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The persistence potential of transferable plasmids
Teng Wang1 & Lingchong You 1,2,3✉

Conjugative plasmids can mediate the spread and maintenance of diverse traits and functions

in microbial communities. This role depends on the plasmid’s ability to persist in a population.

However, for a community consisting of multiple populations transferring multiple plasmids,

the conditions underlying plasmid persistence are poorly understood. Here, we describe a

plasmid-centric framework that makes it computationally feasible to analyze gene flow in

complex communities. Using this framework, we derive the ‘persistence potential’: a general,

heuristic metric that predicts the persistence and abundance of any plasmids. We validate the

metric with engineered microbial consortia transferring mobilizable plasmids and with

quantitative data available in the literature. We believe that our framework and the resulting

metric will facilitate a quantitative understanding of natural microbial communities and the

engineering of microbial consortia.
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Mobile genetic elements (MGEs), including plasmids,
transposons and phages are major components of the
metagenome of microbes1,2. Hundreds of plasmids

have been identified in diverse microbial communities in different
environments such as rat cecum3, cow rumen4, sludge5, and
marine water6. In the reference genomes of the human gut
microbiome, ~16,000 genes were identified as mobile7. MGE-
associated genes encode diverse biological functions like meta-
bolic capabilities8, pathogenic virulence9, plasmid addiction10, or
traits to cope with environmental stresses11–13. The interplay
between MGEs and the core genomes of the host cells shapes the
evolution of microbial communities14.

The ability for a transferable plasmid (by conjugation) to
persist in a microbial community can influence the dynamics,
function, and even survival of the community15,16. Promotion or
suppression of plasmid persistence, depending on the context, has
applications in medicine, biosafety, and biotechnology. For
instance, eliminating a plasmid that encodes the resistance to an
antibiotic can inhibit the spread of the plasmid-associated resis-
tance genes17, which can enable more effective use of the anti-
biotic18. There is always a biosafety concern about the risk
associated with the spread of synthetic genetic constructs into the
environment19,20. To reduce the risk, the use of plasmid vectors
with restricted capability to be maintained outside of the
laboratory has been proposed19,20. In biotechnology, plasmid
instability is a major impediment to the large-scale production of
recombinant protein products21,22. The expression of recombi-
nant proteins encoded by the plasmids are usually burdensome to
the cell metabolism, and, as a consequence, the plasmid-carrying
cells can be outcompeted by the faster-growing plasmid-free
populations. A strategy to promote plasmid persistence could
overcome this limitation.

The quantitative studies of plasmid persistence and abundance
in microbial communities is challenging due to the lack of an
effective computational framework23,24. Since the 1970s,
population-biology models have been developed to predict the
persistence of a single plasmid in a single species17,25–27. How-
ever, microbes in nature often live in complex communities
consisting of diverse species and plasmids7,28,29. The limited
scope of past modeling or experimental analyses is due in part to
the computational challenge associated with modeling complex
communities using the conventional modeling framework, which
we refer to as ‘subpopulation-centric framework’ (SCF). In SCF, a
population carrying a particular combination of plasmids is
considered a unique subpopulation that requires one ordinary
differential equation (ODE) to describe. Modeling a community
containing two species and two plasmids requires eight ODEs,
each describing one subpopulation. The model complexity
increases combinatorially with the number of plasmids (Fig. 1a,
b). For example, the marine microbiome in a bottle of sea water is
estimated to contain ~160 species29 and ~180 plasmids6. In SCF,
~2.5 × 1056 ODEs and ~2.7 × 10114 parameters are needed to
model the gene flow dynamics of this community. A model with
such complexity would far exceed the current combined com-
putational power of the entire world30.

In this work, we develop a plasmid-centric framework (PCF) to
overcome the computational challenge associated with the SCF.
Compared with SCF, PCF drastically reduces the model com-
plexity and makes it computationally feasible to analyze plasmid
transfer dynamics in complex communities. Using PCF, we derive
a metric, termed persistence potential, to predict the plasmid
persistence and abundance. Our experiments with engineered
microbial communities transferring mobilizable plasmids and
data in literature demonstrate the general predictive power of the
persistence potential.

Results
A plasmid-centric framework to model gene flow. To overcome
the challenge associated with SCF, we developed a plasmid-
centric framework (PCF) that focuses on the overall abundance of
each plasmid in the community by accounting for the average
growth effect of plasmids to the host. To illustrate the key con-
cepts, consider n types of transferable plasmids in a community
consisting of m species. Here, the transferable plasmids are the
ones that can be transferred by conjugation. Let si (i= 1, 2,…, m)
be the abundance of i-th species and pij (j= 1, 2, …, n) the
abundance of the i-th species carrying the j-th plasmid (Supple-
mentary Fig. 1a). The abundance was defined as the cell density of
each population. The community dynamics can be approximately
described by two groups of ODEs

dsi
dt

¼ αiμ
e
i si � Dsi ð1Þ

dpij
dt

¼ βijμ
e
ijpij þ ðsi � pijÞ

Xm

k¼1

ηjkipkj � ðκij þ DÞpij: ð2Þ

Equation (1) describes the collective growth and dilution of si,
where μei is the effective growth rate of the species. Here we
assumed each species follows logistic growth, in competition with
other species sharing the same niche. Thus, μei accounts for the
maximum growth rate and the carrying capacity:
μei ¼ μiðei �

P
skÞ, where μi is the maximum growth rate, ei is

the carrying capacity, and sk is the density of the k-th species that
shares the same niche. In light of the previous works17,26, we
considered a microbial community as an open system where
flows enter the community and leave the community with
resources, waste and cells. The dilution rate D is the rate of the
flow through the habitat as measured in turnovers per hour. αi
represents the average growth effect of all the plasmids carried by
the species.

