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Decarboxylative thiolation of redox-active esters to
free thiols and further diversification
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Thiols are important precursors for the synthesis of a variety of pharmaceutically important

sulfur-containing compounds. In view of the versatile reactivity of free thiols, here we report

the development of a visible light-mediated direct decarboxylative thiolation reaction of alkyl

redox-active esters to free thiols based on the abundant carboxylic acid feedstock. This

transformation is applicable to various carboxylic acids, including primary, secondary, and

tertiary acids as well as natural products and drugs, forging a general and facile access to free

thiols with diverse structures. Moreover, the direct access to free thiols affords an advantage

of rapid in situ diversification with high efficiency to other important thiol derivatives such as

sulfide, disulfide, thiocyanide, thioselenide, etc.
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The construction of molecule libraries with structural and
functional diversity is crucial for the study in the context
of chemical biology and drug discovery1–3. Thiols are

important precursors for the synthesis of a variety of pharma-
ceutically important sulfur-containing compounds, including
sulfonamides, sulfonyl fluorides, sulfoxides, sulfides, disulfides,
and so on, by virtue of their high reactivity and valence labile
nature, and widely employed in organic synthesis, polymer
preparation, materials science, and biomedicine4–17. In fact,
besides their well-known roles in protein structure stabiliza-
tions18,19 and many enzymatic processes20, thiol is also one
of the most targeted sites in post-translational protein mod-
ification (Fig. 1a)21–23. Inspired by the versatile reactivity of
thiols, we conceived that, based on the feedstock of abundant
carboxylic acid, a decarboxylative thiolation of acid-derived
redox-active esters (RAEs)24–39 (RCO2A*) to free thiols could
forge a novel access to various thiols and related derivatives
with considerable structural diversity. In particular, the dec-
arboxylative access to free thiols could allow a further diversi-
fication to other sulfur-containing compounds40–42 with a
multiplied diversity by varying the coupling agents (e.g., with
various electrophiles E+, Fig. 1b).

A number of radical C–S bond formation reactions43–49

have been reported, including the related decarboxylative trans-
formations pioneered by Barton in 1980s46–49, but a direct radical
thiolation to free thiols remains elusive so far. The challenges for
the proposed radical decarboxylative thiolation to free thiols
probably lie in the labile nature of free thiols, which can lead to
dimerization, undesired hydrogen transfer, and other side reac-
tions43. In fact, free thiols are commonly used as hydrogen atom
transfer (HAT) catalysts or reagents in radical chemistry50–54,
and the HAT from a primary alkyl thiol to alkyl radicals is a fast
process (ca. 107 M−1s−1)52–54. Therefore, in the decarboxylative
thiolation process, the desired thiol product (RSH) formed earlier
may intercept the newly generated alkyl radicals (R∙), thus leading
to the undesired alkane (R-H) formation (Fig. 1c). Nevertheless,
in radical polymerization, the chain-transfer agents (CTA)
employed in reversible addition-fragmentation chain-transfer
polymerization can readily alter the radical addition rate by
adjusting the Z group and increase kadd to above 108 M−1 s−1

(Fig. 1, C, below)55,56, which inspired us to focus on the sulfur
donor search in the beginning. Herein, we report our efforts in
the successful identification of aryl thioamides as an effective
sulfur donor, and the invention of visible light-mediated direct
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decarboxylative thiolation of alkyl RAEs to free thiols. Moreover,
further diversification to other thiol derivatives, such as sulfide,
disulfide, thiocyanide, and thioselenide via in situ trapping, is also
demonstrated.

Results
Reaction optimization. We commenced our study with the
search for sulfur donors suitable for the radical thiolation
reaction, by employing dihydrocinnamic acid-derived RAE (1)
as the model substrate and Eosin Y-Na2/diisopropylethylamine
(DIPEA) as the photoredox catalytic system (Table 1). Initially,
thiourea 2a, which is frequently used as a sulfur donor in the
nucleophilic substitution reactions of alkyl halides57,58, was
examined first in the reaction, but only the alkane product 3′
was observed (entry 1), indicating the radical reactivity is
substantially different from the polar substitution reactions.
Other thioureas like 2b and 2c were also examined, but neither
of them afforded the desired thiol product (entries 2 and 3). We
then turned our attention to other types of sulfur donor (for
more details about the reaction development, please see the
Supplementary Figs. 1–9 and Table 1). To our delight, ben-
zothioamide was found being a promising sulfur donor for this
decarboxylative thiolation reaction, and the desired thiol 3
could be obtained as the predominant product in 77% yield
(entry 4). We then carried out several modifications on the
phenyl group of benzothioamides (entries 4–6). Electron-
withdrawing group (-CF3, 2e) led to a decreased yield of 35%,
while the introduction of an electron-donating group (2f) was

