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Soil moisture dominates dryness stress
on ecosystem production globally
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Sonia I. Seneviratne 1✉

Dryness stress can limit vegetation growth and is often characterized by low soil moisture

(SM) and high atmospheric water demand (vapor pressure deficit, VPD). However, the

relative role of SM and VPD in limiting ecosystem production remains debated and is difficult

to disentangle, as SM and VPD are coupled through land-atmosphere interactions, hindering

the ability to predict ecosystem responses to dryness. Here, we combine satellite observa-

tions of solar-induced fluorescence with estimates of SM and VPD and show that SM is the

dominant driver of dryness stress on ecosystem production across more than 70% of

vegetated land areas with valid data. Moreover, after accounting for SM-VPD coupling, VPD

effects on ecosystem production are much smaller across large areas. We also find that SM

stress is strongest in semi-arid ecosystems. Our results clarify a longstanding question and

open new avenues for improving models to allow a better management of drought risk.
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Low soil moisture (SM) supply and high atmospheric water
demand (vapor pressure deficit, VPD) are considered as the
two main drivers of dryness stress on vegetation, which can

cause large threats to agricultural production1 and drive wide-
spread tree mortality2. Recently, it has also been shown that the
capacity of land ecosystems to act as a future carbon sink is highly
dependent on the influence of SM on ecosystem carbon fluxes3.
Accurate understanding of dryness stress on ecosystems is
therefore critical to manage drought risks and to reduce uncer-
tainties in predicting future land carbon uptake and climate
change.

However, there is an ongoing debate on the relative role of SM
and VPD in determining the response of vegetation to dryness,
leading to divergent assessments of dryness stress on plant carbon
uptake in the scientific literature, as well as in their representation
in models. On the one hand, SM is the direct water pool of plants
and determines the amount of water that can be extracted by
plant roots. Thus, low precipitation or SM availability are most
commonly used to identify vegetation dryness stress and are well
documented to successfully capture the consequences of dryness
on vegetation productivity4–6, also resulting in feedbacks of
plants’ activity to climate7–9. On the other hand, high VPD may
induce plants to close stomata to minimize water loss at the leaf
scale10, and is expected to constrain plant photosynthesis in
ecosystems. Some recent studies emphasize the importance of
VPD and suggest that it may have stronger effects than SM in
determining ecosystem water and carbon fluxes11,12. However,
the relative role of low SM and high VPD in limiting vegetation
productivity at the ecosystem scale remain unclear. As a con-
sequence, in combination with the uncertainty in physiological
process understanding, dryness stress on photosynthesis is either
represented as a function of SM only13,14, VPD only15–17, or
both18 in terrestrial ecosystem models (TEMs) and satellite
models. For instance, the TEM JSBACH does not incorporate a
stomatal response to VPD19, because it is uncertain if the SM-
VPD correlation will cause a double counting of the dryness
sensitivity. In contrast, in the TEM G’Day, VPD can limit plant
photosynthesis by causing stomatal closure, and SM can constrain
plant photosynthesis directly19.

Here, with simultaneous use of several independent satellite
observations of solar-induced chlorophyll fluorescence (SIF) and
climate data sets, we first decouple the strong correlations
between SM and VPD and then disentangle their respective
effects in limiting ecosystem production globally. Our results
demonstrate that SM has a dominant role in determining eco-
system production dryness stress over most land vegetated areas
compared with that of VPD.