In Eq. (2), the first term describes the growth of pij. μeij is the
effective growth rate; it differs from μei due to the growth effect of
the j-th plasmid. βij is the average growth effect of the other
plasmids. In the second term, ηjki is the conjugation efficiency
when the plasmid is transferred from the k-th species to the i-th
species (Supplementary Fig. 1a). si− pij is the total abundance of
subpopulations of si not carrying the j-th plasmid. The third term
describes the plasmid loss due to segregation error (at a rate
constant of κij) and dilution.

The average growth effect of the plasmids was calculated
from the individual growth effect of each plasmid. Let λij
represent the individual burden of the j-th plasmid in the
i-th species. μeij is linked with μei via μeij ¼ μei=ð1þ λijÞ. The
plasmid is burdensome with positive λij and beneficial with
negative λij. Here, we considered the growth effect of the
plasmid as being inversely proportional to its burden. There-
fore, the average growth effects were determined as αi ¼

si
siþ
Pn

j¼1
ðpijλijÞ

and βij ¼
si 1þλijð Þ

si 1þλijð ÞþPðk:k≠jÞ ðpikλikÞ
.

pij/si indicates the relative abundance of the j-th plasmid in the

i-th species;
P

i
pijP
i
si
is the relative abundance of the j-th plasmid in

the entire community. Because of the formulations of αi, βij, μei
and μeij, this framework is applicable for describing arbitrary
microbial communities transferring multiple plasmids. In parti-
cular, the interactions between populations can be accounted for
by the appropriate formulation of μei and μeij; plasmid incompat-
ibility can be accounted for by adapting the formulations of βij
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and the conjugation terms (Supplementary Fig. 1b, see Supple-
mentary Information section 2.1.2).

For a community consisting of m species transferring n
plasmids, the SCF requires m � 2n ODEs and approximately nm2 �
22n�2 parameters, whereas our PCF only needs m(n+ 1) ODEs
and approximately nm2 parameters (Fig. 1a, b, Supplementary
Table 2, see Supplementary Information section 2.2). This
simplification enables our framework to compute the dynamics
of species composition, as well as the distribution patterns of each
plasmid (Fig. 1c). In particular, we modeled a community
consisting of 200 species transferring 200 plasmids. The
conventional SCF requires about 3.2 × 1062 ODEs and 5.2 ×
10126 parameters, which is impractical to construct. In contrast,
this community can be modeled by about 4.0 × 104 ODEs and
8.1 × 106 parameters using PCF, which is feasible to both
construct and calculate (Supplementary Fig. 1c). Although
acquiring all the parameters in such complex communities
remains challenging due to current technical limitations31, PCF
enables the theoretical and computational analysis of the
dynamics and persistence conditions of plasmids.

This drastic reduction in the model complexity is made
possible by combining multiple distinct subpopulations into an
average one and then accounting for the average growth effect of
each plasmid. In particular, si includes all subpopulations carrying

different combinations of plasmids or no plasmids and pij
includes all subpopulations carrying the j-th plasmid. If the
plasmids do not have any growth effects, the PCF is equivalent to
SCF (Supplementary Fig. 2a). In general, however, plasmids can
confer burden or benefit, which will cause deviation between
these two frameworks. To evaluate this discrepancy, we
conducted numerical simulations on communities transferring
one and two plasmids. Testing higher number of plasmids in SCF
is computationally prohibitive due to the combinatorial explo-
sion. Indeed, simulation results suggest that the growth effects of
the plasmids are the main factors that determine the discrepancy.
Within a reasonably wide range of fitness costs, the predictions of
these two models match well, and the smaller the growth effects,
the smaller the discrepancy (Supplementary Fig. 2, see Supple-
mentary Information section 2.3). In general, we note that both
frameworks represent approximations of real biological systems.
The ultimate test of each framework should be from experiments.

