
EDITORIAL

Computation sparks chemical discovery
Computational chemistry methods with an optimal balance between predictive accuracy and com-

putational cost hold major promise for accelerating the discovery of new molecules and materials. We

at Nature Communications are eager to continue our engagement in this exciting and rapidly

evolving field.

T
heoretical and computational
modelling is ubiquitous in mate-
rials research. Modelling can sig-
nificantly help to bridge the results
of fundamental materials research

to actual materials production by significantly
reducing timescales. The computational
chemistry approaches developed over the
years have been an invaluable tool to provide
deep insight into chemical processes beyond
what can be directly measured experimen-
tally. A new Collection [https://www.nature.
com/collections/ncomms-compchem] show-
cases recent progress in developing these
computational frameworks.

For many years, density functional
theory (DFT) was con-
sidered the method of
choice to study the
electronic structure of
molecules, materials
and condensed systems,
enabling an optimal
trade-off between accu-
racy and computational
cost. This balance could
be achieved by including
the complex many-body
electron–electron inter-
actions within a func-
tional of the density, i.e.
the exchange and corre-
lation functional. During
the 1980s and 1990s, thei

key to the huge advances achieved by
molecular simulations was to develop more
and more accurate quantum-mechanical
approximations in order to climb the so-
called Jacob’s ladder, with each rung
representing increasing levels of complex-
ity and decreasing levels of approximation
to the exact exchange and correlation
functional. This led to the so-called

chemical modelling revolution, as high-
lighted by Tkatchenko in his Comment
entitled Machine learning for chemical
discovery1.

Considering how the world has chan-
ged with the increasing availability of
curated datasets containing reliable
quantum-mechanical properties of mole-
cules and materials, and how our ability
to collect big data has greatly surpassed
our capability to analyze it, a completely
different strategy is to think about how
seemingly unrelated data and properties
may impact each other, studying the
hidden interconnections between them.
In this vein, an alternative approach to
advance the predictive capability of
computational approaches is to replace
the physically motivated path by a data-
driven search. This has given rise to big-
data-driven science, which applies
machine learning (ML) techniques to
molecular and materials science. While
ML approaches have been in use for
decades for identifying correlations from
big amounts of data, only recently has the
computational community started to
invest tremendously in programme
infrastructures based on the synergetic
collaboration between materials scien-
tists, who have experimental and theore-
tical expertise, and computer scientists to
develop ML methods aimed at discover-
ing new molecules and materials. Under
development are ML methodologies that
combine electronic structure calculations
and statistical analysis tools, which when
fed with increasingly available molecular
big data, can serve as alternatives to
standard methods to explore the vast
chemical space. In these ongoing efforts,
the computational community currently
faces theoretical and technical challenges.

“While we acknowledge the

importance of standard high-

level computational

frameworks, we recognize the

tremendous potential of data-

driven ML schemes towards

accelerating the discovery of

material systems with target

properties.”
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Computational studies of chemical pro-
cesses taking place over extended size and
time scales must balance computational
cost and accuracy: electronic structure
methods are very accurate but computa-
tionally expensive, while atomistic models
such as force fields—although computa-
tionally affordable—lack transferability to
new systems.

In Approaching coupled cluster accuracy
with a general-purpose neural network
potential through transfer learning, Smith
et al.2 discuss that an ideal solution to
achieve the best of both approaches lies in
developing a general purpose neural net-
work potential that approaches CCSD(T)
accuracy (coupled cluster considering sin-
gle, double, and perturbative triple excita-
tions), the gold standard in quantum
chemistry, yet exhibits transferability over
a broad chemical space. Most importantly
for practical calculations, the resulting
potential is an attractive alternative to DFT
approaches and standard force fields: it is
broadly applicable for conformational
searches, molecular dynamics, and the
calculation of reaction energies and is bil-
lions of times faster than CCSD(T)
calculations.

Within traditional DFT modelling,
seeking to increase the non-locality of the
exchange and correlation functional in the
effort to achieve more accurate approx-
imations comes at a steep increase in
computational cost, making related com-
putational efforts impractical. A different
approach in this area is to develop specia-
lized ML functionals, whose overall accu-
racy does not significantly degrade when
used outside their training scope.

Dick and Fernandez-Serra in Machine
learning accurate exchange and correlation
functionals of the electronic density tackle
this problem by introducing a fully
machine-learned functional that depends
explicitly on the electronic density and
implicitly on the atomic positions3. It
approaches the accuracy of high level
quantum chemistry methods at an afford-
able computational cost. Although these
functionals were created for a specific
dataset and hence are not universal, they
exhibit promising transferability from the
gas to condensed phase and from small to
larger molecules within the same type of
chemical bonding.

One common feature of machine learning
approaches used in molecular simulations is
that since the electronic properties are
learned from quantum chemistry data, each
individual model is typically limited to
exploring these specific properties. Since all
the physical and chemical features of a
hypothetical compound can be derived by its
ground-state electronic wavefunction, one
way to circumvent this problem is to establish

a direct link between ML and quantum
chemistry with a ML model that predicts the
ground-state wavefunction, as discussed by
Schütt et al. in Unifying machine learning and
quantum chemistry with a deep neural net-
work for molecular wavefunctions4. The deep
learning approach introduced by these
authors provides full access to the electronic
properties needed for practical calculations of
reactive chemistry, such as charge popula-
tions, bond orders, and dipole and quadru-
pole moments, at a force-field-like efficiency.
Moreover, the approach may enable
property-driven chemical structure explora-
tion, suggesting promise towards inverse-
chemical design.