Results and discussion
Coupling of SM and VPD confounds ecosystem dryness stress.
The difficulty to disentangle the respective effects of SM and VPD
stems from the fact that SM and VPD are strongly coupled
through land–atmosphere interactions7,20. In addition, field
experiments that manipulate atmospheric humidity and tem-
perature at the ecosystem scale are lacking21. Given the strong
SM-VPD coupling (Fig. 1c), e.g., on the yearly scale, both lower
SM and higher VPD are associated with lower ecosystem gross
primary production (GPP), indicated by SIF (Fig. 1a, b). This
underlies the use of either SM or VPD alone as proxy for dryness
stress on ecosystem production in many current models. Note a
global spatially contiguous SIF data set was mainly used in this
study, which was generated by using the machine-learning algo-
rithm to train SIF observations from Orbiting Carbon
Observatory-2 (OCO-2)22. We display the yearly scale because it
is typically used to represent the condition of strong SM-VPD

coupling globally11, and the study time period mainly spans from
2001 to 2016. However, as SM and VPD are strongly coupled, it is
possible that the correlation between SM and SIF is a byproduct
of the correlation between VPD and SIF, or vice versa. As a
consequence of SM-VPD coupling, the correlations of yearly SM
and VPD with SIF is very similar globally (Fig. 1d). Consequently,
the correlation between SM and VPD constitutes a confounding
factor that is often overlooked when assessing the role of SM and
VPD in determining the impact of dryness stress on ecosystem
production. There are still low correlations between SIF and SM
or VPD in the northern high latitudes or tropical regions, which
suggests possible temperature or radiation effects and requires
further investigation.

Decoupling of SM and VPD globally. At yearly scale, there is a
strong negative correlation between SM and VPD, indicating that
low SM is always accompanied by high VPD (Fig. 1c), which is
consistent with previous findings7,20. From yearly to monthly,
weekly, and daily scale, the correlations between SM and VPD are
generally decreasing (Fig. 2d), but remain large across extensive
areas, such as central South America, Sub-Saharan Africa, India,
and Southeast Asia (Fig. 2a and Supplementary Fig. 1). However,
when binning the data into 10 bins according to percentiles of
either SM or VPD per pixel, we find that the correlation coeffi-
cient between SM and VPD in each bin becomes approximately
zero (Fig. 2b–d and Supplementary Figs. 2 and 3). This shows
that SM and VPD are generally decoupled at daily scale in both
SM and VPD bins.

Disentangling the relative role of SM of VPD. We now disen-
tangle the respective effects of SM and VPD in limiting ecosystem
production by exploiting the fact that SM and VPD are decoupled
in binned daily SM or VPD data (Fig. 2). SM and VPD are also
largely decoupled in 4-day bins, which is the temporal resolution
of the mainly used SIF data set (Supplementary Figs. 4 and 5). The
analysis is guided by the assumption that if SM dominates dryness
stress, low SM will limit ecosystem production regardless of VPD
variations (Supplementary Fig. 6a, c). In the same way, if VPD
dominates dryness stress, high VPD will limit ecosystem pro-
duction regardless of SM variations (Supplementary Fig. 6b, d).

To illustrate this further, we select an example pixel located in
Mali (West Africa). Without decoupling SM and VPD, it is
difficult to conclude whether the decrease in SIF is caused by low
SM, high VPD, or both in conjunction (Fig. 3a, b). However,
when looking at the variation of SIF across VPD gradients in SM
bins (without SM-VPD coupling), high VPD does not reduce SIF
but even increase SIF a bit under moderate SM conditions
(Fig. 3c). In contrast, low SM reduces SIF noticeably in VPD bins
(Fig. 3d). This shows that high VPD does not limit SIF in the
absence of the SM-VPD coupling at the example pixel, whereas
low SM can still limit SIF. In other words, the apparent VPD
limitation on SIF is largely the byproduct of SM-VPD coupling.
The respective effects of SM and VPD on SIF is also illustrated in
Fig. 3e. The changes in SIF from low VPD to high VPD without
SM-VPD coupling (termed ΔSIF(VPD|SM)) can quantify the
VPD stress on SIF. Likewise, changes in SIF from high SM to low
SM without SM-VPD coupling (termed ΔSIF(SM|VPD)) quantify
the SM stress on SIF. The effect of SM and VPD on SIF is
estimated using two approaches: (i) SIF in the maximum VPD
bin minus SIF in the minimum VPD bin or SIF in the minimum
SM bin minus SIF in the maximum SM bin; (ii) using linear
regression to derive changes in SIF caused by high VPD or low
SM. The two approaches lead to similar results (Methods and
Supplementary Fig. 16). As shown in Fig. 3f, the SM effect is
strong at the example location (ΔSIF(SM|VPD)=−0.17 mW
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m−2 nm−2 sr−1), in contrast to the VPD effect (ΔSIF(VPD|
SM)=−0.03 mWm−2 nm−2 sr−1). Thus, the comparison of
(ΔSIF(SM|VPD) and ΔSIF(VPD|SM) enables the disentangling
of their relative role in governing dryness stress.

