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Genetic circuit characterization by inferring RNA
polymerase movement and ribosome usage
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To perform their computational function, genetic circuits change states through a symphony

of genetic parts that turn regulator expression on and off. Debugging is frustrated by an

inability to characterize parts in the context of the circuit and identify the origins of failures.

Here, we take snapshots of a large genetic circuit in different states: RNA-seq is used to

visualize circuit function as a changing pattern of RNA polymerase (RNAP) flux along the

DNA. Together with ribosome profiling, all 54 genetic parts (promoters, ribozymes, RBSs,

terminators) are parameterized and used to inform a mathematical model that can predict

circuit performance, dynamics, and robustness. The circuit behaves as designed; however, it

is riddled with genetic errors, including cryptic sense/antisense promoters and translation,

attenuation, incorrect start codons, and a failed gate. While not impacting the expected

Boolean logic, they reduce the prediction accuracy and could lead to failures when the parts

are used in other designs. Finally, the cellular power (RNAP and ribosome usage) required to

maintain a circuit state is calculated. This work demonstrates the use of a small number of

measurements to fully parameterize a regulatory circuit and quantify its impact on host.
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Debugging a genetic system is analogous to fixing a watch
using only the displayed time, without being able to see the
internal mechanisms1. Genetic circuits are particularly

difficult, as their operation requires coordination between many
regulatory parts2. Genome-scale technologies are illuminating the
inner workings of the cell, including transcription, translation, and
chemical composition3–6. Computational tools are needed to
extract parameters to inform models and to scan for errant features
that can be fixed by making mutations or selecting different
parts7,8. These methods need to scale to larger circuits, corre-
sponding to more parameters, without requiring more experiments.

NOR gates have two input promoters, a repressor that inverts
their signal, and an output promoter9,10. Sets of repressors have
been used to build libraries of NOR gates that can be connected to
build circuits11–16. The flux of RNA polymerase JRNAP on DNA is
a critical measurement for genetic circuit construction17. The
response function of a gate captures how the output JRNAP
changes as a function of the input JRNAP. The units of JRNAP have
been reported in relative promoter units (RPUs) by comparing
the strength of a promoter to that of a reference17, and single-
molecule studies have concluded 1 RPU= 0.019 RNAP/s per
promoter18. The response functions can be used to predict how
two gates will connect, which is the basis for design automation
software (e.g., Cello)14,19.

A circuit consists of a DNA sequence containing a pattern of
promoters assigned to each gene. The circuit responds to stimuli
through genetic sensors that convert an environmental signal, such
as the presence of a small molecule, to a promoter activity (JRNAP).
The circuit responds to different stimuli by changing state, repre-
sented by a different pattern of regulator expression and JRNAP
emanating from the circuit’s promoters. Therefore, the circuit
requires continuous cellular power to store its state19–23. Main-
taining an RNAP flux requires cellular energy and metabolites24,
and gates require a futile cycle of regulator expression and degra-
dation. Circuit states that place a larger burden on the cell take
these resources away from cellular maintenance, thus decreasing
growth and incentivizing evolutionary breakage21,25–34.

Using RNA sequencing (RNA-seq), JRNAP can be simulta-
neously calculated for all of the promoters in a genetic circuit8,35.
RNA-seq is performed by isolating RNA, converting it to cDNA,
deep sequencing the pool, and then mapping the reads to the
genome to create a transcript profile36. The level of gene
expression can be calculated as the average profile height over its
length, reported as FPKM (fragments per kilobase of transcript
per million mapped reads). FPKM is an estimate of mRNA
transcript copy number and has been converted to absolute units
using RNA spike-in standards7,37,38. When there is a sharp
increase or decrease in RNA-seq transcription profile, the mag-
nitude can be used to infer the strength of a promoter or ter-
minator, respectively39–47. When the average cDNA fragment
size is large (100–500 nt)48,49, this complicates the calculation
because it obscures nearby promoters and requires a correction
factor at the transcript ends8. To address this, we use a technique
that uses short RNA fragments (<50 nucleotide) and single-end
mode sequencing50.

Cellular translation can be quantified using ribosome profiling,
which takes global snapshot of ribosomes on mRNA tran-
scripts51,52. Ribosome profiling can be used to calculate transla-
tional parts, notably ribosome binding sites (RBSs), and to measure
translation start sites, pause sites, coupling in operons, and cryptic
translation7,53–59. It can be performed simultaneously with RNA-
seq, where the cellular RNA content is collected, digested, and the
ribosome-protected RNA is fractionated, converted to cDNA, and
sequenced54,55. A profile is built by mapping ribosome P-sites to
the DNA sequence, the height of which is the number of ribosomes
at this position (the ribosome occupancy)54,55. The average profile

height over the gene length (the ribosome density, RD), serves as
an estimate for protein expression. It can also be used to calculate
the steady-state protein abundance, which can be used to estimate
the proteome of the cell54,55.

In this manuscript, all of the parts in a genetic circuit are
characterized by combining data from RNA-seq and ribosome
profiling. Design automation (Cello) is used to build a 3-input
logic gate consisting of seven NOT/NOR gates14. The response of
the circuit is as predicted across all combinations of inputs
(states). The RNA-seq data are used to visualize the changes in
the pattern of JRNAP that occur as the circuit is transitioned
between states. Methods are developed to extract the strengths of
all genetic parts, including that of promoters, ribozymes, RBSs,
and terminators. The response functions of all of the gates in the
context of the circuit can be calculated and compared directly to
measurements in genetic isolation. Despite functioning as
expected, the circuit has many internal errors, including cryptic
promoters, transcription attenuation, alternative start sites, failed
parts, off-target interactions, and a gate that fails completely.
These errors are found to not propagate to circuit failure due to
the robustness of this circuit topology to the observed parameter
variation and failures in individual gates. In addition, the number
of RNAPs and ribosomes used to run the circuit are calculated
and it is found to require up to 5% of the cell’s transcriptional
and translational resources. These techniques offer an unprece-
dented view into the workings of the circuit, thus empowering
future design efforts to increase the scale and precision of artificial
regulatory networks in cells.

Results
RNAP flux and ribosome usage patterns across the circuit. We
sought to study a circuit that works well; that is, behaves as
designed and does not lead to an obvious cellular phenotype. To
this end, a Cello-designed E. coli circuit was selected that encodes
a 3-input logic operation as one of the top-performing circuits
from a set of 60 (Fig. 1a)14. It consists of sensors that respond to
IPTG/aTc/Ara whose outputs are integrated by seven layered
NOT/NOR gates that ultimately control the expression of yellow
fluorescent protein (YFP) (Fig. 1b). The 6840 bp circuit is carried
on a p15a plasmid and a second pSC101 plasmid contains the
output promoter driving yfp (Supplementary Fig. 1). For each
permutation of input signal, the YFP response is predicted for a
population of cells using a mathematical model that combines the
empirical response functions of the gates measured in isolation
(Fig. 1c). Grossly, the circuit functions as predicted across all
states in terms of when it is on or off, but there are quantitative
differences (notably, the +/−/− state). Further, we did not
observe large growth defects or genetic instability.