The persistence potential of plasmids. Our framework makes it
feasible to develop a criterion of plasmid persistence for complex
communities. We first considered an idealized community, where
each species has the same set of kinetic parameters and equal
abundance (Fig. 2a). Because of its symmetry, this community
allows the analytical derivation of a metric (ω) that determines
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Fig. 1 A plasmid-centric framework (PCF) to model horizontal gene transfer in microbial communities. a Comparison between the subpopulation-centric
framework (SCF) and PCF for one species transferring 1–3 plasmids. The arrows represent the plasmid transfer from the donor to the recipient. b Model
complexity of single-species communities as a function of the number of plasmids. The model complexity refers to the number of ordinary differential
equations (ODEs) or the number of parameters required in each model. c Simulation of the dynamics of a community consisting of 20 species transferring
20 plasmids. Different species or plasmids are distinguished by the indices. A random set of parameter values were used. The initial distributions (left) of
population sizes and plasmid abundances were also random. The right panel shows the steady-state distributions of the plasmids across different species,
quantified as the relative abundance of plasmids in each species. The relative abundance of plasmid j in species i was calculated as the fraction of species i
cells that contains plasmid j relative to the total number of species i cells. The total abundances of each species and each plasmid in the entire community
are shown as bars.
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the persistence and steady-state abundance of the plasmids rela-
tive to the total cell density (Fig. 2a, also see Supplementary
Information section 2.4)

ω ¼ η
μ

μ�mD ðDþ κ� D
1þλÞ

: ð3Þ

We termed this metric the persistence potential of the plasmid.
Here, λ represents the growth effect of the plasmid in the
community. If ω < 0, which means that the benefit of the plasmid
overcomes the plasmid loss rate (λ<� κ

κþD), the element will
always persist. If the plasmid is burdensome (λ > 0), or the benefit
of the plasmid alone is unable to overcome the plasmid loss
(� κ

κþD < λ ≤ 0), the value of ω will become positive. In this case,
the plasmid can persist if and only if ω > 1. With 0 < ω < 1, the
plasmid will be lost. The interpretation of the persistence
potential is similar to the basic reproduction number (R0) in
epidemiology: the disease will die out when R0 < 1, and will
become epidemic if R0 > 132. Another analogous example is the
percolation threshold for the plague outbreak. The plague will
become an outbreak only when the host abundance exceeds the
percolation threshold33.

In general, the constituent species in a community are not
symmetric (Fig. 2b). Their abundances are different from each
other; they have different growth rates; and they transfer plasmids
at different rates. For such communities, deriving an analytical
solution is not possible. We thus took a heuristic approach to
generalize the idealized metric based on the intuition that species
with greater abundance contributes more to the overall values of
kinetic parameters. We thus kept the derived formulation but
replaced each parameter with the weighted average of the
corresponding parameter in the general community accounting
for the relative abundances of different populations
�μ ¼ Pm

i¼1
si
sT
μi, �κ ¼ Pm

i¼1
si
sT
κi, �λ ¼ Pm

i¼1
si
sT
λi, and

�η ¼ Pm
i¼1

Pm
j¼1

si
sT

sj
sT
ηij, where sT is the total abundance of all

the populations: sT¼
Pm

i¼1 si. μi is the max growth rate of the i-th
species. κi and λi are the loss rate and the burden of the plasmid in
the i-th species, respectively. ηij is the transfer rate of the plasmid
from the i-th to the j-th species. Due to the heterogeneity of the
species abundances, the total number of species cannot describe
the diversity of the community. For instance, if a community is
dominated by one single species, while the other species only
occupy extreme small abundances, the community will behave
more like a single-species population instead of a multiple-species
one. Therefore, we replaced the absolute number of species, m,
with the Shannon effective number of species, σ, which was

calculated through σ ¼ e�
Pm

i¼1

si
sT
ln

si
sT 34. The general form of

persistence potential becomes:

ω ¼ �η
�μ

�μ�σD Dþ �κ� D
1þ�λ

� � ð4Þ

where �μ, �κ, �λ, �η, and D stand for the weighted averages of species
growth rate, plasmid loss rate, fitness cost, horizontal transfer
rate, and dilution rate, respectively (Fig. 3a, b). Based on this
formulation, plasmid persistence can be promoted by increasing
plasmid transfer rate or species growth rates, and be suppressed
by increasing plasmid fitness cost, segregation loss or dilution rate
(Fig. 3a). Because each component of plasmid persistence
potential is the weighted average with respect to species
abundance, modulating community composition can also change
the persistence potential.

Here, we established the persistence potential by approxima-
tion. To evaluate the predictive power of the generalized
formulation, we performed numerical simulations with 2000 sets
of randomized parameters in communities consisting of
5–100 species and 1–50 plasmids. Our randomization process
produced communities with various settings that mimic the
diversity of the natural genetic-exchange communities. To ensure
there were adequate numbers of species coexisting at steady
states, each community was divided into a number of coexisting
niches. A niche can arise from multiple populations consuming
the same substrate35. Different substrates would lead to different
niches. In our simulations, different populations in the same
niche compete with each other by having a shared carrying
capacity. In each simulation, the number of coexisting niches was
randomized between 1 and the total number of species. Each
species was randomly distributed into one of the niches and the
carrying capacities of each niche was randomized. All the
parameters followed uniform distributions in the given ranges
(see Section 2.1.3 of the Supplementary Information for more
details). When we performed the numerical simulations, we
normalized the abundances with the combined capacity of all the
niches. Thus, the abundance in our simulations was dimension-
less. The dynamics of each community was simulated for up to
~30,000 h until it became unchanged, and we treated it as ‘steady
state’. The fractions of the plasmid-carrying cells were then
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Fig. 2 Developing the persistence potential (ω) of plasmids. a Derivation
of ω for an idealized microbial community. Here, the community is fully
symmetric in terms of parameters and population sizes. Each colored circle
represents a constituent species; the area of the circle is proportional to the
species size. Each directed arrow represents the transfer of a plasmid, with
the arrow thickness indicating the transfer rate. In this case, ω can be
analytically derived. b Generalization of ω. We generalized the formulation
of ω by replacing each parameter with its weighted average, which factors
in the heterogeneity of species size. The weighted averages of μ, κ, and λ
were calculated by �μ ¼ Pm

