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Clarifying the quantum mechanical origin of the
covalent chemical bond
Daniel S. Levine1 & Martin Head-Gordon 1,2✉

Lowering of the electron kinetic energy (KE) upon initial encounter of radical fragments has

long been cited as the primary origin of the covalent chemical bond based on Ruedenberg’s

pioneering analysis of Hþ
2 and H2 and presumed generalization to other bonds. This work

reports KE changes during the initial encounter corresponding to bond formation for a range

of different bonds; the results demand a re-evaluation of the role of the KE. Bonds between

heavier elements, such as H3C–CH3, F–F, H3C–OH, H3C–SiH3, and F–SiF3 behave in the

opposite way to Hþ
2 and H2, with KE often increasing on bringing radical fragments together

(though the total energy change is substantially stabilizing). The origin of this difference is

Pauli repulsion between the electrons forming the bond and core electrons. These results

highlight the fundamental role of constructive quantum interference (or resonance) as the

origin of chemical bonding. Differences between the interfering states distinguish one type of

bond from another.
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The chemical bond is at the very heart of chemistry, as bond
strengths determine most of the enthalpic component of
the thermodynamic driving forces for reactions, and con-

trol key features of molecular structure and properties. The
quantum origins of the forces holding atoms tightly and strongly
near each other have been the focus of intense discussion as
chemistry moved beyond pre-quantum concepts such as the
“hooks and eyes” to Lewis’s shared electron pairs1–4. In a quan-
tum picture, the chemical bond was originally viewed1, and is still
sometimes discussed and taught, as being electrostatic in origin.
This was based on the virial theorem: for a (negative) bond
energy ΔE, the electron potential energy (PE or V) changes
(decreases) by ΔV= 2ΔE; twice as much as the electron kinetic
energy (KE or T) increases (ΔT=−ΔE) in an exact quantum
calculation at the equilibrium geometry. Additional support
comes from the fact that charge accumulates in the internuclear
region of a bond relative to the superposition of free atom
densities.

Seminal work by Ruedenberg5 established for Hþ
2 and H2 that

despite the correctness of the virial theorem, roughly 66% of the
binding energy can be associated with constructive quantum
interference that lowers the KE. KE lowering occurs via delo-
calization of the electrons’ wavefunction across both centers,
which is favorable relative to containment in individual 1s
atomic orbitals. This process sets up an imbalance between KE
and PE relative to the virial theorem, leading to a secondary
effect, orbital contraction, in which the orbitals contract toward
the nuclei, lowering PE and raising KE. This effect is most easily
seen by optimizing the form of a spherical H 1s function as a
function of bond length6. For the last nearly 60 years, this KE-
lowering paradigm has been used to explain the quantum origin
of covalent bonds via extrapolation from Hþ

2 and H2
5–12.

Recently, work has been done to define a schema to allow this
theory to be tested with other molecules11–16. However, the
very strong assumption that the results for hydrogen are uni-
versal to other covalent bonds deserves scrutiny by alternative
approaches.

Here we use a stepwise variational energy decomposition
analysis (EDA) based on absolutely localized molecular orbitals
(ALMOs)17–19 to show that the generalization is, in fact, not
universally true in all paradigms. This EDA was designed not
with the purpose of separating KE and V but partitioning the
total interaction energy, ΔEINT, into well-defined components
along the bond-forming path. As all intermediate states in this
scheme used to compute energies are valid, spin-pure wave-
functions, subsequent to the EDA’s development we were
prompted to investigate the role of KE along the bond-forming
coordinate. In the course of developing the ALMO-EDA for
chemical bonds17, a term indicating the energy lowering due to
orbital contraction was developed18. This method quantitatively
recovers the results discussed above for H2, and also revealed
orbital contraction to be significant for all bonds between
hydrogen and other atoms or groups that were examined. Sur-
prisingly though, orbital contraction contributes almost nothing
to the bonds between heavier atoms and groups18. This was
attributed to the presence of core electron pairs in such cases,
which precludes significant orbital contraction due to repulsion
between the contracting valence and core electrons. This result
begs the question that we take up here: if the critical role of orbital
contraction is to restore virial balance by raising KE and lowering
PE and this does not apparently occur in bonds between non-
hydrogen atoms, then what is the nature of the kinetic and
potential energy balance in these systems? We utilize the ALMO-
EDA method to demonstrate that the model in which covalent
bond formation is driven by KE lowering is not universally true
for all covalent bonds.