Next, we examine the respective SM and VPD effects on SIF
globally. To ensure comparability in space, the SIF time series at
each pixel are normalized by the average SIF exceeding the 90th

percentile. Temperature and radiation can also limit ecosystem
production, therefore, we have filtered out days when other
meteorological drivers were likely to be more important than SM
or VPD in limiting ecosystem carbon and water fluxes
throughout the analyses, following previous studies12,23. We find
that ΔSIF(SM|VPD) is negative across most vegetated land areas,
robustly indicating the limiting role of low SM to SIF (Fig. 4a, b)
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Fig. 1 Strong coupling of soil moisture and vapor pressure deficit confounds ecosystem dryness stress. a–c Spatial distribution of Pearson’s correlation
coefficient between solar-induced chlorophyll fluorescence (SIF) and soil moisture (SM) (r(SIF, SM)), SIF and vapor pressure deficit (VPD) (r(SIF, VPD)),
and SM and VPD (r(SM, VPD)), at the yearly scale. Regions with sparse vegetation and regions without valid data are masked in gray. d Relationship
between yearly r(SIF, VPD) and yearly r(SIF,SM) across land vegetated areas. Color shows the relative density of data points, with higher density in black
and lower density in yellow.
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Fig. 2 Decoupling of soil moisture and vapor pressure deficit. a–c Spatial distribution of Pearson’s correlation coefficient between soil moisture (SM) and
vapor pressure deficit (VPD) at daily scale, averaged over daily SM bins, and averaged over daily VPD. Regions with sparse vegetation and regions without
valid data are masked in gray. d Violin plots of correlations between SM and VPD from yearly to daily bins across land vegetated areas. White dots indicate
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and consistent with plant physiological understanding and
previous studies4,7. The units refer to the fractions relative to
average SIF exceeding the 90th percentile in each grid cell. Large
ΔSIF(SM|VPD) are identified in mid-latitudes, including south-
ern North America, central Eurasia, southern Africa, and
Australia. In contrast, ΔSIF(VPD|SM) is small and close to 0
across large areas, but it was larger than ΔSIF(SM|VPD) in
tropical Africa surrounding the equator (Fig. 4c, d). Globally, a
change from the wettest SM to the driest SM under constant VPD
reduces SIF by up to 14.9% on average, whereas a change in VPD
from lowest to highest quantiles under constant SM has little
effect on SIF (−3.8%) on average. Locally, the areas where the
strength of SM effects on SIF (|ΔSIF(SM|VPD)|) exceeds that of
VPD effects (|ΔSIF(VPD|SM)|) are widespread, which is also
visible along the latitudinal gradient (Fig. 4e, f). In total, |ΔSIF
(SM|VPD)| is larger than |ΔSIF(VPD|SM)| across 71.3% of land
vegetated areas with valid data, by contrast, VPD is more

important than SM in 26.7% of corresponding areas. Further-
more, our findings suggest that many previous estimates of the
role of VPD on ecosystem production are likely exaggerated16,24