found beneficial and further increased the yield to 81% (entry 5
vs. entry 6). The N-H group proved to be crucial for this
transformation. Replacement with either one or two methyl
groups (2g and 2h), both resulted in a sharp drop in yield
(entries 7 and 8). Moreover, sulfur powder was also tested, but
no desired thiol product was observed (entry 9). With 2f as the
sulfur donor, we conducted a further reaction optimization,
including

photocatalyst, solvent, light source, and so on (for details,
please see the Supplementary Tables 2 and 3). Other photo-
catalysts, such as Ru(bpy)3Cl2·6H2O and Ir(ppy)3, gave lower
yields (entries 10–13), while Eosin Y was found equally efficient
(entry 14). Running the reaction in CH3CN could slightly
enhanced the selectivity (entry 15). Without light or photo-
catalyst, no reaction or a low yield was observed (entries 16 and
17). To our delight, the employment of two equivalents of sulfur
donor 2f could further suppress the undesired alkane formation
and increase the yield of the desired thiol product to a decent level
of 88% in the end (entry 18).

Substrate scope. With the optimized reaction conditions in
hand, we next examined the reaction scope with a variety of
primary, secondary, and tertiary acid-derived RAEs (Fig. 2).
Some free thiols are volatile and thus isolated in their disulfide
form by in situ trapping with diphenyl disulfide. These results are
also included in Fig. 2. In cases of primary acids (3–18), we could
see a good functional group tolerance. Br, Cl, ether, ester, and
also a triple C–C bond are all compatible in the reaction, and the

Table 1 Reaction optimizations for decarboxylative thiolation to free thiolsa.
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Entry Sulfur donor Yield (3/3′)b Entry Catalyst Yield (3/3′)b

1 2a 0/81 10 [Ru(bpy)3]Cl2·6H2O 71/28
2 2b 0/76 11 Ir(ppy)3 37/32
3 2c 0/79 12 Rhodamine B 76/28
4 2d 77/26 13 Fluorescein 71/36
5 2e 35/28 14 Eosin Y 81/23
6 2f 81/23 15d Eosin Y-Na2 83/18
7 2g 2/72 16d,e Eosin Y-Na2 0/0
8 2h 3/97 17d,f w/o Eosin Y-Na2 38/10
9c Sulfur powder 0/0 18d,g Eosin Y-Na2 88/6

aReaction conditions: 0.05 mmol scale, catalyst (2.5 mol%). Left entries: with Eosin Y-Na2 as the photocatalyst. Right entries: with 2f as the sulfur donor.
bDetermined by GC-MS analysis with anisole as an internal standard.
cSulfur powder (5.0 equiv.).
dReaction was performed in CH3CN instead of DCM.
eIn dark.
fWithout photocatalyst.
gWith 2.0 equiv. of 2f.
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desired free thiols (4–10) or disulfides (11–18) could be isolated
in moderate to good yields. Through this decarboxylative thio-
lation, simple propionic acid can also be converted to the cor-
responding disulfide in 40% yield (14). The reaction can be well