Results
Defining the ALMO-EDA for covalent bonds. The wavefunc-
tions in ALMO-EDA (after assembling fragments into a singlet
system) are mean-field for all electrons except for two orbitals
(e.g., initially one from each fragment) which may engage in
single bond formation. The final wavefunction, ΨFinal, is an
unconstrained complete active-space SCF [CAS(2,2)] wavefunc-
tion) (also known as 1-pair perfect pairing, and two-
configurational SCF)17. The ALMO-EDA may also be carried
out using a density functional theory (DFT) formalism,19 but
we report wavefunction results because the KE in ab initio
theory is rigorously defined and does not rely on an approximate
exchange-correlation functional. DFT results (using the
Kohn–Sham kinetic energy) are qualitatively the same (see Sup-
plementary Table 2 in the Supplementary Information). We
summarize the procedure17–19 briefly below; further details are
provided in the “Methods” section.

The interaction energy is ΔEINT= EFinal− EFrag, where the
energy of isolated fragments is EFrag, and the final energy is EFinal.
Using 3 intermediate energies (EPrep, ECov, and ECon) that are
variationally optimized with successively weaker constraints,
ΔEINT is decomposed in stepwise fashion as:

ΔEINT ¼ ΔEPrep þ ΔECov þ ΔECon þ ΔEPCT: ð1Þ
The first term, ΔEPrep= EPrep− EFrag, describes the change in

energy as the isolated fragments are distorted from infinitely
separated geometrically and electronically relaxed fragments
(with EFrag) to the geometry and hybridization of the interacting
molecule, yielding EPrep. For radical fragments with nα > nβ, the
alpha density is fixed but the beta density is optimized in the span
of the alpha density.

The second term, ΔECov= ECov− EPrep, describes the change in
energy associated with constructive quantum interference
between the prepared wavefunctions of the two individual
fragments, subject to the constraint of fixed fragment orbitals.
For 2-center, 2-electron chemical bonds, one forms a
Heitler–London or valence-bond wavefunction by singlet spin
coupling the two fragment unpaired electrons in their over-
lapping non-orthogonal fragment orbitals (A and B):

Ψ2e
Cov ¼ c Â ½A "�½B #� þÂ ½A #�½B "�

n o
; ð2Þ

where Â is the antisymmetrizer. For 1-electron chemical bonds,
the constructive interference on initial bond formation arises
from resonating a single electron between the fixed fragment
orbitals of the two centers:

Ψ1e
Cov ¼ cAÂ ½A "�½B � þ cB Â ½A �½B "�: ð3Þ

Physically, ΔECov allows the wavefunctions of the two prepared
fragments to interact, delocalizing the electron or electrons that
will form a bond from one fragment to both, and spin coupling
them if 2 (or more) are involved. Since the resonance character of
(2) and (3) enables an electron (or two) in fixed fragment orbitals
to delocalize, ΔECov is the energy change where KE lowering is
anticipated, prior to orbital contraction. ΔECov is so named
because it will be significant for covalent bonds (and conversely
less or not at all significant for more ionic bonds and charge-shift
bonds).