For each circuit state, cells were prepared for RNA-seq and
ribosome profiling (Methods). Cultures were grown and the RNA
was harvested in exponential phase. The end-enriching method is
used to save short RNA fragments for sequencing, resulting in
library sizes of 10–45 nucleotides50. This was found to be effective
at resolving promoters in series, reducing the conflating effect of
ribozymes, and lessening transcript end effects (Supplementary
Figs. 2 and 3). Problematically, this method preserves tRNAs,
which comprise up to 65% of the recovered RNA and can
introduce a mapping bias against other genomic regions; thus,
these reads were manually removed before calculating the
transcript levels (FPKM) of the plasmids or genome (Supple-
mentary Fig. 4) (Methods).

The transcript profile can be used to infer the change in RNAP
flux over the circuit DNA. Our approach simplifies promoter
activity to the production of a continuous source of RNAPs,
essentially time- and population-averaging the experimentally
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Fig. 1 Genetic circuit characterization using RNA-seq and ribosome profiling. a Wiring diagram of the model circuit is shown. The colors correspond to
the repressors used for each gate. b Genetic parts for the genetic circuit (left) and output promoter (right), carried on different plasmids (Supplementary
Fig. 1 and Supplementary Table 5). c The measured response of the circuit output to different combinations of inputs (1 mM IPTG, 2 ng/ml (4.32 nM) aTc,
and 5mM Ara). The black distributions are experimental measurements (Methods) compared to Cello predictions (blue if ON, red if OFF). d The RNAP
flux across the circuit is shown (blue) with the ribosome occupancies (black). Each circuit state is shown, marked by the diagram (thick black lines indicate
corresponding wires that are ON; gates are colored if that repressor is being expressed). The conversions of RNA-seq and ribosome profiling data to
absolute units are described in the Methods. Source data are provided as a Source Data file.
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observed RNAP bursts60–62. At steady-state, the flux Ji at each
nucleotide i is related to the height of the transcript profile Mi by
Ji= γMi, where γ is the RNA degradation rate. For the circuit, we
assume a constant γ= 0.0067 s−1 for all mRNAs, which is
reasonable given that they all encode single repressor genes and
are approximately the same length with similar 5′- and 3′-UTR
(untranslated region) sequences8,63. The profile is often reported
in arbitrary units; however, we can convert it to absolute units in
two steps (Methods). First, because we know the promoter
activities of the circuit output promoter (PBM3RI) in RPU (Fig. 1c)
we can convert FPKM to RPU (Supplementary Fig. 5). Next, we
empirically measured the conversion factor from RPU to RNAP/s
for the reference promoter17 obtained from single-molecule
experiments18. This flux can be reported in units of JRNAP, which
is the total flux across all copies of the promoter in the cell, or
�JRNAP which is normalized by the plasmid copy number to give
the per promoter flux. The former is required for the response
function and the calculations for circuit design, while the latter
better captures the flux on a single strand of DNA.

The fluxes on the circuit DNA are shown in Fig. 1d for each
state. It is possible to experimentally visualize the signal carrier of
a transcriptional circuit as it performs the computation,
analogous to watching the flow of electrons in an electronic
circuit. The punctate nature of the synthetic circuit can be seen,
where repressor genes are strongly turned on and off under the
different conditions. This is due to the use of strong promoters
and terminators that are spatially colocated. Thus, the appearance
of the profile is quite different than that observed for the natural
regulatory networks encoded in the genome.

The ribosomes can be visualized in each state of the circuit
using ribosome profiling data (Methods). This shows the changes
in the ribosome usage for each gate in their on and off states
(Fig. 1d). The magnitudes of the bars indicate the number of
ribosomes that occur at that position in arbitrary units. Similar to
RNA-seq profiles, we can convert these profiles to absolute units.
First, these occupancies were normalized by the sum of the
occupancies at all positions in the circuit and genome, resulting in
a profile that represents the fraction of total active ribosomes in
the cell that are recruited to each DNA position. To convert this
fraction profile to absolute units, we need an estimate of the total
number of active ribosomes in the cell, which has been previously
measured for E. coli and is a function of cell growth rate64. In our
experiments, this corresponds to 20,000 ribosomes that are
actively translating mRNAs. The ribosome occupancy pattern
across the circuit reflects the one obtained through RNA-seq, as
expected (Fig. 1d). However, there is variability in the ribosome
usage for each repressor gene, which has implications in the gate
function and the cellular resources required to hold its state.

The FPKM and RD measurements for the circuit genes are
much higher than for those in the genome (Supplementary
Fig. 6). The medians are 220-fold and 140-fold higher,
respectively. In addition, we analyzed whether the higher
estimated protein expression is dominated by higher transcript
levels or higher translation per transcript. Van Oudenaarden and
co-workers observed that there is more protein expression noise
when the transcript level is low and the translation rate is high65.
Compared to genomic gene expression, the RD/FPKM levels of
circuit proteins are lower, indicating a bias towards lower cell-to-
cell variation. Indeed, this was a factor in the selection of these
repressors and the design of the gates (Supplementary Fig. 6)14,16.

Errors in transcription and translation in the circuit DNA. The
circuit DNA is entirely composed of synthetic parts: promoters
are based on well-defined scaffolds, the genes have been codon
optimized, the 5′-UTRs contain ribozymes and RBSs that were

designed computationally. Still, we observe many examples of
transcription and translation differing from that expected
(Fig. 2a).

Cryptic promoters can adversely impact circuit function66,67.
They are identified by calculating the ratio between RNAP flux
profiles at neighboring positions JRNAP(i+ 1)/JRNAP(i) to which a
threshold is applied to mark a transcription start site (TSS)
(Fig. 2b) (Methods). Using this method, all of the TSSs are
identified for the synthetic gate promoters, each of which only has
one. However, the location of this TSS is upstream of the
annotated position for PSrpR, PTac, PBAD,1, and PBAD,2 (Supple-
mentary Fig. 7). The srpR and amtR genes have strong internal
promoters in the sense direction. Remarkably, antisense promo-
ters occur in 6/7 of the repressor genes with some stronger than
the forward promoters of the gates. There is also a strong
antisense promoter in the middle of both PBAD,1 and PBAD,2
promoters that corresponds to the known antisense promoter
(Pc) in PBAD68. Our method identifies the TSS of this promoter
occurring at the 5′-end of the O1L operator. The identified sense
and antisense promoters correspond with DNA sequences that
are similar to the consensus σ70 binding motif (Supplementary
Fig. 8).