as they did not account for the strong SM-VPD coupling as a
confounding factor. In boreal and tropical regions, both SM and
VPD have little effect on SIF, which is controlled by radiation and
temperature7,25. The spatial patterns of ΔSIF(SM|VPD)—ΔSIF
(VPD|SM) are robust to the choice of the particular forcing data
set (Supplementary Figs. 7–11). However, when using the
GOME-2 SIF and SCIAMACHY SIF with the local overpass
time at 9:30 am and 10:00 am, the VPD effects are weaker than
that in CSIF (reducing SIF by 0.1% and 0.02% on average
globally), including most of Africa (excluding the Sahara) as well
as large areas of central South America, southern Asia, and
Australia (Supplementary Figs. 9–11). This raise a caveat that
using SIF retrieved in the morning would underestimate the
VPD effects. To further test the robustness of our result, we
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standardized the SIF by photosynthetically active radiation (PAR)
to remove possible radiation effects26, limited the data to a
narrow temperature range to remove possible temperature effects
and aggregated data to a coarser time resolution or using 20
percentile bins, yielding similar results (Supplementary Figs. 12–
15). Thus, we demonstrate that SM is the dominant factor in
driving the response of ecosystem production to dryness at the
ecosystem scale across most land vegetated areas, except for
tropical and boreal areas.

Different from a recent global assessment of SM stress on
ecosystem production that estimates the relation between SM
stress and background climate from a small sample of flux sites18,
our results build on data with global coverage and hence provide

spatially explicit information of SM stress. Further converting the
SIF decrease to the actual carbon loss would largely help quantify
changes in terrestrial carbon fluxes under drought. Furthermore,
our conclusions contradict many laboratory experiments that
show strong VPD effects on stomatal conductance at the leaf
scale27,28. This again indicates that the stomatal sensitivity to VPD
do not definitely determine the same VPD response of plant water
and carbon fluxes at the ecosystem scale29,30, but some ecosystem
scale measurements reveal that stomatal sensitivity to VPD can
matter in some cases11,12. Key processes driving the weak plant
photosynthesis response to VPD at the ecosystem scale need to be
addressed in future work, such as the role of ecosystem water use
efficiency, water storage and hydraulic strategies29.
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Dependence of SM stress on climate and vegetation gradients.
We find that SM limitation effects (ΔSIF(SM|VPD) are largest in
semi-arid ecosystems (Fig. 5a), including shrubland, grassland, and
savannah ecosystems. These are the ecosystems that are the main
drivers of the interannual variability in global terrestrial CO2

flux31,32. In contrast, VPD effects are much weaker in these regions
(Fig. 4c). This suggests that SM could be more important than VPD
in driving interannual variability of global terrestrial carbon uptake.
As SM stress is strongest in drylands, the projected expansion of
drylands33 is likely to increase the influence of SM on the future
global carbon cycle. In addition, we find that regions with lower
tree fraction exhibit a larger response to SM stress globally (Fig. 5b).
This is in line with recent findings34, and further verifies the
robustness of our results. Our findings also highlights the differ-
ential dryness response of ecosystems along a tree cover gradient.

The representation of dryness stress on plant photosynthetic
CO2 assimilation can differ largely between TEMs and is
considered one of the largest uncertainties in predicting future
land carbon uptake and climate35–37. Their representations in
TEMs often uses an empirical function that only varies by plant
functional type (PFT)38, which have generally not been validated
against observational empirical data. Therefore, we explored the
observed standardized sensitivity of SIF to SM. We find that the
sensitivity of ecosystem production to changes in SM can vary
largely even in the same PFT with strong observed dryness effects
(Fig. 5c). This is consistent with recent findings that the
grassland’s sensitivity to dryness can vary greatly39. The
differences of dryness response in the same PFT are, e.g., related
to plant species, plant height and plant hydraulic processes, such
as plasticity variations in xylem and mesophyll conductance,
embolism resistance, or water storage40. At present, evaluating
and incorporating more plant hydraulic processes into the next
generation of terrestrial ecosystems is on the way41. Our results of
dryness effects on ecosystem production thus enables an
evaluation of further TEM evolution.