ΔECon= ECon− EPrep in (1) is the energy lowering due to
orbital contraction. In our approach18, one empty contraction
response orbital is obtained per occupied orbital, as the exact
linear response of that orbital to perturbing the nuclear charges.
In other words, we determine how the fragment density would
respond to, for example, an increase in the nuclear charge (by a
contraction toward the nucleus) and based on this response,
determine what virtual orbitals are necessary to describe this
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density change via a coupled-perturbed SCF calculation. The
variational energy stabilization obtained by allowing relaxation
between occupied orbitals and these contraction orbitals is
identified as the orbital contraction energy. This is the step where
KE increases are anticipated for traditional covalent bonds. A
discussion of how our approach compares with other methods to
characterize contraction12,20,21 is provided in Supplementary Note 2
of the Supplementary Information. We note that the conclusions
drawn below about changes in kinetic energy associated with the
covalent bond formation step, ΔECov, are necessarily independent of
the details of the contraction step, which comes afterwards.
However, it is interesting to compare the kinetic energy changes
of both processes because in H2 the kinetic energy changes during
the covalent bond formation necessitate the changes effected by
contraction. We will see how these requirements are starkly
different in other molecules, using our approach.

Finally, ΔEPCT= EFinal− ECon in (1) is the energy lowering due
to bond polarization (P) and charge-transfer (CT). Polarization,
which is important for instance in polar bonds, is defined by the
variational energy lowering obtained when only those virtual
orbitals which describe the response of the fragment to dipolar
and quadrupolar fields are included22. CT includes the remainder
of stabilization associated with CT (allowing us to reach the final
1-PP/TCSCF/CAS(2,2) wavefunction), and is important for
instance in charge-shift bonds20,21,23,24. In prior uses of the
ALMO-EDA method, polarization and CT are considered
separately. For the present analysis, however, we lump them
together as energy changes that occur after the covalent step,
ΔECov, that is of primary interest here. Overall, different types of
bonds exhibit different “fingerprints” associated with the relative
sizes of the terms defined above (e.g., nonpolar covalent bonds
have large values of ΔECov and much more modest values for the
other terms).

Analysis of kinetic energy during bond formation. With energy
changes for each step of bond formation defined, let us specify
how to test the role of kinetic energy changes in this process. KE
changes can be defined for each term of (1): specifically ΔTPrep=
TPrep− TFrag, ΔTCov= TCov− TPrep, and so on. We consider
ΔTCov, which involves use of the identical set of orbitals in the
prepared fragments and the covalently coupled system to be the
best test of whether KE lowering accompanies the covalent step of
bond formation or not. These numbers are reported below.
However, one can imagine alternative definitions, as discussed in
Supplementary Note 3 of the Supplementary Information. For
example, one alternative is the KE change relative to optimized
isolated fragments: ΔTCov-Frag= TCov− TFrag= ΔTPrep+ ΔTCov.
As shown in Supplementary Note 3, none of the results reported
below change qualitatively when other definitions are considered.

We first verify the approach by investigating the well-studied
cases of the 1-electron bond in Hþ

2 and the 2-electron bond in H2,
as a function of H–H distance, as shown in Fig. 1. Cumulative
binding energies (E rather than ΔE) relative to isolated,
geometrically-relaxed fragments as well as changes in kinetic
energy (ΔT) relative to the previous step are defined for each step
and are what is reported. Thus the figure shows the differences
ΔTCov, ΔTCon, and ΔTPCT along with the covalent binding energy,
(ECov), the binding after contraction (ECON), and the final energy
(EPCT) (EPrep and ΔTPrep are identically zero). The KE-
stabilization picture is clearly recovered: covalent coupling of
the fragments results in the majority of the bond strength and a
large decrease in KE. Subsequently, contraction contributes a
substantial further energetic stabilization (yielding ECon) and
significantly increases KE (ΔTCon), while final bond polarization
and charge resonance produces only modest changes to T and E.