All of the gates contain a ribozyme insulator to normalize the
5′-UTR of the transcript. They are all based on variants of the
RiboJ insulator, which consists of a hammerhead ribozyme and a
23 nt hairpin added to stabilize ribozyme folding69. While the
RiboJ sequence varies, this hairpin is always the same sequence,
inside of which we discovered a strong antisense promoter at a
σ70 binding motif (Fig. 2c and Supplementary Fig. 9). Further,
after the upstream promoter, there is a consistent drop in
transcription (up to 12-fold) at this antisense promoter. Antisense
promoters are known to attenuate RNAP flux from a forward
promoter and may lead to better gate performance by lowering
basal activity in the off state, which may explain why this hairpin
emerged from a screen for parts that improve gate function67.
Note that this impacts the characterization of the gate response
functions and how these data are used by design automation
software to connect them (Supplementary Fig. 10).

Transcriptional attenuation is common in long operons, where
the early dissociation of RNAP leads to incomplete mRNA
transcripts4,70–75. We define there being evidence in the profile
for attenuation when >10-fold continuous decrease in RNAP flux
along the gene sequence is observed. Most of the circuit genes do
not show evidence for attenuation, the exceptions being hlyIIR,
bm3R1, and yfp (Fig. 2d and Supplementary Fig. 11). In
particular, hlyIIR shows a continuous 46-fold decline over the
length of the gene. There is an antisense promoter in this gene,
but other repressor genes with stronger antisense promoters do
not show attenuation. However, the ribosome profiling data show
that this promoter also leads to cryptic antisense translation,
which is not the case for any of the other cryptic antisense
promoters (Fig. 2e). RNAP is coupled to ribosomes and this has
been shown to lead to increased collisions with RNAP on the
opposite strand, leading to greater attenuation76–78.

The ribosome profiling data was analyzed to determine the
impact of ribosome pausing within genes. We looked for a
relationship with codon usage, noting that it has been observed
that ribosomes can pause when they encounter rare codons or
Shine Dalgarno (SD)-like sequences and this can reduce the
expression level55,79–81. Rare codons were eliminated when the
synthetic repressor genes were codon optimized16. Anecdotally,
we noticed a rise in occupancy at the 3′-end of bm3R1, which
corresponds to strong predicted SD and start codon sequences
(Supplementary Fig. 12). However, we could not find a systematic
relationship between higher ribosome occupancy and codons that
participate in SD-like sequences.
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Parameterization of genetic parts. A complete picture of how
parts function in the context of the circuit is illuminated by the
RNA-seq and ribosome profiling datasets (Fig. 3, and Tables 1
and 2). Transcriptional parts, including promoters and termina-
tors, can be parameterized using the RNA-seq profile. Parts that
operate on the level of mRNA can also be characterized, such as
the ribozyme insulators. Ribosome occupancy can be used to
calculate the RBS strengths. The transcription and translation of
genes can also be determined. Collectively, all 54 genetic parts in
the 3-input logic circuit can be fully parameterized with these two
experiments. These data can be compared to part measurements
made in isolation, usually in a different genetic context, or pre-
dicted by computational models.

Previously, we presented methods to extract the promoter
strength from the transcript profile by calculating the magnitude
of the change before and after a TSS8,35. However, the use of large

fragment sizes caused biases at either end of the transcript—right
at the TSS—and blurred the effects of neighboring promoters or
promoters next to ribozymes (Supplementary Fig. 3). Data
generated using the end-enriching method allow promoters to
be identified automatically and their strength determined with
fewer assumptions. The promoter strength is the increase in
RNAP flux calculated as the difference between the transcript
profile before (averaging positions −20 to −10) and after
(averaging positions 10–20) the TSS (Fig. 3a). The promoter
strengths were calculated for all 12 promoters, including the
sensors and gates, for all the circuit states (Table 1). Cello was
then used to predict the strength of all of the promoters in the
circuit (Fig. 3b). There is a weak correlation between the
measured and predicted strengths, 7% of the promoters fail in
at least one state (are off when they should be on and vice versa),
and the HlyIIR gate fails completely (discussed below).
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Surprisingly, despite these failures, the circuit is able to perform
the logic operation for which it was designed.

Ribozymes are used to process the transcripts so that those
from different TSSs have the same 5′-UTR and increase stability
by decreasing RNase affinity69,82,83. Self-cleavage releases a small
RNA that cannot be seen on the transcript profile when it is
smaller than the average fragment size sequenced. To address
this, we developed a method by which the ribozyme cleavage
efficiency (CE) can be calculated from these data (Supplementary
Fig. 13) (Methods). The cleavage efficiencies of most of the
ribozymes are high and constant across circuit states, as expected,
and are close to the values measured in vitro14 (Fig. 3a and
Table 1). The exception is riboJ57 in the BetI gate, which we find

to be nonfunctional under all conditions. This ribozyme differs
from the others in that it is AU-rich and has a smaller folding ΔG
and is thus vulnerable to context effects (Supplementary Fig. 14),
and ribosome profiling also reveals it contains an open reading
frame (Supplementary Fig. 12).

RBSs recruit ribosomes to the transcript and, indeed, there
is an elevated ribosome occupancy in these regions (Figs. 1d and
3a)52,84. RBS strengths can be measured empirically by fusing
them to a reporter gene85,86. However, their strength is
highly context-dependent because of sensitivities to 5′-UTR
folding and the translation rates of upstream open reading
frames86–89. Computational models have been developed
that capture these effects to predict RBS strength90,91. The
translational efficiency (TE) of a gene is commonly estimated as
the ratio of ribosome density and transcript level54. Here, we
calculate the TE in absolute units (Methods), which is found to
correlate with the translation initiation rate (TIR) predicted
by the RBS Calculator (Fig. 3c and Supplementary Fig. 15)
(Table 1)90,91.

Terminators block the progression of RNAP and their strength
can be quantified as the magnitude of a drop in the transcript
profile (Fig. 3a, Supplementary Fig. 16, and Table 1) (Methods).
Previous methods to quantify terminators with RNA-seq data
were limited by the large fragment lengths that caused a bias at
the 3′-end8,35. This is corrected using shorter fragment libraries.
These data reveal that the transcription termination site (TTS)
does not occur at a precise position; rather, it is distributed across
several nucleotides in the poly-T region27. The terminator
strength TS is defined as the ratio of the transcript level before
the TTS to the level after it27. We developed algorithms to
identify the TTS region and then calculate TS using the same size
and location for the windows as defined for the promoter
calculation (Supplementary Fig. 16) (Methods). Previously, the
TS’s were measured for the terminators in isolation using
fluorescent reporters27. Their quantitative performance differs
and some terminators are much weaker in the circuit context
(Fig. 3d).

Gate characterization in the context of a circuit. The circuit was
designed by Cello using gate response functions that were mea-
sured independently14. This assumes that the gate will produce
the same response in the context of the circuit. The response

Table 1 Genetic part parameters.