applied to cyclic carboxylic acids (19–30), and different ring sizes
(22–26), including cyclopropane (22), cyclobutane (23), benzo-
cyclopentane (21), and cycloheptane (26), all can be converted to
the desired product in reasonable yields. Heterocyclic free thiols
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or disulfides, such as 19, 20, and 30, are also accessible from the
corresponding carboxylic acids. Pleasingly, tertiary thiols or
disulfide (31–36) can be prepared as well with this method. In
particular, this visible light-mediated radical decarboxylative
thiolation reaction could afford a facile access to tertiary
bridgehead thiols (such as bicyclic thiol 31, 1-adamantanethiol
33 and 34) under mild reaction conditions, which are often
difficult to prepare via traditional nucleophilic substitution
reactions due to the steric shielding of the bridgehead position
that prevents the backside attack of the nucleophiles59. The
reported synthesis of 33 from 1-adamantyl bromide or alcohol
was performed under very harsh conditions (reflux in AcOH/
conc. aq. HBr), and under the same conditions, only a trace
amount of product was obtained in the synthesis of bicyclo[2.2.2]
octane-1-thiol59,60. Moreover, the decarboxylative thiolation
reaction can be well extended to natural occurring acids, such as
oleic acid (39), aspartic acid (40), glutamic acid (41), dipeptide
Glu-Pro (42), and nutriacholic acid (46). It is worth mentioning
that the conversion of aspartic acid to the thiol product 40 is
resembling a transformation of aspartic acid to cysteine via a
residue manipulation. To our delight, this decarboxylative thio-
lation can be adopted for the late-stage modification of drugs,
such as gemfibrozil (43), oxaprozin (44), and indometacin (45).
In cases of 35, 36, and 43, we could observe less alkane formation
when the reactions were performed in CF3CH2OH instead of
CH3CN, and thus led to a better yield. As outlined in Fig. 2,
under this reaction condition, primary, secondary, and tertiary
carbon radicals can all be readily generated from the corre-
sponding alkyl NHPI esters and subsequently trapped by the
sulfur donor and converted to the desired thiol or disulfide
products.

Product diversification. Disulfides are important motifs in life and
biological active molecules, due to their unique pharmacological

and physiochemical properties61–66. To further explore the
scope of this transformation, more diaryl disulfide-trapping
agents were examined with dihydrocinnamic acid-derived
ester 1 as a model substrate. As shown in Fig. 3a, the reac-
tions worked well with various diaryl disulfides processing
different electronic nature, affording the desired unsymmetric alkyl
aryl disulfides 47–51 readily in good yields. Importantly, the
conversion of carboxylic acids to disulfides via this dicarboxylic
thiolation/in situ trapping protocol provides a facile approach to
synthesize this type of molecules with high structural diversity.
Thiols are key precursors to many pharmaceutically important
compounds4–17,40–45. The direct decarboxylative thiolation to
free thiols allows for the establishment of a rapid, in situ diversi-
fication to various thiol derivatives without isolating the free thiols,
which are often smelly and unstable. As shown in Fig. 3b, the
2-phenylethane-1-thiol can readily undergo alkylation in situ
with various electrophiles or Michael acceptors, to provide the
corresponding sulfide products (52–57). Moreover, trapping with
4-methylbenzenesulfonyl cyanide enable the conversion of car-
boxylic acid to thiocyanide 58. An access to thioselenide from
the corresponding carboxylic acid via an in situ reaction with
diphenyl diselenide was also demonstrated with the synthesis of
thioselenide 59.

A possible reaction mechanism is proposed as outlined in
Fig. 4. Under the irradiation of light, the photocatalyst Eosin Y
(PC) is excited and subsequently reductively quenched by DIPEA
or 2f, affording PC•− and 2f′ in the presence of base. The
fluorescence quenching experiments also clearly showed that both
DIPEA and sulfur donor 2f can quench the fluorescence of the
photocatalyst (Supplementary Figs. 7–9). A single electron
transfer (SET) from PC•− to the carboxylic acid-derived RAE
afford the corresponding radical anion Int-A and concurrently
regenerate the photocatalyst (Path A). As product also observed
in the absence of PC and 2f showed substantial absorption in the
blue light region (Supplementary Fig. 5), Path B might also