To explore 1- and 2-electron bonds between heavier elements,
we first examine the central C–C bond in butane and butane
cation (chosen because the unpaired electron in the radical cation
is well-localized to the central C–C bond). The covalent bond in
butane and butane cation should be very similar to that in H2 and
Hþ

2 , respectively. However, as Fig. 2 shows, this is not at all the
case for KE at equilibrium in C4H10: after total energy-raising and
KE-lowering fragment preparation (geometrically distorting from
the isolated geometry and orienting the radical orbitals for
bonding), ΔECov (i.e., primarily coupling the two spins, as in H2)
accounts for an appreciable fraction of the bond energy, but, at
equilibrium, bringing two ethyl radical fragments together leads
to a substantial increase, not a decrease of the kinetic energy.
Contraction, ΔECon, as was already noted, plays a vanishingly
small role energetically both for total and kinetic energy. At
equilibrium, the KE is further increased by polarization/CT
effects, as was seen for H2 and Hþ

2 . Butane radical cation, on the
other hand, is unbound at the covalent and contraction stages,
though stabilized significantly from the prepared fragments, and
kinetic energy has increased modestly at equilibrium despite this
substantial energy lowering (at the unbound energy minimum
associated with the covalent level, the kinetic energy decreased
slightly). Polarization and CT effects are required to obtain net
binding in this weakly bound system. These contributions
substantially increase the kinetic energy and lower the total
energy.

The origins of the striking differences between H2 and C4H10

may be due to interactions with electrons pairs outside of the
bonding pair (other valence pairs and core electrons). Strong
support for this hypothesis comes from the behavior of ΔTCov for
C4H10, at stretched bond distances. Beyond about 1.85Å, ΔTCov
becomes negative, suggesting that its increase at equilibrium is
associated with other CH electron pairs and/or core electrons.
Evidently at shorter distances, interactions between these closed-
shell pairs of one ethyl group and the unpaired spin of the other
lead to KE-increasing effects, despite the fact that bringing the
two fragments together is favorable from a total energy
perspective due to constructive wavefunction interference asso-
ciated with forming the Heitler–London type wavefunction, (2).
Similarly, the butane radical cation is substantially stabilized by
bringing the two prepared fragments together even though the KE
increases slightly, while at longer bond distances, the KE change
is negative.

We can visualize the orbitals which are forming the bond along
the relaxed butane dissociation curve, and these are shown in
Fig. 3. At the stretched distance shown (2.2Å), we see that the
orbitals of the geometrically prepared fragment are just beginning
to significantly overlap, but the cores of the atoms are still well
separated. This is the location where we would hypothesize the
kinetic energy to be most lowered, and indeed this is the
minimum of ΔTCov. Due to the poor overlap of radical orbitals
though, the bond is as yet far from fully formed. As we form the
final wavefunction at this geometry, electron density can be seen
to be pulled toward the other nucleus, increasing the overlap but
without significant KE increases. In contrast, at equilibrium, both
the bonding orbitals and the non-bonding cores substantially
overlap even at the covalent stage, leading to the increase in KE
observed in Fig. 2. While subtle to see in this figure, the final
orbitals at equilibrium have slightly increased in overlap, but this
also increases the collision with the cores, leading to slightly
elevated KE from further Pauli exclusion.

Kinetic energy in first-row hydrides. In order to obtain further
evidence for this hypothesis we consider the valence isoelectronic
series H2, LiH, and BeH+ (see Table 1). We have posited that the
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Fig. 1 Energy and kinetic energy changes for 1 and 2 e– H–H bonds. a Energy decomposition (kcal/mol) for dissociation of Hþ
2 ; energy terms are

cumulative. b Kinetic energy decomposition (kcal/mol) for dissociation of Hþ
2 ; kinetic energy changes, ΔT, are increments. c Energy decomposition (kcal/