Genetic part Parameter Units

Promoters Strength (×10−3)
ymax,i (ymin,i)a

RNAP/s per DNA

PAmeR 67 (0.3188)
PAmtR 7.4 (0.0002)
PBAD,1 4.8 (0.0002)
PBAD,2 6.0 (0.0004)
PBetI 7.5 (0.0152)
PBM3R1 9.3 (0.0235)
PHlyIIR 49 (0.0133)
PPhlF 0.8 (0.0002)
PSrpR 0.9 (0.0002)
PTac 4.9 (0.0002)
PTet,1 171 (0.0030)
PTet,2 109 (0.0002)

Terminators Strength (Ti)b

ECK120029600 689
ECK120033736 20
ECK120033737 124
L3S2P11 15
L3S2P21 565
L3S2P55 29
L3S3P11 296
L3S3P31 136

Ribozymes Cleavage efficiency (ηi)c

bydvJ 0.90
riboJ 0.89
riboJ10 0.87
riboJ51 0.85
riboJ53 0.91
riboJ54 0.84
riboJ57 0.48
sarJ 0.94

RBSs Translation
efficiency (αi)d

Protein/s
per mRNA

A1 0.85
B2 0.57
BBa_B0064 1.22
E1 0.04
F1 0.16
H1 14.5
P3 0.43
S2 0.07

aThe maximum and minimum promoter strength measured across the eight circuit states. The
units are per promoter.
bThe transcript knockdown that occurs when the upstream promoter is being maximally
transcribed across the eight circuit states.
cThe average cleavage efficiency (CE) calculated across the eight circuit states.
dThe translation efficiency (TE) measured when the upstream promoter is being maximally
transcribed across the eight circuit states. mRNA level is from RNAP flux profile.

Table 2 Empirical parameterization of gate response
functions.

Promoter Parameter constant Units

Binding constant (ki × 103) Protein #

PAmeR 0.55
PAmtR 2.24
PBetI 0.12
PBM3R1 0.43
PHlyIIR 9.80
PPhlF 0.50
PSrpR 0.06

Cooperativity (ni)

PAmeR 1.1
PAmtR 2.4
PBetI 1.7
PBM3R1 1.3
PHlyIIR 1.7
PPhlF 4.2
PSrpR 1.2
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functions are shown as lines in Fig. 4a. Using the RNA-seq data,
this can be compared to the gate responses for the eight circuit
states. The response functions are surprisingly similar when
measured independently versus in the context of the circuit. Two
exceptions are the BetI and HlyIIR gates (Fig. 4a). The RNAP
fluxes from the gates in the context of the circuit are generally
lower than when measured in isolation. This could be due to the

shared ribosome and RNAP usage between gates25,92,93, although
it does not appear to impact all of the gates equally.

The HlyIIR gate is noteworthy because it fails in nearly every
way. Its response is weak and, even grossly, it produces
the incorrect logic in some states (e.g., +/−/− should be on
and −/+/+ should be off) (Figs. 1d, 3a, and 4a). The individual
parts show evidence for failures (Fig. 2a). Its RBS is the only one
to not have an elevated ribosome occupancy, and the terminator
TTS is not in the poly-T region in most states. There is also a
spike in ribosome occupancy of hlyIIR gene that occurs at a
second in-frame ATG internal to hlyIIR that includes a predicted
upstream RBS (Fig. 4b and Supplementary Fig. 12). Indeed, when
the ATG at +1 is deleted, this has little impact on the response
function of the HlyIIR gate (Fig. 4b). Finally, for all the repressors
we looked for evidence of their expression impacting host genes.
Only the hlyIIR repressor was found to impact host genes, notably
aceBAK (glyoxylate cycle), tonB (iron uptake), and mipA
(scaffolding protein) (Supplementary Fig. 17). Sequence analysis
of these operons showed putative operators that resemble hlyIIR
operator sequence (Supplementary Fig. 17). It is remarkable that,
despite the complete gate failure, serendipitously this does not
impact the circuit function.

Modeling the circuit robustness to parameter variation. We
were intrigued that the four failed states of these two gates happen to
not impact the performance of the overall circuit function. We first
performed simple Boolean logic calculations showing the propaga-
tion of the states of the inputs through the network (Supplementary
Fig. 18). This is a simple treatment, where the inputs are modeled as
0 or 1 and then each NOR and NOT gate responds digitally without
additional parameterization. Using this framework, we modeled
the experimentally observed failed states and propagated the effect to
the final circuit state. We find that the particular circuit topology we
use here is robust to all of these changes and the circuit logic that it is
designed for is as expected. This might be interpreted as lucky, but it
is important to note that we selected this circuit from a set of 60, of
which only 45 worked as designed. One of the reasons that the
remaining circuits failed may be that they were not similarly robust to
the underlying part failures.

Next, we used a more detailed kinetic modeling to understand
the circuit dynamics and evaluate the robustness to changes in the
parameters. Typically, the problem with such a model is
parameterization, where many of the circuit parameters have to
be identified from the literature or estimated. In our case, we can
obtain nearly all of the parameters for the parts through the RNA-
seq and ribosome profiling experiments (Tables 1 and 2, and
Supplementary Fig. 19). The time-dependent mRNA and protein
levels for each gene was modeled using a set of ordinary
differential equations (ODEs) that have parameters corresponding
to the strengths of promoters, ribozymes, RBSs, and terminators as
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Fig. 4 Gate responses. a Data for each gate are shown. (left column) The
line indicates the response function, measured when the gate is in
isolation14 (converted to RNAP/s, Methods). The data points correspond to
the input and output JRNAP extracted from the RNA-seq data for all eight
states. Red dots show states of BetI and HlyIIR gates that have failed. (right
column) The number of ribosomes used by the gate as a function of the
input promoter activity. b Translation from an alternative start codon for
hlyIIR is shown. Black dashed line is the position of annotated start codon,
and white circle (legend in Fig. 2a) and pink dashed line show the position
of alternative start codon. The response functions of the original (ATG
at +1) and mutated (ATG at +1 deleted) hlyIIR are compared. Data are the
average ±standard deviations from three independent measurements on
separate days. Source data are provided as a Source Data file.
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input parameters (Methods). The only parameters taken from the
literature are the mRNA degradation rate and plasmid copy
number, which are assumed to be constant, and the only non-
omics derived parameter from this work is the growth rate μ.
Despite the parameterization being based on static measurements,
the equations can be used to predict the circuit dynamics; the
response to a change in inputs that leads to a glitch is shown in
Fig. 5a94. The steady-state solutions are determined and found to

match all the circuit states, including all of the internal sensor/gate
output promoters (Fig. 5b and Supplementary Fig. 20). This
demonstrates that the parameters extracted from –omics experi-
ments can be used in conjunction with ODE modeling to predict
system performance. Note, however, that discrepancies in the
circuit prediction (Fig. 5b) cause the circuit score predicted by the
kinetic simulations (2) to be much lower than the values predicted
by Cello (80) or measured experimentally (21).