i¼1
si
sT
μi, �κ ¼ Pm

i¼1
si
sT
κi, �λ ¼ Pm

i¼1
si
sT
λi, where m is

the total number of species and si represents the abundance of i-th species.
sT is the total abundance of all the species: sT ¼ Pm

i¼1 si . Both donor and
recipient cell densities contribute to the conjugation efficiency; thus, the
weighted average of η was calculated by �η ¼ Pm

i¼1

Pm
j¼1

si
sT

sj
sT
ηij, where si

represents the abundance of the donor species, sj the recipient species, and
ηij the transfer rate from the donor to the recipient. In the formulation of the
generalized persistence potential, the species number m was replaced with
the Shannon effective number of species, σ, which is calculated through
σ ¼ e�

Pm

i¼1

si
sT
ln

si
sT .
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calculated with respect to ω values. Our simulation results suggest
that the general metric, despite its heuristic nature, remains a
predictor on whether and to what extent a plasmid can persist,
with a transition at ω= 1 (Fig. 3c). When 0 < ω < 1, the
abundance of the plasmid is close to 0; when ω > 1, the
abundance of the plasmid increases monotonically with ω.
The data points computed from the randomized parameter sets
approximately collapsed into a single curve, suggesting the
general predictive power of ω.

In addition to assuming symmetry, the basic form of ω (Eq. (4))
was derived by assuming that the system reached equilibrium
state. However, this assumption is not critical for the approximate
predictive power of ω. In particular, in the numerical simulations,
the ω values can have similar predictive power for the plasmid
abundance well before the system has reached equilibrium state.
One example was shown in Supplementary Fig. 3. This result
underscores the general predictive power of ω and its applicability
to experimental systems, which may not be at equilibrium state.

Experimental validation of the persistence potential. To test the
predictive power of the persistence potential, we engineered eight
communities transferring mobilizable plasmids. Communities 1
through 7 were constructed from three E. coli strains (denoted X,
B, and R). Strain B expresses BFP on the chromosome, R
expresses dTomato, and strain X is not fluorescent. The mobi-
lizable plasmid K was transferred among the strains and expresses
GFP constitutively. Using flow cytometry, this system allows the
simultaneous quantification of plasmid abundance (with GFP)
and population compositions (with BFP and dTomato) (Sup-
plementary Fig. 4a). Community 8 contained two E. coli strains
(MG1655 and DH5α) and five conjugative plasmids (F’, PCU1,
R388, R6K, and RP4). The community composition and plasmid
abundance were quantified by selective plating.

After the plasmids were introduced into the communities,
dilutions of four different ratios (103, 104, 105, 106) were

performed every 24 h to maintain the growth. We monitored
the population dynamics daily over the following 15 days and
obtained the fractions of each population and the plasmid
(Supplementary Figs. 4b–h and 5c). We measured the conjuga-
tion rates and fitness costs (Supplementary Figs. 4i, j, 5a, b) and
also estimated the plasmid loss rate. With these parameters, we
determined the plasmid persistence potential in each community.
The results were well matched to the predicted pattern, suggesting
that ω values determine plasmid abundance in microbial
communities (Fig. 4a).

To examine the general applicability of the metric, we
reanalyzed the data from 9 previous studies that have provided
sufficient measurements on the kinetic parameters and abun-
dance of plasmids17,36–43. The microbial communities analyzed
in these studies covered one, two, or three populations, and up to
three plasmids. We collected a total of 83 data points (see
Supplementary Information section 3) covering a ω range from
7.22 × 10−4 to 2.62 × 105 (Fig. 4b). These data confirm the
predictive power of ω: in general, the plasmid persists when ω > 1,
and its relative abundance increases with ω. In contrast, when ω
< 1, the plasmid tends not to persist, with its relative abundance
close to 0.

Discussion
Our work addresses two fundamental challenges facing the
quantitative analysis of plasmid flow dynamics in microbial
communities. First, it has been impractical to simulate a complex
community in which many plasmids are transferred. This chal-
lenge is resolved by using our plasmid-centric modeling frame-
work through drastic dimension reduction in model formulation.
Second, the PCF enables the heuristic derivation of a metric that
predicts the persistence and abundance of any plasmids in a
microbial community based on its kinetic parameters and the
community composition. In the simplest communities of one
species transferring only one plasmid, our persistence potential is
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analogous to the criterion derived by Stewart and Levin26.
However, our metric is generally applicable to communities
composed of multiple species transferring multiple plasmids.
Both the modeling framework and the derived plasmid persis-
tence potential have implications for future efforts to understand,
control, and exploit horizontal gene transfer dynamics in
microbial communities.