In summary, we provide global results of SM and VPD stress
on SIF and demonstrate that SM, rather than VPD, is the
dominant driver leading to drought limitation on vegetation
productivity at the ecosystem level across most vegetated land
areas. VPD stress on ecosystem production is almost lost across
large areas without SM-VPD coupling. We thus make the case for
revisiting the role of VPD in previous studies that neglected the
strong SM-VPD coupling. Furthermore, models that do not
correctly disentangle the respective VPD and SM limitations
cannot adequately predict the dryness stress on ecosystems and
associated rough risks to human well-being. The next challenge is
to incorporate the observations to constrain the representation of
dryness stress on plants in models, which would also reduce
uncertainties in the projection of terrestrial CO2 fluxes and
associated climate projections.

Methods
SIF. Chlorophyll fluorescence is the long-wave radiation re-emitted by chlorophyll
during photosynthesis. Solar-induced fluorescence (SIF) is therefore mechan-
istically linked to photosynthesis and is shown to have a near-linear relationship
with ecosystem GPP at the ecosystem scale42,43. SIF is therefore used as the
indicator of GPP in this study. SIF retrieved from three independent missions are
used, including OCO‐2 (Orbiting Carbon Observatory‐2), Global Ozone Mon-
itoring Experiment (GOME-2), and SCIAMACHY (Scanning Imaging Absorption
SpectroMeter for Atmospheric Chartography) missions. For OCO-2, the equatorial
overpass time is 1:30 pm. Because OCO-2’s sampling strategy causes vast spatial
gaps between orbits and limits the sampling frequency, the number of observations
is not sufficient for our analyses (Supplementary Fig. 17). Therefore, we used a
recent spatially continuous OCO-2 SIF data set (CSIF) that fills the spatial gaps by
using MODIS surface reflectance and neural networks22. The resulting OCO-2
CSIF is estimated at 740 nm and spans from 2000 to 2016, with a spatial resolution
of 0.5° × 0.5°. Instantaneous CSIF is demonstrated to well capture the spatial and
temporal patterns and variability of original OCO-2 SIF accurately. Independent
comparisons with GPP estimates from 40 flux towers demonstrate strong con-
sistency, confirming the effectiveness of CSIF to indicate GPP22. However, some
uncertainties of CSIF still need to be noted. MODIS surface reflectance data
includes some morning observations, possibly bring some biases to instantaneous
CSIF. The atmospheric attenuation of SIF signal in cloudy days and canopy
structure changes are not well considered and require further improvements22. For
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GOME-2, the equatorial overpass time is 9:30 am, SIF is estimated at 740 nm and
from two approaches: Köhler et al.44, (referring as GOME-2 GFZ) and Joiner
et al.45, with version 28 (referring as GOME-2 N28). The resulting daily GOME-2
SIF spans from 2007 to 2015, with a spatial resolution of 0.5° × 0.5°. For SCIA-
MACHY, the equatorial overpass time is 10:00 am, SIF is estimated at 740 nm and
from the approach of Köhler et al.44. The resulting daily SCIAMACHY SIF spans
from 2002 to 2012, with a spatial resolution of 1.5° × 1.5°. Instantaneous SIF can
account for the possible impacts from diurnal variations, as morning photo-
synthesis could be not sensitive to dryness46. Daily mean SIF is demonstrated to be
more strongly correlated with GPP than instantaneous SIF42. The daily mean SIF
was converted from the instantaneous SIF at the local overpass time following the
method documented in previous studies47,48. More details of SIF retrieval can be
found in the above references, these data sets have been widely used3,39,49. The
clear-sky instantaneous CSIF was mainly used due to its validated high quality22.