A sensitivity analysis was conducted for each genetic parameter
to identify the operational boundaries in which the circuit
remains functional, inspired by earlier work on the parameter
robustness of natural regulatory networks (Fig. 5c)95–97. The
circuit score was defined as the lowest expected on state, divided
by the highest expected off state in the simulation (Methods).
When this score is <1, the circuit is no longer performing the
logic operation for which it was designed. Each parameter was
varied individually, the eight induction states simulated, and the
circuit score calculated. The plots for the robustness of each
parameter are shown in Fig. 5c. The starting values are shown as
vertical dashed lines for reference.

There are striking differences in the robustness of the circuit
design to perturbations in the underlying parts. For example, the
PBAD promoter can vary in strength over orders of magnitude
with little impact, but the system is very sensitive to the strength
of the PTac promoter. Similarly, the gate promoters show
variability in sensitivity, both in the maximum of their response
functions and their thresholds. The circuits are insensitive to
ribozyme efficiencies, which is not surprising given their primary
function is to standardize the mRNAs against errors due to 5′-
UTR differences, which are not captured in the model. More
surprisingly, there is large robustness to terminator efficiency,
where most can be varied over order of magnitude with little
impact. The particular terminators that are robust versus sensitive
are a function of the circuit topology as well as the particular
organization of gates on the DNA sequence.

The cellular impact of circuit RNAP/ribosome usage. The
RNA-seq and ribosome profiling datasets are then used to calculate
the transcriptional and translational costs of holding a gate in a
particular state (Fig. 4a). The input to a gate is in units of RNAP/s,
representing the usage of transcriptional resources. The number of
ribosomes used in each gate can also be calculated by summing all
the ribosome occupancies across the gate’s repressor gene (Fig. 4a).
While the gates have a similar design, they vary in the resources
required. For example, the PhlF gate (in our hands, a reliable one)
requires low input JRNAP to turn off and <30 ribosomes to operate.
In contrast, the SrpR and AmeR gates require high JRNAP to turn off
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parameters. a An example of the dynamics predicted when the circuit
changes state. The differential equations used for the simulations are
provided in the Methods. At t= 0, the inputs are switched from +/+/− to
+/−/+ (IPTG/aTc/Ara) and the response is shown. b The predicted
steady-state promoter activities of all seven gates in the circuit are
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and up to 300 ribosomes. A variety of biophysical factors could
explain these differences, including the repressor affinities and
translational efficiency of transcripts98,99.

Cells possess a finite pool of cellular resources, and transcription
and translation of circuit proteins compete for these resources with
the cell’s native genes100–102. Carrying the circuit slows growth, the
magnitude of which depends on the circuit state (Fig. 6a). The total

RNAP flux is analogous to the total power usage by the circuit and
this varies based on the pattern of transcriptional activity of a state,
ranging from 107 to 816 RNAP/s (Figs. 1d and 6a). The estimated
fraction of the cellular proteome occupied by circuit proteins can
be estimated using the ribosome profiling data (Methods).
Depending on the state, up to 4.3% of the proteome consists of
regulatory proteins or YFP from the circuit (Fig. 6a). As a
comparator, we calculated the estimated fraction of the proteome
occupied by the 283 natural DNA-binding proteins in E. coli
and compared it to the fraction occupied by DNA-binding
proteins in the synthetic circuit (Fig. 6b and Supplementary
Fig. 21). In state 8 (+/+/+), the circuit produces 40% more DNA-
binding proteins than the entire repertoire of DNA-binding
proteins in the host cell.

Next, we measured the impact on host gene expression as the
circuit consumes more resources. First, we hypothesized that
the cell could try to compensate by upregulating RNAP or
ribosome expression. We found no upregulation of ribosome or
RNAP genes, individually or in combination (Fig. 6c). We then
systematically analyzed all chromosomal genes and pathways,
looking for positive or negative correlations in their expression
(RD) with the estimated fraction of the proteome being used by
the circuit (Supplementary Tables 2 and 3) (Methods). There is a
downregulation of most of the genes involved in the TCA cycle
and aerobic respiration. There is also an upregulation of genes
associated with mitigating the impact of the accumulation of
heterologous proteins and mRNA. Genes involved in the
unfolded protein response, including folding chaperones, are
upregulated (Fig. 6d and Supplementary Fig. 22). This has been
observed previously26 and the htpG promoter was selected as a
means to report burden as a result. For this circuit, we found that
htpG expression only varies 2-fold and is only weakly correlated
with growth rate (Supplementary Fig. 22). Surprisingly, the
expression of proteases decreased as the estimated circuit
proteome fraction increased (Fig. 6e). RNAse III which degrades
double stranded RNAs was also overexpressed (Fig. 6f).
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Fig. 6 Circuit impact on the host cell. a Comparison of the usage of cellular
resources across the eight circuit states. The average cell doubling time (gray
and black bars) is calculated from three replicates performed on different days
(orange dots) and the error bars represent the standard deviation (n= 3). The
total RNAP flux is the sum of the activities of all the circuit promoters (each
bar is the value from one biological replicate). The proteome fraction is the
sum of the estimated fractions for all of the circuit proteins, including the
regulators that are part of the sensors and YFP (each bar is the value from one
biological replicate). The control is E. coli DH10B with pAN871 (circuit
backbone, no circuit) and pDV4-PBAD-YFP (output backbone with YFP
inducible cassette) and includes the expression of the sensor regulatory
proteins and YFP (Supplementary Fig. 1). b The estimated fraction of the
proteome of all 283 native DNA-binding proteins is compared with the 10
regulatory proteins in the synthetic circuit. Native proteins represents all of the
remaining genes encoded in the genome. c Comparison of the expression of
RNAP and ribosome genes for the eight states of the circuit based on the
estimated fraction of the proteome the circuit occupies for that state (part a).
Data for the control are also shown for comparison. The RNAP values
represent the sum of the rpoABCDZ genes and the ribosome value includes the
sum of rpsABCDEFGHIJKLMNOPQRSTU, rplABCDEFIJKLMNOPQRSTUVWXY,
and rpmABCDEFGHIJ. d Average RD of 12 chaperons involved in unfolded
protein response of E. coli (htpG, dnaJ/K, groES/EL, grpE, hslOUV, yegD, ybbN,
and secB) is shown. The line is the best fit (R2=0.66, p value=0.008). e The
responses of two housekeeping proteases are shown. f The response of RNase
III is shown. The line is the best fit (R2=0.67, p value=0.007). The nine data
points in d, e, and f represent the eight induction states of the circuit as well as
the control, as described in c. Source data are provided as a Source Data file.
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Discussion
Computer aided design (CAD) helps the management of large
genetic engineering projects that require the selection of many
genetic parts to build a system3,5,14,103–105. Parts can be selected
from databases of previously characterized sequences or designed
de novo with computational tools. However, once parts are
used in a genetic system, it has been difficult to discern whether
they are functioning as intended. Systems are evaluated based on
their gross function, such as a circuit function or the production
of a small molecule. Tools to interrogate genetic systems have to
be able to scale to larger designs, with more parts, without
incurring additional cost or experimentation.