For instance, the persistence potential ω predicts that the
abundance of a plasmid in a microbial community is sensitive to
the average growth rate of the constituent populations, especially
when the growth rate is close to the system dilution rate. Con-
sistent with this notion, nutrient enrichments, which in general
increase the average growth rate of the community, have been
shown to increase the relative abundance of plasmids44. In the
inflamed mouse gut, the growth of commensal Enterobacteriaceae
such as E.coli is boosted by the nitrate generated as a by-product
of the host inflammatory response45; this transient boom of
Enterobacteriaceae was shown to correlate with an increase in
transconjugant abundance46,47. In both situations, an increase in
the growth rate can promote persistence by increasing the per-
sistence potential directly (through a decrease of its denominator
term, Eq. (2)) or indirectly (through increasing the conjugation
efficiency)48. Conversely, our metric suggests that modulating the
overall growth rate of gut microbiota by nutrient supply or its
dilution by water inflow could be effective strategies to regulate
the abundance of the mobile gene pool in the human gut49,50.

Past studies have suggested that species composition of a
community influences the plasmid persistence. For instance, for
bacteria with poor conjugation efficiencies, coculturing them with
efficient donors has been shown to enhance plasmid transfer and
maintenance36,51. However, the relationship between plasmid
abundance and species composition have been qualitative. Here,
our metric allows quantitative, albeit approximate, prediction of
plasmid abundance given the composition and the kinetic para-
meters. The human gut contains an enormous diversity of
microbes52, and multiple factors such as diet53, age54, and anti-
biotic administration55 can alter the composition of its micro-
biome. With more kinetic information required, our metric can
enable a predictive mapping between such manipulations and
plasmid abundance in gut. This notion will help to predict the
effectiveness of diverse strategies of reversing antibiotic resistance
in complex microbial communities56.

Our results also have implications for the engineering of
microbial consortia. Engineering complex bacterial communities
in useful ways remains challenging due to the lack of under-
standing of the ecological principles and intercellular metabolic
interactions57. Conjugative plasmids are potentially powerful
tools for function-oriented microbiota engineering58. Our mod-
eling framework and the plasmid persistence potential can guide
such efforts. In particular, the persistence potential reveals how a
few key kinetic parameters predict the approximate abundance of
the plasmid.
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performed every 24 h to maintain the growth. The relative abundances and persistence potentials of the plasmid in the seven communities at the end of the
experiments (day 15) are shown in the lower panel. The error bars represent the standard deviations of three replicates. The eighth community transferring
multiple plasmids was composed of two E. coli strains, MG1655 and DH5α. Five self-mobilizable plasmids, F’ (lncF, TetR), PCU1 (lncN, AmpR), R388 (lncW,
TmR), R6K (lncX, StrpR), and RP4 (lncP, KanR), were transferring within the community. The composition of the community was determined by blue-white
screening on X-gal plates. The relative abundance of each plasmid was determined by selective plating with the corresponding antibiotics. Four different
ratios (103, 104, 105, 106) were performed every 24 h. The relative abundances and persistence potentials of the five plasmids at the end of the experiments
(day 15) are shown in the lower panel. Data are presented as mean values +/− the standard deviations of three biologically independent replicates.
b Evaluation of literature data. Data were extracted and reanalyzed from 9 previous studies (Supplementary Tables 3–16). Data are presented as mean
values +/− the standard deviations of multiple biologically independent replicates. The number of replicates ranges from three to six, depending on the
rationale of each study. The distribution is shown in the logarithmic scale (upper panel) or linear scale of ω (lower panel).
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Several caveats need to be considered when using our frame-
work. Our framework does not account for the situation where
the gene translocates from a plasmid to the chromosome or other
plasmids59, in which case the plasmid persistence becomes
decoupled from the functions encoded by this gene. Our frame-
work does not consider changes in gene functions during long-
term evolution17,25. Moreover, our basic framework does not
explicitly consider interactions between plasmids. However, cer-
tain interactions, such as plasmid incompatibility, can be
described by PCF with minor modifications (see Supplementary
Information section 2.1.2). Developed for plasmids, PCF can also
be extended to analyze other MGEs, including phages and
transposons, with major simplifications and adaptations (see
Supplementary Information section 2.5). However, the dynamics
of phages and transposons can entail different confounding fac-
tors59–61; thus, the quantitative predictive power of such a
modeling framework remains to be thoroughly tested. Despite
these caveats, PCF captures the general features of the population
biology of plasmids, and the persistence potential established in
this work is applicable when the genes of interest are stably
associated with the plasmids and when the effects of evolution are
negligible.

Methods
Strains and plasmids. The compositions of the eight engineered communities are
shown in Supplementary Table 1. E.coli strain MG1655 without fluorescence
markers was denoted as strain X17. E.coli strain DA26735 with chromosomal BFP
and chloramphenicol resistance (CmR) was denoted as strain B17, and E.coli strain
DA32838 with chromosomal dTomato and CmR was denoted as strain R17. All
three strains carry helper F plasmid FHR that expresses tetracycline resistance
(TetR)17. FHR is not transmissible but encodes the conjugation machinery that
mobilize plasmid K. Plasmid K expresses GFP under the control of a strong
constitutive PR promoter, and expresses kanamycin resistance (KanR)17,62. Plasmid
K also carries oriT, so it can be transferred through conjugation17.