b In situ diversification to sulfide, thiocyanate, thioselenide
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involve to some extent. Int-A then undergoes fragmentation to
give the alkyl radical R∙ via the N–O bond cleavage followed by
the extrusion of CO2. The alkyl radical can be trapped with
TEMPO (Supplementary Fig. 3). The addition of R∙ to the sulfur
donor 2f generate the radical intermediate Int-B67, which can be
oxidized to imine Int-C by a SET to excited photocatalyst as
shown as Path I. The higher yields with aryl thioamides than alkyl
ones may be ascribed to the stabilization of the aryl group to
radical Int-B. The beneficial effect of the electron-donating group
(2d–f, entries 4–5, Table 1) might result from a favored one
electron oxidation of Int-B to Int-C. Alternatively, a radical
coupling of R∙ and 2 f′ could also afford the intermediate Int-C
(Path II). As a competing process, the HAT from thiol (R-SH)
to R∙ will lead to the formation of the alkane side product
(R-H)51,52, which can be suppressed by a rapid trapping of R∙
with active thiolating agents via Path I or II. In the end, the
desired thiol is produced after the elimination of one molecule of
ArCN68,69, which could be a relatively slow step, and a slow
release of free thiols can decrease the formation of the undesired
alkane product. The nitrile byproduct formation was confirmed
by gas chromatography-mass spectrometry (GC-MS) analysis,
and it can also be isolated by column chromatography. Therefore,
the use of N-unsubstituted thioamides is crucial for this
transformation. In contrast, N-substituted thioamide 2g and 2h
are unable to form the corresponding N-H imine intermediate
Int-C.

Discussion
In conclusion, a visible light-mediated direct decarboxylative
thiolation of carboxylic acid-derived RAEs to free thiols has been
developed. Aryl thioamides have been identified as an effective
sulfur donor and crucial to this thiolation reaction. The trans-
formation of abundant carboxylic acid feedstock to the corre-
sponding free thiols and their further in situ diversification allows
for a rapid and general access to various pharmaceutically
important compounds, such as sulfide, disulfide, thiocyanide, and

thioselenide, with diverse structures, which may be utilized for
the molecule library construction and benefit the related study in
chemical biology and discovery of novel, biologically interesting
small molecules.

Methods
General procedure for decarboxylative thiolation. To an oven-dried 10-ml
Schlenk tube equipped with a magnetic stir bar and a Teflon-coated septum
screwcap was added the NHPI redox-active ester (0.2 mmol, 1.0 equiv.), 4-
methoxythiobenzamide (2f, 0.4 mmol, 2.0 equiv.), Eosin Y-Na2 (2.5 mol%). The
tube was evacuated and backfilled with argon for three cycles. The DIPEA (0.22
mmol, 1.1 equiv.) and dry CH3CN (2.0 ml) was added via a gastight syringe under
argon atmosphere. Make sure the screwcap was closed, and the solvent was frozen
by liquid nitrogen. Then, the screwcap was opened and the tube was evacuated for
about 3 min. The screwcap was closed and let the solvent melts in a tepid water
bath. Repeat above freeze-pump-thaw procedures for 3–5 times until you no longer
see the evolution of gas as the solution thaws. The tube was filled with argon and
sealed, irradiated with 6W blue light-emitting diode (LED) reactor and stirred at
ambient temperature for 24 h. Full experimental details (Supplementary Figs. 1–9
and Supplementary Tables 1–3) and characterization of new compounds (Sup-
plementary Figs. 10–68) can be found in the Supplementary Methods section.

General procedure for the synthesis of disulfides. To an oven-dried 10-ml
Schlenk tube equipped with a magnetic stir bar and a Teflon-coated septum
screwcap was added the NHPI redox-active ester (0.2 mmol, 1.0 equiv.), 4-
methoxythiobenzamide (2f, 0.4 mmol, 2.0 equiv.), and Eosin Y-Na2 (2.5 mol%).
The tube was evacuated and backfilled with argon for three cycles. The DIPEA
(0.22 mmol, 1.1 equiv.) and dry CH3CN (2.0 ml) was added via a gastight syringe
under argon atmosphere. Make sure the screwcap was closed, and the solvent was
frozen by liquid nitrogen. Then, the screwcap was opened and the tube was
evacuated for ~3 min. The screwcap was then closed and the solvents were let to
melt in a tepid water bath. Repeat above freeze-pump-thaw procedures for 3–5
times until you no longer see the evolution of gas as the solution thaws. The tube
was filled with argon and sealed, irradiated with 6W blue LED reactor and stirred
at ambient temperature for 24 h. Then, the K2CO3 (0.4 mmol, 2.0 equiv.) and diaryl
disulfide (0.4 mmol, 2.0 equiv.) was added under argon atmosphere. The tube
stirred at ambient temperature for 6 h in the dark. Upon completion, the reaction
mixture was carefully concentrated and the residue was further purified by flash
chromatography to give the desired disulfide products. Full experimental details
and characterization of new compounds can be found in the Supplementary
Methods section.
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