Deep sequencing scales appropriately and here we have com-
bined methods that enumerate mRNAs and ribosome usage to
fully characterize the parts in a system in a single experiment.
While genetic circuits require the evaluation of multiple states,
these samples can easily be pooled in a single sequencing lane.
Solely using RNA-seq and ribosome profiling requires some
parameters to be pulled from other sources, including degrada-
tion rates, plasmid copy number, and total number of active
ribosomes, all of which are not constant and depend on envir-
onmental conditions and the growth rate29,30,64,106,107. Beyond
these techniques, the rapid decline in deep sequencing costs has
led to a suite of techniques that could be performed simulta-
neously to offer further insight into the workings of an engineered
system in a cell108. New sequencing methods have been devel-
oped for the detection of TSSs, mRNA degradation, RNA struc-
tures, RNAP elongation, transcription dynamics, enzyme activity,
metabolomics, and translational initiation/elongation/termina-
tion109–123. The single-cell resolution obtained from fluorescent
reporters and flow cytometry and microscopy124 is currently
lost, but this could be recovered as single-cell RNA-seq experi-
ments become more practical and they are able to provide the
full transcript profiles, rather than just the mRNA levels of
genes125–127. Automating these techniques in experimentation
and data handling will be a powerful debugging tool.

Here, we chose one of the most well-behaved circuits we have
constructed to date. We were shocked at the number of internal
failures. Many parts do not function as designed, bring unin-
tended regulatory sequences in their DNA (e.g., cryptic pro-
moters) or introduce new functions due to the new sequences
formed when two parts are connected. Remarkably, a gate
(HlyIIR) fails entirely. Indeed, there is some luck in our selection
of a circuit whose topology is robust to the gate and parameter
variations observed experimentally. However, if these same parts
are used in a different system, they could cause it to fail, the
probability of which increases as the size of the project grows.
This is reminiscent of an earlier observation by Leibler and co-
workers when they randomly combined regulatory parts and
noticed that the circuit often does not behave as can be explained
by the known part functions2. Similar effects are seen in the
combinatorial assembly of metabolic pathways35,128.

Haphazardly finding that systems work or fail for unknown
reasons leads to the mystic of biology being labeled unpredictable
when in reality it is only our inability to observe how a design
actually works in a cell that inhibits precision engineering. This
work focuses on the analysis of a complete circuit where the
individual parts were not pre-characterized using–omics tools
and the design algorithm did not consider this type of informa-
tion. One can imagine going in after the fact and mutating
problems, like cryptic promoters, to fix them or to replace mal-
functioning parts. However, it would be more valuable to
run –omics experiments routinely on the subsystems to correct
problems prior to their use, particularly when the intention is to
reuse them in many permutations (e.g., in the Cello User Con-
straint File). Gates could also be removed from this list

completely, as we have now done for HlyIIR. The careful inte-
grative steps of design and debugging will lead to their more
reliable assembly later. In addition, the characterization of the
total RNAP and ribosomes used by a gate allows for the design of
low power variants that minimize the impact on the cell. This will
lead to more reliable CAD in genetic engineering that can predict
failure modes and warn a user if there is a potential growth defect
or the time expected before there is evolutionary breakage.

Methods
Strain, media, and inducers. The Escherichia coli DH10B derivative NEB 10-beta
Δ(ara-leu) 7697 araD139 fhuA ΔlacX74 galK16 galE15 e14- ϕ80dlacZΔM15 recA1
relA1 endA1 nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-mcrBC) was used as the
host (New England Biolabs, MA, C3019). Cells were grown in M9 minimal media,
consisting of 1× M9 media salts (Sigma–Aldrich, MO, M6030), 0.34 g/L thiamine
hydrochloride (Sigma–Aldrich, MO, T4625), 0.4% D-glucose (Sigma–Aldrich, MO,
G8270), 0.2% Casamino acids (Acros, NJ, AC61204-5000), 2 mM MgSO4

(Sigma–Aldrich, MO, 230391), and 0.1 mM CaCl2 (Sigma–Aldrich, MO, 449709).
The inducers used in this study were isopropyl β-D-1-thiogalactopyranoside
(IPTG; Sigma–Aldrich, MO, I6758), anhydrotetracycline hydrochloride (aTc;
Sigma–Aldrich, MO, 37919), and L-arabinose (Ara; Sigma–Aldrich, MO, A3256).
Antibiotic selections were performed with 50 µg/ml kanamycin (Gold Bio-
technology, MO, K-120-5) and 50 µg/ml spectinomycin (Gold Biotechnology, MO,
S-140-5). Phosphate buffered saline (1x PBS) solution was prepared from a 10x
solution purchased from OmniPur (MA, 6505).

Circuit induction. E. coli was co-transformed with the pAN3945 (circuit) and
pAN4023 (output) plasmids14 (Supplementary Fig. 1). Individual colonies were
picked and inoculated into 5 ml M9 minimal media with kanamycin and specti-
nomycin in a 14 ml culture tube (Corning, MA, 352059). The culture was grown
overnight for 16 h at 37 °C and 250 rpm in an Innova 44 shaker (Eppendorf, CT).
The following day, cultures were diluted 23 µl into 4 ml fresh M9 media with
antibiotics and grown under the same conditions for 3 h. For induction, cells were
diluted a second time 380 µl into 250 ml M9 media with antibiotics in 3 L Erlen-
meyer flasks (Pyrex) in the presence or absence of 1 mM IPTG, 2 ng/ml (4.32 nM)
aTc, and 5 mM Ara. Culture flasks were incubated at 37 °C and 200 rpm for 5–7 h.
At OD600= 0.3, cells were collected, rapidly filtered at room temperature by pas-
sing through a 0.22 µm pore size nitrocellulose filter (Sigma–Aldrich, MO, N8645),
and carefully scraped from the surface of the filter using a stainless-steel scoopula
(Thermo Fisher Scientific, USA, 14-357Q) and flash frozen immediately in liquid
nitrogen. Cell pellets were saved in −80 °C until use in RNA-seq and ribosome
profiling steps.