The multi-plasmid community was composed of E.coli strain MG1655 and
DH5α. These two strains were distinguished from each other via blue-white
screening on X-gal plates, where MG1655 and DH5α colonies were blue and white,
respectively. These communities transferred five conjugative plasmids: F’ (lncF,
TetR), PCU1 (lncN, AmpR),R388 (lncW, TmR), R6K (lncX, StrpR), and RP4 (lncP,
KanR)17. These five plasmids are compatible with each other and carry different
antibiotic resistance markers. The plasmids were distinguished from each other via
selective plating.

Long-term dynamics of the engineered microbial communities. Our methods
for measuring the long-term plasmid dynamics are based on the protocols estab-
lished by Lopatkin et al.17. Single colonies of three strains (X, B and R) carrying
plasmid FHR and K were grown overnight at 37 °C for 16 h with shaking (250 rpm)
in LB culture (LB broth from APEX) containing appropriate antibiotics (100 μg/mL
Cm, 50 μg/mL Kan, or 20 μg/mL Tet). The overnight cultures were resuspended in
M9 medium (M9CA medium broth powder from Amresco, supplemented with
0.1 mg/mL thiamine, 2 mM MgSO4, 0.1 mM CaCl2, and 0.4% w/v glucose) without
antibiotics, and diluted to the initial density of 106 cells/mL. We constructed seven
communities using the combinations of these three strains: (a) X; (b) B; (c) R; (d)
X+ B; (e) X+ R; (f) B+ R; (g) X+ R+ B. For the communities (d)–(g), the
members of each community were mixed in the equal ratio, and the mixtures were
diluted to the initial density of 106 cells/mL. The cells were then distributed in a 96-
well plate to a final volume of 200 μL/well, and each community had 12 replicates.
The 96-well plate was covered with an AeraSealTM film sealant (Sigma-Aldrich,
SKU A9224) followed by a Breath-Easy sealing membrane (Sigma-Aldrich, SKU
Z380059). Plates were shaken at 250 rpm at 37 °C for 23 h. This was denoted as day
0. On day 1, the 12 replicates of each community were divided into four groups,
each with three replicates. From each well, 2 μL was removed for flow cytometry.
The four groups were subjected to four dilution ratios (103×, 104×, 105×, 106×).
The new plates were sealed using both membranes and placed back into the
incubator. The same protocols were repeated daily from day 1 to day 15.

For the community transferring multiple plasmids, we first transformed the five
plasmids into MG1655, respectively, and obtained five plasmid-carrying strains
(MF’, MPCU1, MR388, MR6K, and MRP4). Single colonies of the six strains (MF’,
MPCU1, MR388, MR6K, MRP4, and DH5α) were grown overnight at 37 °C for 16 h
with shaking (250 rpm) in LB culture containing appropriate antibiotics (20 μg/mL
Tet, 100 μg/mL Amp, 10 μg/mL Tm, 50 μg/mL Strp, and 50 μg/mL Kan,
respectively). The overnight cultures were resuspended in M9 medium without
antibiotics and diluted to the initial density of 106 cells/mL. The cells of these six
strains were mixed in a ratio of 1:1:1:1:1:5 (MF’: MPCU1: MR388: MR6K: MRP4:
DH5α), and the mixtures were diluted to the initial density of 106 cells/mL.

The cells were then distributed in a 96-well plate to a final volume of 200 μL/well,
with 12 replicates. The 96-well plate was covered with an AeraSealTM film sealant
followed by a Breath-Easy sealing membrane. Plates were shaken at 250 rpm at
37 °C for 23 h. This was denoted as day 0. At day 1, the 12 replicates of each
community were divided into four groups, each with three replicates. From each
well, 10 μL was removed for selective plating. The four groups were subjected to
four dilution ratios (103×, 104×, 105×, 106×), respectively. The new plates were
sealed using both membranes and placed back to the incubator. The same
protocols were repeated daily from day 1 to day 15. The ratio between MG1655 and
DH5α cells was determined by plating on the X-gal plates (100 μg/mL X-gal, 1 mM
IPTG). The relative abundance of each plasmid was determined by plating on
the plates with the corresponding antibiotics (20 μg/mL Tet, 100 μg/mL Amp,
10 μg/mL Tm, 50 μg/mL Strp, and 50 μg/mL Kan).

Flow cytometry. The community composition and plasmid abundance were
quantified using a flow cytometer (MACSQuant® VYB Analyzer). From day 1 to
day 15, the overnight cultures were resuspended and diluted to 1: 1000 in 200 μL
fresh M9 media before running through the flow. The channels of emission
detectors were set as V1: CFP_VioBlue (450/50 nm) for BFP, Y2: dsRed_txRed
(615/20 nm) for dTomato, and B1: GFP_FITC (525/50 nm) for GFP. For each
sample, 10,000 cells were collected. All data analysis was performed using FlowJo
(version 10.5.3).