SM. Because of the lack of global in-situ SM observations, we used daily SM data
from reanalysis and satellite retrievals. The reanalysis products are ERA-Interim50

and Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA-2)51. The satellite product is the European Space Agency’s Climate
Change Initiative (ESA CCI), and we used the combined SM data set (v04.4)52. For
ERA-Interim, with a spatial resolution of ~80 km, the SM content of the soil layers
between 0 m and 1m is summed up (weighted by the thickness of each layer). For
MERRA-2, with a spatial resolution of 0.625° × 0.5°, the root-zone SM content is
provided and thus used. For ESA CCI, with a spatial resolution of 0.25°, satellites
can only sense the thin (0.5–5 cm) surface soil layer. ERA-Interim SM was used in
the main text. All SM data sets were aggregated to a spatial resolution of 0.5°.

Precipitation, temperature, and radiation. Daily precipitation and near-surface
temperature data were obtained from ERA-Interim or MERRA-2. Daily total
surface PAR in all sky conditions at a spatial resolution of 1° was obtained from
NASA’s Clouds and Earth’s Radiant Energy System (CERES), with the version of
CERES_SYN1deg_Ed4A. All data sets were aggregated to a spatial resolution
of 0.5°.

VPD. VPD was calculated as the difference between saturated water vapor pressure,
determined by near-surface temperature, and actual water vapor pressure, deter-
mined by saturated water vapor pressure and relative humidity. Temperature and
relative humidity or specific humidity were obtained from ERA-Interim or
MERRA-2. ERA-Interim VPD was used in the main text.

Aridity index. The aridity index is defined as the ratio of precipitation to potential
evapotranspiration. We used the precipitation and potential evapotranspiration
data from the Climate Research Unit v4.01, from 1982 to 201553, with a spatial
resolution of 0.5°. The classification is provided in Supplementary Table 154.

Tree cover. Global tree cover was inferred from the global forest change (GFC)
v1.6 data set, which was produced from Landsat ETM+ time series55. Tree cover
in GFC was defined as the areal coverage with vegetation canopy height larger than
5 m. The global forest cover in 2009 was used and aggregated from 1 arc-second
resolution to 0.5°.

Vegetation distribution. MODIS land cover with the classification scheme of the
International Geosphere-Biosphere Programme (IGBP) was used. The MODIS
IGBP land cover data was obtained from the MCD12Q1 Land Cover Science Data
product at a spatial resolution of 0.05°. Moreover, owing to the obvious differences
in climate conditions at high and low latitudes, shrubland and woody savanna
distributed north and south of 45°N were divided into two categories (Southern
and Northern)31. Vegetated areas are based on the MODIS land cover data. The
PFT was aggregated to a spatial resolution of 0.5° using a majority filter.

Access information of all data sets is provided in Supplementary Table 2.

Analysis. To investigate the response of vegetation to dryness, we focus on the
growing season and days when the SM and VPD effects were most likely to control
ecosystem fluxes and screen out days when other meteorological drivers were likely
to have a larger influence on fluxes. Following previous studies12,23, for each pixel,
we restrict our analyses to the days in which: (i) the daily average temperature
>15 °C; (ii) sufficient evaporative demand existed to drive water fluxes, constrained
as daily average VPD > 0.5 kPa; (iii) high solar radiation, constrained as daily
average photosynthetic photon flux density >500 µmol m−2 s−1.

Based on the data in the filtered days, for each pixel, we determined the
threshold values of 10th, 20th, …, and 90th percentile of SM and VPD, which will
then be used to bin the data. Data of all variables (SIF, SM, VPD, and etc.) are
sorted into 10 bins according to the 0–10th, 10–20th, …, 80–90th, and 90–100th
percentiles of SM or VPD. This binning procedure does not change the temporal
match between data (Supplementary Fig. 18). Because SM and VPD are largely
decoupled in each SM bin or VPD bin (Fig. 2 and Supplementary Figs. 2–5), we can