Although acknowledging the rapid evo-
lution of computational techniques is
exciting, this is not to suggest that tradi-
tional deep quantum chemistry expertise is
obsolete: on the contrary, standard high-
level theoretical approaches are still indis-
pensable for solving fundamental problems
in computational chemistry. A nice exam-
ple is shown by Liu et al.5 in The electronic
structure of benzene from a tiling of the
correlated 126-dimensional wavefunction.
Using high-level correlated wavefunction
theory, the authors revisit the electronic
structure of benzene, which has been a test
bed for competing theories throughout the
years. In alternative to the traditional
description of the electronic structure in
terms of molecular orbital (MO) theory,
the authors rely on a method to identify
and visualise wavefunction tiles, known as
dynamic Voronoi Metropolis sampling.
The use of such high-level theory enables
them to reveal the fundamental effect of
electron correlation in benzene and show
its manifestation in the preference for
staggered Kekulé structures, whereas the
interpretation of electronic structure in
terms of MO theory ignores that the
wavefunction is anti-symmetric upon
interchange of like-spins.

ML algorithms and natural language pro-
cessing approaches also offer new possibilities
in optimizing and automating reaction pro-
cedures. On-demand synthesis of small drugs
is of key interest in this area, where both the
forward synthesis (given a set of reactants,
predict the products) and the retrosynthesis
(given a target, predict reactant and reagents)
can strongly benefit from recent modelling
advances. Reaction predictions are usually
considered a machine translation problem
between simplified molecular-input line-entry
system (SMILES) strings (a text-based repre-
sentation) of reactants, reagents, and the
products. The ultimate goal is to implement
human-refined chemical recipe files to feed a
robotic platform, which then execute the
actual synthesis in an automated manner. A
challenge here revolves around the need to
extract chemical instructions from patents

and the scientific literature, where they are
reported in prose, and convert them to a
machine-readable format. In Automated
extraction of chemical synthesis actions from
experimental procedures, Vaucher et al.6 make
a first important step towards implementing
the automated execution of arbitrary reac-
tions with robotic systems by developing a
deep-learning model that performs the con-
version of chemical instructions for organic
synthesis reactions.

Although data-driven computational
approaches clearly hold promise towards
speeding up the discovery of new molecules
and materials, at the moment current
applications are only at the beginning of the
exploration phase. The reliability of any ML
approach depends on the availability of
extensive datasets for model training, the
bottleneck in cases where data is not
abundant or difficult to generate. Along
with the need for extensive curated data
sets of microscopic and macroscopic
molecular properties, future work should
target the development of more transferable
models with universal approximations that
can treat local chemical bonding and non-
local interactions on the same foot.

As an ultimate goal, the hope is to
develop ML approaches that can not only
provide predictive models but also inter-
pretable models to stimulate the formation
of novel scientific concepts and deeper
understanding of a given research field, as
Häse et al. suggest in their Perspective piece
Designing and understanding light-
harvesting devices with machine learning7.

We at Nature Communications are
eager to continue our contribution to this
exciting and fast-developing field. While
we acknowledge the importance of stan-
dard high-level computational frame-
works, we recognize the tremendous
potential of data-driven ML schemes
towards accelerating the discovery of
material systems with target properties.
We strongly believe that a synergistic
effort across disciplines—involving com-
putational chemists, computer scientists,
experimental chemists and material sci-
entists—will play a crucial role for
enhancing the rational design of new
molecules and materials.

References
1. Tkatchenko, A. Machine learning for chemical

discovery. Nat. Commun. 11, 4125 (2020).
2. Smith, J. S. et al. Approaching coupled cluster

accuracy with a general-purpose neural network
potential through transfer learning. Nat.
Commun. 10, 2903 (2019).

EDITORIAL NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18651-x

2 NATURE COMMUNICATIONS |         (2020) 11:4811 | https://doi.org/10.1038/s41467-020-18651-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


3. Dick, S. & Fernandez-Serra, M. Machine learning
accurate exchange and correlation functionals of the
electronic density. Nat. Commun. 11, 3509 (2020).

4. Schütt, K. T., Gastegger, M., Tkatchenko, A.,
Müller, K.-R. & Maurer, R. J. Unifying machine
learning and quantum chemistry with a deep
neural network for molecular wavefunctions. Nat.
Commun. 10, 5024 (2019).

5. Liu, Y., Kilby, P., Frankcombe, T. J. & Schmidt, T.
W. The electronic structure of benzene from a
tiling of the correlated 126-dimensional
wavefunction. Nat. Commun. 11, 1210 (2020).

6. Vaucher, A. C., Zipoli, F., Geluykens, J., Nair, V. H.,
Schwaller, P. & Laino, T. Automated extraction of
chemical synthesis actions from experimental
procedures. Nat. Commun. 11, 3601 (2020).

7. Häse, F., Roch, L. M., Friederich, P. & Aspuru-
Guzik, A. Designing and understanding light-
harvesting devices with machine learning. Nat.
Commun. 11, 4587 (2020).

Open Access This article is licensed
under a Creative Commons Attribution

4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made. The images or other third party material in this
article are included in the article’s Creative Commons
license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative
Commons license and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© Springer Nature Limited 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18651-x EDITORIAL

NATURE COMMUNICATIONS |         (2020) 11:4811 | https://doi.org/10.1038/s41467-020-18651-x | www.nature.com/naturecommunications 3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Computation sparks chemical discovery
	References