mol) for dissociation of H2. d Kinetic energy decomposition (kcal/mol) for dissociation of H2. Note that a majority of the binding energy occurs due to
covalent (Cov) interaction (blue curves in a, c), accompanied by a significant KE lowering at the equilibrium geometry (vertical dots). The preponderance of
the remaining binding energy is contributed by the contraction process, which is accompanied by a substantial increase in KE.
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KE-raising may be due to the overlap of the orbitals principally
involved in bonding with core orbitals. For H2, this is impossible
(as there are no core electrons) and there is strong lowering of the
KE on covalent stabilization. For LiH, the 2s orbital overlaps with
the H 1s orbital to form the bond, but there is also overlap of the
core Li 1s orbital with the 1s H orbital. The net effect is a dra-
matically reduced KE lowering (to nearly 0) at the covalent step.
In BeH+, the 2s orbital is contracted (due to the positive charge
on the Be), resulting in a smaller bond distance (1.3 vs. 1.6Å) and
there is greater overlap of the 1s core of Be with the 1s H electron,
resulting in a KE increase at the covalent level. Since orbitals with
lower principle quantum number are more rapidly damped by
increasing Z than higher ones25, we would expect that a Be center
that had not been contracted by being a cation would have a
tighter core and therefore more KE lowering than a Li atom.
Indeed, the Be–H bond of BeH2 displays kinetic energy lowering
at the covalent stage. On moving to BH and CH, the 1s core is
further contracted relative to the 2p orbital. Therefore the B and
C 2p orbitals have better overlap with the H orbital, which itself
has reduced interaction with the core electrons, enhancing the
KE-reduction upon forming these bonds. In all cases, orbital
contraction serves to increase KE, though almost all of this effect
is due to contraction at the H rather than the core-containing
heavy atom. The localization of the contraction was established

by setting the response of the nuclear charge perturbation to zero
for hydrogen atoms, thereby making H contraction orbitals
unavailable in the contraction orbital optimization step. As
shown in Table 2 the result is dramatically reduced energy low-
ering through contraction on only the heavy atom (cf. Table 1).

Kinetic analysis of bonds at equilibrium. Further investigations
of a variety of single bond dissociation curves (HF, F2, Li

þ
2 , Li2,

Supplementary Figs. 3–10 in the Supplementary Information)
and equilibrium positions (H3C–SiH3, H3C–OH, F–SiF3, Sup-
plementary Table 1 in the Supplementary Information) leads to
the conclusion that, while single bonds between hydrogen and
other atoms or groups lead to large reductions in KE when the
groups are brought together without altering the orbitals, heavier
groups typically show increases in KE due to the overlap of core
electrons. These KE changes are uncorrelated with the total
energy stabilization. These data indicate that KE lowering
through delocalization is not the universal underlying principle
governing the formation of chemical bonds; the wavefunction
superposition which lowers the total energy need not be accom-
panied by a decrease in KE.

Discussion
Our results and conclusions may appear controversial in light of
the literature discussed so far; therefore some additional com-
ments that connect our work to other existing literature may be
helpful. Analysis of electron density deformations from the pro-
molecule (superposed atomic densities) to the molecule, going
back decades26,27, shows that orbital contraction is significant for
H2 and for HA diatomics but is not significant in AB diatomics.
Moreover, these authors discuss that the kinetic energy expla-
nation of the covalent bond as described by Ruedenberg would be
insufficient to explain σ-bonds in systems beyond H2, (although
they note that π-bonded first-row diatomics might behave simi-
larly to H2 since there are no inner electrons or radial nodes for
2p orbitals) as the involvement of core electrons would necessarily
complicate the kinetic energy situation. Early efforts to estimate
energy lowering associated with contraction show that, while very
significant for hydrogen, it is much smaller for non-hydrogen
atoms28,29 Our work, using very different methods, is broadly
consistent with these conclusions concerning contraction, and is
the first to show that there is no consistent KE lowering in A–B
type bonds, in contrast to H–H and A–H bonds. Shaik, Hiberty,
and others, using an entirely different formalism than the one
presented here, also have noted apparent kinetic energy increases
during bond formation20,21,23,24. These authors also ascribe this
behavior to Pauli repulsion.

By contrast, recent work by Ruedenberg and co-workers11–16

indicates that the KE-lowering is critical in all bonds. This qua-
litative difference is not because of any error on their part or ours.
We believe, rather, it is due to a different choice of reference: our
analysis is variational with respect to the radicals that combine to
make the bond (i.e., separated atoms and molecular fragments,
which are real, well-defined, and quantum mechanical entities).
Ruedenberg and co-workers find KE lowering with respect to

EFrag

ECov

ECT

Equilibrium Stretched

a

b

c

d

e

Fig. 3 Orbitals for C–C bond formation in butane. a Radical orbital
(isovalue 0.1 for all panels) for the ethyl radical at its isolated geometry.
b Radical orbitals for the nascent C–C bond in the covalent wavefunction at
equilibrium (bold for left ethyl, faint for right ethyl). c Radical orbitals for the
fully optimized wavefunction at equilibrium. d Radical orbitals for the
covalent wavefunction at stretched (2.2Å) bond length. e Radical orbitals
for the fully optimized wavefunction at 2.2Å.