Fluorescence measurement. Individual colonies of wild-type E. coli as well as
E. coli cells harboring circuit plasmids (pAN3945 and pAN4023) and E. coli cells
harboring a reference plasmid (pJSBS.RPU) (Supplementary Fig. 1) were picked
and inoculated into 200 µl M9 minimal media with no antibiotic (for wild-type
cells), with kanamycin and spectinomycin (for circuit cells), and with kanamycin
(for reference cells) and grown overnight at 37 °C and 1000 rpm in an ELMI Digital
Thermos Microplates shaker incubator (ELMI Ltd, Latvia, hereby ELMI plate
shaker) and using NuncTM 96-well plates (Thermo Scientific, USA, 249662). Next
day, cells were diluted 178-fold (two serial dilutions of 15 µl into 185 µl) into
prewarmed M9 media with proper antibiotics, and were incubated for 3 h at 37 °C
and 1000 rpm in ELMI plate shaker using NuncTM 96-well plates. Cells were then
serially diluted 658-fold in two steps. First, 15 µl cells were added into 185 µl
prewarmed M9 media with proper antibiotics and inducers (only circuit cells were
induced with presence or absence of 1 mM IPTG, 2 ng/ml (4.32 nM) aTc, and
5 mM Ara). Next, 20.3 µl of mixture was added into 980 µl prewarmed M9 media
with proper antibiotics and inducers in a PlateOne® Deep 96-well plate (USA
scientific, USA, 1896–2000), and culture was incubated for 5 h at 37 °C and 900
rpm in a Multitron Pro incubator shaker (In Vitro Technologies, VIC, Australia).
Finally, after 5 h induction, 20 µl of culture was added to 180 µl 1× PBS solution
with 2 mg/ml kanamycin to stop translation and cell growth, and the mixture was
incubated for one hour before fluorescence was measured using flow cytometry.

Flow-cytometry analysis. Fluorescence was measured using an LSRII Fortessa
flow cytometer (BD Biosciences, San Jose, CA) using BD FACSDiva software,
version 8.0.3. More than 10,000 gated events were collected for each sample. The
flow cytometer software FlowJo, version 9 (TreeStar, Inc., Ashland, OR) was used
to gate the raw data and calculate the median YFP fluorescence values for the gated
events (Supplementary Fig. 23).

Conversion to relative promoter units (RPU). The activity of a circuit’s output
promoter (PBM3R1) can be calculated in RPU by comparing circuit’s fluorescence to
that of the plasmid (pJSBS.RPU, Supplementary Fig. 1) containing a reference
promoter (PJ23101); RPU= (<YFP > - < YFP > 0)/(<YFP > RPU- < YFP > 0), where
<YFP > is the median fluorescence of circuit at each induction state, <YFP > RPU is
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the median fluorescence of cell containing the reference plasmid, and <YFP > 0 is
the median autofluorescence of wild-type E. coli DH10B.

Cello predictions. Cello version 1.0 was used with the Eco1C1G1T1 UCF (http://
cellocad.org/). The sensor activities used were (on and off): PTac= 2.8 and 0.0034
RPU, PBAD= 2.5 and 0.0082 RPU, and PTet= 4.4 and 0.0013 RPU. To calculate
promoter activities, the input and output promoters of all NOT and NOR gates in
the circuit are identified (Fig. 1b). The output promoter activity y for each gate (in
RPU) is calculated according to

y ¼ ymin þ ðymax � yminÞ
Kn

Kn þ xn
ð1Þ

where x is the input promoter activity (in RPU), and ymin, ymax, K, and n are
constants for each gate. For the NOR gates, the input promoter activity x is the sum
of the activities of the two input promoters x= x1 + x2. The activity of PBM3R1

output promoter is multiplied by 0.44 to account for lower copy number of the
plasmid carrying output reporter yfp. All Cello predicted promoter activities are in
RPU, but can be converted to absolute units using conversion 1 RPU= 0.019
RNAP/s per promoter (see below).

RNA-seq library preparation and sequencing. RNA-seq sample preparation was
carried out following the method described earlier54,55. Briefly frozen cell pellets
from circuit induction step were mixed with 650 μl frozen droplets of lysis buffer
(20 mM Tris (pH 8.0), 100 mM NH4Cl, 10 mM MgCl2, 0.4% Triton X-100, 0.1%
Tergitol, 1 mM chloramphenicol and 100 U/ml DNase I) and added to a 25 ml
canister (Retsch, Germany, 014620213) already prechilled in liquid nitrogen, and
pulverized for 15 min in five cycles of 3 min with intermittent cooling between
cycles using a TissueLyser II (Qiagen) set at 15 Hz. The pulverized cell pellets were
quickly transferred to prechilled microcentrifuge tubes and spun down at 20,000 ×
g for 10 min at 4 °C using a refrigerated benchtop centrifuge (Eppendorf, CT) and
supernatant was collected as the cell lysate. This cell lysate was split to be used
separately for RNA-seq and ribosome profiling preparation steps. The following
steps were performed on the RNA-seq portion only. The total RNA was extracted
from the split lysate using previously described hot phenol–SDS extraction
method129. Ribosomal RNAs were removed from 20 μg of total RNA using the
MICROBExpress kit (Thermo Fisher Scientific, USA, AM1905), followed by
fragmentation of the remaining mRNAs, tRNAs, and 5 S rRNAs using RNA
fragmentation reagents (Invitrogen, USA) at 95 °C for 90 s. The RNA fragments
(10–45 nt) were selected and recovered from a 15% TBE–urea denaturing poly-
acrylamide gel (Thermo Fisher Scientific, USA, EC6885BOX). Briefly, the correct
band was excised from the gel and transferred into a 0.5 ml tube, where the bottom
of the tube was poked through. The tube was then placed in a 2 ml screw cap tube
and spun down at 20,000 × g for 3 min. The collected gel pieces were incubated
with 0.5 ml of 10 mM Tris 7.0 for 10 min at 70 °C in a shaking thermomixer. After
that the mixture was transferred to a Spin-X cellulose acetate column (Thermo
Fisher Scientific, USA, 07-200-388) and spun down at 20,000 × g for 3 min. The
solution was then transferred to a new tube and precipitated by adding 55 μl of 3 M
NaOAc (pH 5.5), 2 μl of glycoblue, and 550 μl of 100% isopropanol, and chilled at
−80 °C for 30 min. RNA was then pelleted by spinning down the mixture at
20,000 × g for 30 min at 4 °C, followed by aspirating the supernatant, washing the
RNA pellet one more time with 750 μl of 80% ethanol at 4 °C, air drying it for
5 min, and resuspending it in 15 μl of 10 mM Tris 7.0 for cDNA preparation. Next,
cDNA libraries were generated by reverse-transcribing the purified RNA fragments
using Superscript III (Invitrogen, USA, 18080044) with the oCJ485 primer (/5Phos/
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT/iSp18/CAAGCAGAAGA
CGGCATACGAGATATTGATGGTGCCTACAG) at 50 °C for 30 min.
Original RNA was hydrolyzed and removed from the mixture by adding 0.1 M
NaOH, followed by incubation at 95 °C for 15 min. The expected cDNA libraries
(125–150 nt) were selected and recovered from a 10% TBE–urea polyacrylamide
gel (Thermo Fisher Scientific, USA, EC6875) following the steps described above,
except that Tris 8.0 was used instead of Tris 7.0, and a mixture of 32 μl of 5 M NaCl
and 1 μl of 0.5 M EDTA was used instead of 55 μl of 3 M NaOAc (pH 5.5). The
cDNA products were circularized by adding them to a 20 μl reaction volume
supplemented with 2 μl of 10× CircLigase buffer, 1 μl of 1 mM ATP, 1 μl of 50 mM
MnCl2, and 1 μl of CircLigase (Epicenter, USA). The reaction mixture was incu-
bated at 60 °C for 2 h followed by heat inactivation at 80 °C for 10 min. 5 μl of the
circularized DNA was amplified using Phusion HF DNA polymerase (New Eng-
land Biolabs) with the o231 primer (CAAGCAGAAGACGGCATACGA) and
indexing primers (AATGATACGGCGACCACCGAGATCTACACGATCGGAAG
AGCACACGTCTGAACTCCAGTCACNNNNNNACACTCTTTCCCTACAC)
for 7–10 cycles. The amplified products were size selected using an 8% TBE–urea
polyacrylamide gel (Thermo Fisher Scientific, USA, EC62152) and libraries
between 125 and 150 nt were recovered from gel as described above. These final
products were analyzed using a BioAnalyzer (Agilent, USA), and were pooled
together with those from ribosome profiling steps into three sequencing runs (each
sample with a unique indexing primer). Sequencings were performed on an Illu-
mina HiSeq 2500 in rapid-run mode using sequencing primer CGACAGGTTCAG
AGTTCTACAGTCCGACGATC. To process raw reads acquired from RNA-seq
runs, we first trimmed the adaptors (CTGTAGGCACCATCAATATCTCGTATG
CCGTCTTCTGCTTG) using Cutadapt130, where we only selected trimmed reads