disentangle the respective effects of SM and VPD on SIF. For better comparability
in space, SIF time series is normalized by the average SIF exceeding 90th percentile
per pixel. Next, as the example shown in Fig. 3 in the main text, within each SM bin
(i= 1, 2, …, 10), the data are further sorted according to VPD, and there are ni,min,
…, ni,max VPD bins. In particular, ni,min to ni,max is determined by the minimum,
maximum VPD value at each SM bin and predetermined VPD threshold values (as
illustrated in Fig. 3c, e). In the same way, within each VPD bin (j= 1, 2, …, 10),
there are nj,min, …, nj,max SM bins (as illustrated in Fig. 3d, e). Only bins where >10
data points are available are used in the further analysis. Another example is in
Brazil (Supplementary Fig. 19).

The binned averages were used to quantify the limitations of low SM and high
VPD to SIF. VPD limitation on SIF without SM-VPD coupling (termed ΔSIF
(VPD|SM)) was derived from the changes in SIF from low VPD to high VPD at
each SM bin (as illustrated by cyan arrows in Fig. 3e). Here we applied two
approaches:

(i) we calculate the difference between SIF at the highest VPD bin and lowest
VPD bin in each SM bin to derive the ΔSIF(VPD|SM), as follows:

ΔSIFðVPDjSMÞ ¼ 1
I

XI

i¼1

SIFi;ni;max
� SIFi;ni;min

ð1Þ

where I is the number of populated SM bins, i is the specific SM bin number,
ni,max and ni,min is the maximum and minimum VPD bin number at SM bin
i. Equally, SM limitation on SIF without SM-VPD coupling (termed ΔSIF
(SM|VPD)) was derived from the changes in SIF from high SM to low SM at
each VPD bin (as illustrated by orange arrows in Fig. 3e), as follows:

ΔSIFðSMjVPDÞ ¼ 1
J

XJ

j¼1

SIFmj;min ;j
� SIFmj;max ;j ð2Þ

where J is the number of populated VPD bins, j is the specific VPD bin
number, mj,min and mj,max is the minimum and maximum SM bin number
at the VPD bin j. Limited by the small number of valid values in some pixels,
I and J can be <10. The response of plant photosynthesis to SM and VPD
can be non-linear3,10, this approach can overcome this limitation. A
logarithmic function for VPD is often used to account for the non-linear
stomatal response to VPD10, but the choice of VPD and ln(VPD) would not
affect our results. This is because our approach binned data according to
quantiles; the data would fall into in the same VPD bins regardless of the
choice of VPD and ln(VPD).

(ii) based on binned averages, we fitted a linear regression between SIF and
VPD in each SM bin. Consequently, the changes in SIF from lowest VPD
bin to highest VPD bin from fitted linear functions were assigned as ΔSIF
(VPD|SM). Likewise, SM stress in SIF (ΔSIF(SM|VPD)) was also quantified.
This approach can reduce the potential biases caused by extreme values with
low data quality in approach (i), but cannot account for non-linear relations.
These two approaches lead to similar results (Supplementary Fig. 16),
underlining the robustness of our conclusions. We applied approach (i) in
the main text. In addition, the change in SIF per change in 0.1 m3/m−3 SM
was defined as the sensitivity of SIF to SM, i.e., δSIFδSM jVPD(1/0.1 m3/m−3). This
procedure removes the changes in SIF caused by SM range and ensures that
the sensitivity of SIF to SM are also comparable in space. Note that we only
account for the relatively shallow soil water, whereas deep SM or other types
of water storage (e.g., groundwater) may be also relevant for vegetation
growth for deep-rooted plants56, possibly leading to the underestimation of
SM effects.

Data availability
Data supporting the conclusions of this study are properly cited and publicly available.
Details are provided in Supplementary Table 2.

Code availability
The data in this study were analyzed with publicly available tool packages in MATLAB
and the figures were produced with MATLAB. All the scripts are available upon requests.
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