Table 1 Energy and kinetic energy stabilizations for A–H
bonds (in kcal/mol).

H–H Li–H [Be–H]+ HBe–H B–H C–H

ΔEPrep 0.0 0.0 0.0 0.0 12.6 16.4
ΔECov −66.0 −16.8 −19.2 −62.7 −35.4 −16.9
ΔECon −20.9 −2.2 −6.8 −11.4 −15.1 −19.6
ΔEPCT −8.4 −25.5 −32.4 −9.1 −22.9 −32.1
ΔTPrep 0.0 −0.3 0.7 −4.3 −15.0 −17.2
ΔTCov −97.0 −0.7 7.2 −31.1 −62.2 −93.1
ΔTCon 182.6 38.7 76.0 94.5 113.7 124.3
ΔTPCT 17.8 12.1 −9.5 34.6 51.1 72.5

Table 2 Stabilizations for A–H bonds with H contraction
orbitals removed (in kcal/mol).

H–H Li–H [Be–H]+ HBe–H B–H C–H

ΔECon −0.3 −0.1 −0.1 −4.3 −0.4 −1.2
ΔEPCT −29.0 −27.6 −39.1 −16.2 −37.7 −50.5
ΔTCon 2.2 −6.5 4.4 37.8 7.7 −8.1
ΔTPCT 198.2 57.3 62.1 91.3 157.0 204.9
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artificial quasi-atoms with associated quasi-atomic orbitals that are
back-constructed from the final molecular wavefunction. Both the
method presented here and the method of Ruedenberg and co-
workers are EDAs, descriptive tools for understanding the “why” of
bond formation. These chemical concepts are inherently ambiguous
and support a variety of reasonable interpretations30–32. While
many choices for how this can be done are defensible, ultimately a
chemical bond is made from interacting atoms and radicals, and
should be understood starting from that reference state.

The crux of the matter is schematically illustrated in Fig. 4.
Constructive quantum mechanical wavefunction interference leads
to stabilization in molecules relative to radical fragments. Wave-
function interference is due to the presence of off-diagonal matrix
elements in the Hamiltonian when the fragments are permitted to
interact. The Cauchy interlacing theorem (or min–max theorem or
Poincare separation theorem or Hylleraas-Undheim-MacDonald
theorem) guarantees that, by increasing the size of the Hamiltonian
(and adding off-diagonal elements), the eigenvalue spectrum of the
Hamiltonian splits, with some eigenvalues going up and some down
in energy33. This splitting is due to destructive and constructive
wavefunction interference, respectively. In particular, what we have
shown here is that wavefunction interference with frozen fragment
orbitals, ΔECov, which lowers the total energy, is significant for all
covalent bonds, and this lowering is uncorrelated with changes in
the kinetic energy, which may increase or decrease due to the
presence or absence of core electrons, in contrast to what has been
previously advocated.

The old physical picture does not generalize because it con-
flated resonance (the true origin of the bond in H2) with delo-
calization (the physical picture of lowered KE via spreading out
the electrons)34. The interaction of different electron configura-
tions need not be associated directly with either electron delo-
calization in space or its anticipated effects on kinetic energy,
based on a particle-in-a-box picture. The perspective that wave-
function interference is the origin of the covalent bond has been
found by not only this work, but also Ruedenberg, Nascimento,
Bacskay, and many others6,9–15,20,21,23,24,35–44. The fact that this

picture is recovered by many models speaks to its primacy as the
fundamental origin of bonding, while systematic kinetic energy
lowering appears in only certain models and in certain systems.