Measuring the fitness costs and conjugation efficiencies of the mobilizable
plasmids. Singles colonies of cells that carry the plasmid K (denoted XK, BK, and
RK) or do not carry the plasmid K (denoted X0, B0, and R0) were grown overnight
at 37 °C for 16 h with shaking in LB with appropriate antibiotics. The cultures were
resuspended in M9 medium without antibiotics and then diluted in 1:104 ratio. The
growth curves of these six cell types were measured using a plate reader (TECAN
infinite M200 PRO). Six replicates per cell type were used for quantification. The
growth rate constants were calculated as the effective growth rates in exponential
phases (e.g., the first 5 h). First, we smoothed the growth curves to filter out the
random noises from the plate reader. We then plotted the increments ΔN/Δt with
regards to the cell density N. Linear regression was performed, and the slope was
obtained as the growth rate constants. The fitness cost α was determined by
normalizing the growth rates of plasmid-free populations X0, B0, and R0 by the
growth rates of plasmid-carrying populations XK, BK, and RK, respectively. The λ
values were obtained through λ= α− 1. The fitness costs of the five conjugative
plasmids (F’, PCU1, R388, R6K, and RP4) in the host strain MG1655 were mea-
sured in the same way.

Conjugation efficiencies were estimated using the protocols established by
Lopatkin et al. with modifications17. XK, BK, and RK served as the donors, and X0,
B0, and R0 served as the transconjugants. To distinguish donors with
transconjugants, we transformed the recipients with another non-mobilizable
plasmid pJM31, which carried ColE1 origin and expressed ampicillin resistance
(AmpR). Therefore, donors, recipients, and transconjugants can be distinguished
by different resistance markers: Kan for donors, Amp for recipients, and Kan
+Amp for transconjugants. Overnight cultures of donors and recipients in LB
media with appropriate selection agents were resuspended and diluted (1:100) in
fresh LB media. Cells were incubated at 37 °C with shaking for 2 h until they
reached exponential phase. The cells were then resuspended in M9 media and
mixed in 1:1 ratio with a total volume of 200 μL. Mixtures were incubated at room
temperature (25 °C) for 1 h without shaking. The donor, recipient, and
transconjugant densities were measured by diluting the mixtures (1:106 for donor
and recipient, 1:104 for transconjugant), and spreading three replicates onto
corresponding selective plates. The conjugation efficiency was obtained as
η ¼ T

D�R�Δt, where T, D, R stand for the cell densities of transconjugant, donor and
recipient, respectively. Before being plugged into the model, the measured values of
η need to be normalized with respect to the maximum carrying capacity Nm. We
estimated Nm to be 6 × 108 cells/mL, which corresponds to OD600 ≈ 1.2. The
dilution rates D were calculated from the daily dilution ratio ε by D ¼ log ε

24 h
63.

Therefore, dilution ratios of 103×, 104×, 105×, 106× are equal to dilution rates of
0.2878 h−1, 0.3838 h−1, 0.4797 h−1, and 0.5756 h−1, respectively. The loss rate κ of
plasmid K is very small compared with dilution rates D. We used the value (κ=
0.001 h−1) measured by Lopatkin et al.17.

The conjugation efficiency of the five conjugative plasmids were measured using
similar protocols. Since the abundance of DH5α became negligible in the cocultures
at the end of the long-term experiments, only the conjugation between MG1655
cells were considered. For plasmid F’ (TetR), PCU1 (AmpR),R388 (TmR), and R6K
(StrpR), MG1655 transformed with the non-mobilizable plasmid K- (KanR, same as
the plasmid K but without the transfer origin) served as the recipient. For plasmid
RP4 (KanR), MG1655 transformed with the non-mobilizable plasmid pJM31
(AmpR) served as the recipient. The calculations of parameters were performed
using Matlab (R2017a).

Model construction and analysis. To explain the key concepts of the plasmid-
centric framework, we first focus on simple communities. For a community of two
species and two plasmids, let s1 and s2 represent the abundances of species 1 and 2,
respectively. Let p11 represent the abundance of species-1 cells that carry plasmid 1,
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and p12 represent the abundance of species-1 cells that carry plasmid 2. In a similar
way, we can define p21 and p22. PCF describes how the community composition (si,
i= 1, 2) and plasmid distribution (pij, i= 1, 2 and j= 1, 2) change with time. First,
we assume all plasmids are compatible with each other, which means that they can
coexist in the same host cell. The dynamics of this community can then be
described by six ODEs

ds1
dt

¼ α1μ
e
1s1 � Ds1 ð5Þ

ds2
dt

¼ α2μ
e
2s2 � Ds2 ð6Þ

dp11
dt

¼ β11μ
e
11p11 þ s1 � p11ð Þ η111p11 þ η121p21

� �� κ11 þ Dð Þp11 ð7Þ

dp12
dt

¼ β12μ
e
12p12 þ s1 � p12ð Þ η211p12 þ η221p22

� �� κ12 þ Dð Þp12 ð8Þ

dp21
dt

¼ β21μ
e
21p21 þ s2 � p21ð Þ η122p21 þ η112p11

� �� κ21 þ Dð Þp21 ð9Þ

dp22
dt

¼ β22μ
e
22p22 þ s2 � p22ð Þ η222p22 þ η212p12

� �� κ22 þ Dð Þp22: ð10Þ
These ODEs constitute the main part of PCF. si increases by cell division, the

effective growth rate of which is represented by μei . Each plasmid might cause a
fitness burden or benefit on the growth of the host cell, and αi represents the
combined fitness of all the plasmids that species i carries. D is the dilution rate. pij
increases by cell division (μeij) or horizontal transfer through conjugation (ηjki). The
effective growth rate of the host cells that carry plasmid j is represented by μeij ,
which will be smaller than μei if the plasmid is burdensome and larger than μei if the
plasmid brings benefit. The combined effect of all other plasmids on the division
rates of pij is described by βij. Plasmid j can also be transferred horizontally from
species k to species i at a rate constant of ηjki. Therefore, the influx of pij from
species k is obtained as (si− pij)ηjkipkj. The rate constant of plasmid loss is
represented by κij.

