PT-
dependent permeability. To study the behavior of permeability
across the PT-phase transition, we derive expressions for the
magnetic susceptibility, i.e., the linear response of our setup to
external magnetic perturbations. To this end, we apply an
external microwave field hp, which adds to the effective field in
the LLG equation. In frequency space, we deduce that eψp ¼P

p0χpp0 γ
ehm;p0 (tilde stands for Fourier transform, more details

are in Supplementary Information), with hm,p = hx,p + ihz,p, and
χpp0 is the dynamic magnetic susceptibility which has the matrix
form

χ ¼ 1

ðωk � iαω� ωÞ2 þ ω2
c � κ2

ðωk � iαωÞ þ ðiωc � ωÞ κ

κ ðωk � iαωÞ � ðiωc � ωÞ

� �
;

ð4Þ

with ωc = γcJ and ωk ¼ γðH0 þ
2Aexk

2
x

μ0Ms
þ JRKKY

μ0Mstp
Þ.

Near the exceptional point, the system becomes strongly
sensitive, for instance to changes in the charge current term ωc, as
testified by the behavior of the susceptibility. Figure 3 demon-
strate this behavior for the imaginary parts of χ11 and χ12. The
high sensitivity of the excited spin waves on ωc near the exception
point (Fig. 3c–f) is exploitable to detect slight changes in charge
current density cJ. Furthermore, near the exceptional point, our
setup is strongly sensitive to changes in the magnetic environ-
ment. For example, at ωJ = κ if the magnetic field H0 (or local
magnetization) is increased by 100 A/m in WG1, large-amplitude
spin-wave oscillations are generated in WG2, as evidenced by the
time dependence of Mx(x = 2000 nm) in WG2 (Fig. 3g). The
spin-wave amplification leads eventually to a reversal of My in
WG2 (Fig. 3h). The increased sensitivity is PT-symmetry-related,
in fact, away from the PT-breaking transition, e.g., for ωJ = 0.7κ,
when H0 is reduced by the same amount in WG1, virtually no
changes in propagating spin waves are observed (not shown).
Obviously, this magnon amplification may serve as a tunable
sensor for the magnetic environment.

Current-induced switching in magnetic PT-symmetric junc-
tions. A special feature of magnetic systems (in contrast to optical
waveguides, for instance) is the possibility of current-induced
magnetization switching (described by Eq. (1) but not by Eq. (2))52.

In fact, for large current densities, we are well above the
exceptional point. In this case, the magnetic system becomes
unstable against switching. We find, with further increasing the
charge current density (enhancing ωJ) the local magnetization in
waveguide 2 is indeed switched to −y. Magnon dynamics above
the exceptional point is still possible however by tuning the spacer

60

40

20

0
–2×108 –1×108 1×1080

kx (m–1)

2×108

Fig. 2 Magnon dispersion. Merging of the acoustic (ωJ = 0, solid squares)
and optical magnon (ωJ = 0, solid circles) modes dispersion Re½ω�ðkxÞ when
approaching the loss/gain-balance (exceptional) point ωJ = κ (open dots).
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material properties or its thickness to obtain a smaller κ, for
instance with JRKKY = 9 × 10−7 J/m2 and α = 0.01. In this case
the condition ωJ ≫ αω0 is not satisfied anymore, and the
influence of intrinsic magnetic losses (α) in both waveguides are
important. Nonetheless, even without reaching the strict PT-
symmetric condition, we still observe that the real parts of the two
eigenvalues merge at the same point ωJ = κ, and the two
imaginary parts become different when ωJ > κ, as shown by
Fig. 4a, b. We elaborate on the influence of varying α in
Supplementary Information. When ωJ = 2κ, the two imaginary
parts are both negative, meaning that both modes are evanescent.
The propagation of the magnonic signal launched in one
waveguide’s end is shown in Fig. 4c–d evidencing that the spin
waves in both waveguides decay differently. Here, the non-
uniform profile of spin-wave oscillation indicates a finite wave-
vector kx. An input signal in the waveguide with enhanced
damping leads to an evanescent spin-wave in WG1. Injecting the
signal in WG2, the attenuation of the spin-wave is weaker, and its
amplitude is always larger. When ωJ = 3κ and Im½ω� of the optical
magnon mode turns positive, we observe that SOT induces a
spin-wave amplification with time (Fig. 4e, f). This finding is
interesting for cavity optomagnonics53.

For input signal in WG1 or WG2, the spin-wave amplitude is
always larger in WG2 with the negative effective damping. Also,
the excited spin-wave amplitude is much larger when the input is
in the WG2. Thus, no matter from which waveguide we start, the
output signal is always distributed at the end of WG2, a fact that
can be employed for constructing magnonic logic gates.

Dynamic control of PT symmetry and exceptional point
quenching. Since the EP and the PT-symmetric behavior are
triggered by an external voltage and considering that the typical
time scale for the magnetic dynamics is in the nano to picose-
conds54, it is well experimentally feasible to pulse the external
voltage on this time scale which leads to an on/off switching of
the EP-influenced dynamics. Figure 5 demonstrates such a case
where we apply a sequence of charge current pulses with a period
of 50 ns. Switching on the charge current with ωJ = κ, magnons at
EP propagate simultaneously in two waveguides, and the magnon
amplitude is larger due to the enhancement in magnetic sus-
ceptibility. When the charge current is switched off, the PT
symmetry is restored, and the magnon amplitude drops (Fig. 5a,
b). Aside from the charge current, changing the equilibrium
magnetization by applying an external magnetic field also allows
controlling the PT-symmetry-affected dynamics. For example,
applying H0 = 2 × 105 A/m along + x, SOT does not influence
the effective damping, and thus effects due to PT symmetry are
off and magnons with a smaller amplitude oscillate between the
two waveguides (Fig. 5c). Furthermore, as demonstrated in ref. 54,
the magnetic anisotropy can also be affected by voltage pulses
leading to yet another way to modify the magnonic dynamics
around the EP. Besides, switching and tuning the charge current
to have the system slightly above the EP (for example,
ωJ = 1.05κ), the local magnetization in WG2 can be switched to
−y. Thus, pulsing the external voltage can periodically switch
between the parallel and anti-parallel state in both waveguides
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(H0 = 2 × 105 A/m) in WG1 by 100 A/m, the time dependence of Mx(g)
and My(h) at x = 2000 nm in WG2.
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(Fig. 5e), which is of relevance to magnetic tunnel junctions
whose magneto conductance depends on the relative orientation
of the layers’ magnetizations.