The steps beyond initial covalent bond formation in Eq. (1) are
contraction, polarization, and CT. These subsequent orbital
optimizations are equivalent to mixing excited configurations into
the initial covalent ground state formed with frozen fragment
orbitals (see Fig. 4). While this mixing certainly plays a significant
role in bond formation, the principal origin of covalent bonding
is due to electrons lowering their total energy by superposition
with nearly degenerate quantum states that are not fully occupied
without mixing in excited states. In one-electron bonds, the
nearly degenerate states are due to the electron fluctuating
between the bond fragments (e.g., H+–H. and H.–H+). In two-
electron bonds, it is the interference between (↑− ↓) and (↓− ↑)
states built from fragment-localized orbitals (in a valence-bond
picture) which gives rise to covalent stabilization. Multiple bonds
have access to even more states (within a few kcal/mol of the
ground state)45. It is important to note that for charge-shift bonds
like in F2, significant stabilization is also gained by the relaxation
of the requirement of fragment locality, which results in a
wavefunction (in a generalized valence-bond picture) in which
both ionic and covalent structures are present. By contrast,
interacting closed-shell fragments do not have low-lying empty
quantum states to couple with and so there is no covalent
bonding between these moities. One can view this picture as the
many-electron analog of the one-electron orbital interaction view
of chemical bonding46; it is also compatible with valence-bond
pictures of chemical bonding47.

Methods
Computational details. All calculations were carried out with a development
version of the Q-Chem program48. The aug-cc-pCVTZ basis set was used for all
EDA and KE calculations. The geometries used for dissociation curves were those
obtained from a constrained HF optimization with the aug-cc-pVTZ basis set.
Equilibrium geometries were also obtained from HF/aug-cc-pVTZ calculations.

Description of ALMO-EDA method. We here describe the details of the methods
used in this work. The method is based on the ALMO-EDA for bonded
interactions17,19.

Step 1: The two halves of the bond are computed as isolated restricted open-
shell systems at the geometry that they will adopt in the bonded system. The energy
difference (due to geometric distortion) between the infinite separation geometry
fragments and the geometry they adopt in the complex is termed ΔEGEOM. In the
case of 1-electron bonds, one half of the bond is treated as a radical and the other as
a cation (in whichever configuration is lower in energy, all cases studied here are
symmetrical).

There is additional electronic preparation which may also be included here.
Many radicals have a different hybridization than in the corresponding bond. For
example, an F atom has an unpaired electron in a p orbital, while an F atom in a
bond will be sp-hybridized. This preparation may be determined by freezing the α
density of the fragment and allowing the β density to rotate within that span (recall
that the fragments are restricted open-shell) to be optimal in the spin-coupled
complex described below. This gives rise to a strictly nonnegative ΔEHybrid (in 1-
electron bond cases, only the radical fragment has nonzero ΔEHybrid). As we discuss
in detail in ref. 19, even though this is a type of polarization, we include it here
because, in some systems, the geometric distortion accounts for some of the
electronic preparation (e.g., planar CH3 is sp2-hybridized, while pyramidal CH3 is
sp3-hybridized: the electronic preparation cost is tied up in the geometric
preparation cost). In either case, including ΔEHybrid as part of ΔEPrep or ΔEPol, does
not change the conclusions of this work. The result of step 1 is a strictly
nonnegative preparation energy ΔEPrep= ΔEGeom+ ΔEHybrid.

Step 2: These fragments are brought together and assembled into a generally non-
orthogonal supersystem in the high-spin triplet configuration by block-diagonally
concatenating the molecular orbitals of the fragments. In this way, the orbitals are
partitioned (“absolutely localized”) to each fragment, giving rise to a “frozen” term
ΔEFRZ which includes electrostatics, Pauli repulsion, and, in DFT, dispersion.