μei represents the effective growth rate of the ‘empty’ cells (cells that do not carry
any plasmids), while μeij is the effective growth rate of the cells that are only
equipped with the plasmid j. The effective growth rates μei and μeij are calculated
from the maximum growth rates (represented by μi and μij, respectively) and the
available carrying capacity ci through μei ¼ μici , μ

e
ij ¼ μijci. μij is linked to μi

through the fitness cost of pij, which is denoted λij. We assume that the maximum
growth rate is inversely proportional to the fitness cost. Therefore, the relationship
between μij and μi is obtained as μij= μi/(1+ λij). The plasmid is burdensome
with positive λij and beneficial with negative λij. To obtain the combined cost of all
the plasmids that si carries, we calculated the weighted average of their costs as
λi ¼ pi1

si
λi1 þ pi2

si
λi2: Then, the formulation of αi can be obtained as αi ¼ 1

1þλi
, which

leads to

α1 ¼
s1

s1 þ p11λ11 þ p12λ12
ð11Þ

α2 ¼
s2

s2 þ p21λ21 þ p22λ22
: ð12Þ

Formulating βij, however, requires prior information about the distribution
patterns of the other plasmids in pij cells. For a general understanding, we
equilibrated its distribution in pij cells as its distribution in si cells. Then, similar to
the definition of αi, βij can be obtained as

β11 ¼
s1ð1þ λ11Þ

s1ð1þ λ11Þ þ p12λ12
ð13Þ

β12 ¼
s1 1þ λ12ð Þ

s1 1þ λ12ð Þ þ p11λ11
ð14Þ

β21 ¼
s2 1þ λ21ð Þ

s2 1þ λ21ð Þ þ p22λ22
ð15Þ

β22 ¼
s2ð1þ λ22Þ

s2ð1þ λ22Þ þ p21λ21
: ð16Þ

Here, we assume the two species compete with each other and follow the logistic
growth. Therefore, the available carrying capacities can be formulated as c1= c2=
1− s1− s2.

The framework can then be generalized to communities with more species and
plasmids. First, we discuss communities composed of m species and n plasmids. Let
si (i= 1, 2, …, m) represent the abundance of species i, and pij (i= 1, 2, …, m and
j= 1, 2, …, n) represent the abundance of plasmid j-carrying cells in species i. We
assume all the plasmids are compatible with each other. The dynamics of this

community can then be described as follows:

dsi
dt

¼ αiμisici � Dsi ð17Þ

dpij
dt

¼ βijμijpijci þ ðsi � pijÞ
Xm

k¼1

ηjkipkj � ðκij þ DÞpij: ð18Þ

The formulation of αi in this general case becomes

αi ¼
si

si þ
Pn

j¼1 ðpijλijÞ ð19Þ

and βij becomes

βij ¼
sið1þ λijÞ

sið1þ λijÞ þ
P

k:k≠jf g ðpikλikÞ
: ð20Þ

The ODEs, and the formulations of α, β, and c, constitute the body of our
framework.

Niche-based simulation. The term ci represents the available carrying capacity of
the species. Here, we assume each species follows logistic growth, in competition
with other species sharing the same niche. Let ei represent the maximum carrying
capacity of the niche where the i-th species resides. We formulated ci as
ci ¼ ei �

P
sk , where sk is the density of the k-th species that shares the same niche.

To numerically test the predictive power of the persistence potential, we first
randomized the number of species and plasmids in each community. We then
generated a random number of the niches and distributed each species into one of
the niches. Each niche was assigned a random value of the maximum carrying
capacity. Next, the maximum rates of the species and the dilution rate were
randomized. For plasmid dynamics, the transfer rates of each plasmid were
randomized in two steps: (1) the transfer rate between a specific pair of species
might be zero or no-zero, by a random chance; (2) if the transfer rate is non-zero,
the value of η is also randomized. Finally, the plasmid loss rates, the growth effects,
as well as the initial densities of each population were randomized. With all these
parameters, we then simulated the dynamics of the communities. All the
parameters follow uniform distributions in the given ranges. The pipeline of the
simulation and the ranges of the parameters were described in detail in
Section 2.1.3 of the Supplementary Information. The numerical simulations were
performed using Matlab (R2017a).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data of this study are available within the manuscript
and its Supplementary Information file. The summary of the literature data is provided
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Code availability
The Matlab codes associated with Figs. 1 and 3, and Supplementary Figs. 1–3 are available at
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