Dzyaloshinskii–Moriya interaction in electrically controlled
PT-symmetric waveguides. In magnetic layers and at their
interfaces a special type of exchange called Dzyaloshinskii–Moriya
(DM) interaction55,56 may exist. The DM interaction is an anti-
symmetric interaction induced by spin–orbit coupling due to the
broken inversion symmetry in lattices or at the interface of
magnetic films. In the context of our work, it is particularly
interesting that the DM interaction may allow for coupling to an
external electric field E and to voltage gates. The contribution to
the system free energy density in the presence of DM and E is
Eelec = −E ⋅ P, with the spin-driven polarization P = cE[(m ⋅ ∇)
m − m(∇ ⋅ m)]57,58. This alters the magnon dynamics through
the additional term Helec ¼ � 1

μ0Ms

δEelec
δm in the effective field Heff.

To uncover the role of DM interaction on the magnon dynamics
in PT-symmetric waveguides, we consider three cases:

(i) The two waveguides experience the same static electric field
E1,2 = (0, 0, Ez).

(ii) The electric fields in both waveguides are opposite to each
other, i.e., E1 = (0, 0, Ez) and E2 = (0, 0, − Ez).

(iii) The electric field is applied only to waveguide 1. These
situations are realized by appropriate local gates.

For the case (i) with E1,2 = (0, 0, Ez), ω0 ¼
γ

1þα2 ðH0 �
2cEEzkx
μ0Ms

þ
2Aex
μ0Ms

k2x þ
JRKKY
μ0Mstp

Þ in Eq. (2), and the condition for PT-symmetry

still holds. Applying an electric field along the z axis causes an
asymmetry in the magnon dispersion. As shown by Fig. 6, a
positive Ez shifts the dispersion towards positive kx while a
negative Ez shifts it in the opposite direction. With increasing ωJ,

the changes of Re[ω] and Im[ω] (not shown) are similar to what
has been observed in Fig. 1b, c.

As for the case E1 = (0, 0, Ez) and E2 = (0, 0, − Ez), in the two
equations (2) ω0 is different. Explicitly: ω0 ¼

γ
1þα2 ðH0 �

2cEEzkx
μ0Ms

þ
2Aex
μ0Ms

k2x þ
JRKKY
μ0Mstp

Þ where the − sign applies for WG1 and the +
sign corresponds to WG2. Hence, under an asymmetric electric
field, the potential VR is not even (VR(z0) ≠ VR(−z0)), and the PT-
symmetry condition can not be satisfied. The ωJ dependence of
Re[ω] and Im[ω] are shown in Fig. 6, and no exceptional point
can be strictly identified in this case.

For case (iii), we set E1 = (0, 0, Ez) and E2 = (0, 0, 0). The PT-
symmetry condition is not satisfied. When the electric field is
applied only to a single waveguide, it shifts selectively the magnon
dispersion relation in this waveguide. Therefore, the magnon
wave in the lower frequency range propagates solely in the
waveguide with the electric field. As shown in Fig. 6d, we excite
the magnonic wavepacket with a frequency in the WG1 or WG2,
the magnonic wave always propagates in the waveguide 1 which
amounts to a magnon channeling by an electric field, while the
propagation in the other waveguide is suppressed. This example
illustrates yet another handle to steer magnonic waves swiftly and
at low energy consumption by pulsed electric gating.

Conclusions. Magnonic waveguides based on magnetic junctions
can be designed to exhibit a transition from a PT-symmetric to a
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PT-symmetry broken phase. Extraordinary magnetic response
and magnon propagation features are predicted near the transi-
tion (exceptional) point that makes such devices interesting for
use in magnonic logics, as effective sensors for changes in the
magnetic environments, as magnonic amplifiers, or for applica-
tions based on magnetic switching such as magnetic tunnel
junctions. The setup exhibits enhanced magnetic susceptibility
near the PT-phase transition, which is reflected in the perme-
ability (cf. Supplementary Information) pointing to a route to PT-
symmetry-assisted magneto-photonics. Magnonic propagation is
highly controllable by external electric and magnetic fields that
derive the system across the exceptional point which render
possible a controlled power distribution in the waveguides, as well
as a non-reciprocal propagation or amplified magnon waves. An
existing DM interaction allows for dispersion engineering and
modifies the PT-symmetry-related feature in a way tunable by
external electric fields. No permanent material change is needed
to achieve the PT-symmetry phase transition. Changing external
field parameters drives the system to the exceptional point and
allows for precise control of the spectral position and the strength
of the PT-symmetry breaking. Furthermore, using pulsed fields
offers a route for studying EP-quench dynamics and a time-
resolved PT-symmetry breaking transition. The presented results
underline the potential of PT-symmetry-induced magnonics as
the basis for additional functionalities of magneto-photonic,
spintronics, and cavity magnonic devices that are highly con-
trollable by external parameters.

Data availability
All technical details for producing the figures are enclosed in the supplementary
information. Data are available from the authors upon request.
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