Step 3: A spin-flip is then carried out to form a two-configurational
wavefunction, forming a spin-coupled state that employs the fragment orbitals.
This energy change ΔESC is negative for covalent bonds. It is this spin-coupled
system that is relaxed via orbital rotations between the doubly-occupied and half-
occupied orbitals to produce the prepared fragments. “Spin-coupling” may be a bit
of a misnomer as, in the case of 1-electron bonds (such as Hþ

2 ), the SC

ΔECov ΔECon ΔEPCT

E

A•      B•

KE
H−H

Be−H+

Fig. 4 Interpretation of the chemical bond. After orbital preparation,
strong interaction between radicals that have degenerate (or close) energy
levels gives rise to electron pairing with frozen orbitals (ΔECov, in green).
This may or may not be accompanied by KE lowering as discussed in the
text. Next, further energy lowering occurs by orbital mixing of the initial
covalent state (green) with much higher states (pink). Such mixing has the
effect of lowering the total energy (ΔECon, red) and contracting the electron
density towards the atomic centers, as shown above the mixing diagrams
(exaggerated for visual effect). This effect is significant for H–H and A–H
bonds, but much less so for A–B bonds. Mixing with other unoccupied
states (light blue) further lowers the energy via polarization and charge
transfer (ΔEPCT, black), which is significant for many A–B bonds19. While all
of these terms are stabilizing in total energy, they may either increase or
decrease the KE depending on the system (bottom pane).
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wavefunction is the charge-symmetrized wavefunction which contains favorable
wavefunction interference but does not actually involve the coupling of two
electrons. In this work, ΔECov= ΔEFRZ+ ΔESC.

Step 4: This wavefunction is then optimized with respect to a set of on-fragment
virtual orbitals that describe contraction, ΔECon. These on-fragment virtual orbitals
are those which are necessary to exactly describe the response of the electron
density to a perturbation in the nuclear charge18. One such contraction orbital is
required for each occupied orbital. Depending on how it mixes with its parent
orbital, the response orbital may describe either contraction or expansion. In
practice, only contraction occurs in the bonding regime.

Step 5: Further on-fragment relaxation is permitted that corresponds to
electronic polarization, ΔEPol. ΔEPol is computed by ALMO-constrained
optimization of each fragment with a set of on-fragment virtual orbitals. These
virtuals are fragment electric response functions (FERFs)22 that exactly describe the
response of the occupied orbitals to uniform electric fields (3 dipolar functions per
occupied orbital) and their gradients (5 quadrupolar functions per occupied
orbital). The ALMO constraint is a Hilbert space constraint which forbids CT
between fragments and the use of the FERF virtual functions provides a well-
defined basis set limit for polarization and also ensures that the asymptotic
behavior of this term matches the theoretical expectation.

Step 6: Finally, the ALMO constraint is dropped and all orbital rotations are
optimized, yielding the CAS(2,2) energy; this final CT energy contribution is
termed ΔECT. In this work, since we do not seek to compare the effects of
polarization vs. charge transfer, we aggregate these together as ΔEPCT= ΔEPol+
ΔECT.

For 1-electron bonded systems (all radical cations in this work), the calculation
is done as above (with neutral atoms), except that when the ALMO-constrained
singlet CSF is formed, the resulting beta electron is removed. This ensures orbital
symmetry between the two halves of the 1-electron bonded system.

All intermediates at all steps are valid, spin-pure, properly anti-symmetrized
wavefunctions, allowing us to extract kinetic energy, even though this was not the
initial goal. The kinetic energy was evaluated at various points during this
constrained variational optimization to understand how these different physical
processes affect the kinetic energy of the system. We focus on four kinetic energy
changes during the bond-forming procedure: the change from relaxed fragments to
prepared fragments (ΔTPrep), the change from prepared fragments at infinite
separation (which is typically extremely close to that of the electronically relaxed
fragments) to the spin-coupled wavefunction (ΔTCov), the change due to orbital
contraction (ΔTCon), and the final change due to polarization and CT (ΔTPCT).

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information files.

Code availability
All calculations in this work were carried out with a development version of the Q-Chem
5.2 software package. All systems utilized code now available to general users and
described in the user manual.
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