longer than 10 nt. Next, reference sequences, in FASTA format, were generated for
each sample, where they include DNA sequences of both the E. coli DH10B gen-
ome (NC_010473.1) and the circuit and reporter plasmids (pAN3945 and
pAN4023 for cells containing circuit, and pAN871 and pDV4-PBAD-yfp for control
cells with empty plasmid backbones). These reference sequences were first indexed
using the ‘bowtie-build’ function of Bowtie 1.1.2 sequence alignment131, followed
by aligning all trimmed reads to these indexed references using the ‘bowtie’
function with parameters ‘-v1 -m2 -k1’. All information about aligned reads such
as their reference (genome or plasmid), position (5′ and 3′), strand (forward or
reverse), and mapping quality are stored in an output file to be used for tran-
scription profile generation.

Construction of transcript profiles. Mapped reads at each nucleotide position
were normalized by the total number of mapped nucleotides in the sample and
then multiplied by a 109 factor. The tRNAs in our samples comprised between 15
and 65% of the transcriptome across different induction states of the circuit.
Although end-enriching method can visualize the exact tRNA processing sites at
both 5′- and 3′-ends of tRNAs (Supplementary Fig. 4a), the non-uniform fraction
of tRNAs between our samples (Supplementary Fig. 4b) can introduce bias against
other regions in the circuit and genome, and can distort our genetic parts char-
acterizations. To eliminate the bias, we manually removed all reads mapped to the
tRNA regions before calculating the total number of mapped nucleotides used for
normalizing RNA-seq profiles. FPKM (fragments per kilobase of transcript per
million mapped reads) of each gene was then calculated by averaging the height of
RNA-seq profile over the length of the gene. In addition, at steady-state, RNAP flux
at nucleotide position x can be calculated from J(x)= γM(x), where M(x) is the
height of the normalized RNA-seq profile (or mRNA transcript levels) and γ=
0.0067 s−1 is the mRNA degradation rate8,63. The resulting RNAP flux J(x) has
arbitrary units.

Conversion of RPU to RNAP/s. The RNAP flux can be reported as either the total
for all the copies of a promoter in the cell (e.g., carried on a multi-copy plasmid) or
per promoter, where it is normalized by the copy number. Single-molecule mea-
surements yielded a conversion factor of 1 RPU= 0.019 RNAP/s per promoter for
the BBa_J23101 reference promoter17,18 in the same plasmid backbone we use
in this manuscript (pJSBS.RPU, Supplementary Fig. 1). The average copy number
of this plasmid was measured to be 9, so the total flux from the promoter is 0.171
RNAP/s. The reference promoter is not in the genetic circuit, so it is not used for
the RNA-seq experiments and we need a different method to connect the promoter
strengths to RPU. To do this, we use the circuit’s output promoter (PBM3R1)
because we know its strength in RPU from the flow-cytometry experiments
(Fig. 1c) and it is present in the circuit, so we can measure the promoter strength as
a change in RNAP flux δJ in arbitrary units. Considering all circuit states, the eight
δJ from RNA-seq are plotted against the RPU from cytometry to obtain a con-
version factor (R2= 0.87, p value= 0.0008, Supplementary Fig. 5). The circuit and
reference plasmids are based on the same p15a backbone, but the output plasmid is
based on a pSC101 backbone, which has a 2.25-fold lower copy number18. The
conversion of the height of the transcript profile M(x) in arbitrary units to that of
RNAP flux J(x) in the unit of RNAP/s per promoter is then: J(x)= 2.25 × 0.019 ×
5.05 × 10−5 [γM(x)]1.64= 2.16 × 10−6 [γM(x)]1.64. Finally, to calculate the total
RNAP flux for all copies of a promoter, J(x) is multiplied by 9. The RNAP flux
profile of the circuit at all induction states is shown in Supplementary Fig. 24 for
both sense and antisense strand of the circuit DNA sequence.

Ribosome profiling. As described above, the cell lysate was split to be used for
both RNA-seq and ribosome profiling steps. The following steps are performed on
the portion saved for ribosome profiling. The total RNA was extracted from the
lysate using previously described hot phenol–SDS extraction method129. The RNA
was diluted to 0.5 mg in 200 μl of the lysis buffer including 5 mM CaCl2 and 100 U
SUPERase·In (Invitrogen, USA) and was digested with 750 U micrococcal nuclease
S7 (Sigma–Aldrich, MO, 10107921001) at 25 °C for 1 h to perform ribosome
footprinting, followed by quenching with 6 mM EGTA (Bioworld, TX, 40520008-
2). The footprinting products were kept on ice before they were spun in a sucrose-
density-gradient (10 – 55% w/v) using an ultracentrifuge (Beckman Coulter,
Atlanta, GA) with a SW41 rotor at 35,000 rpm (151,194 × g) for 165 min, and the
monosome fraction was collected by a gradient fractionator (BioComp Instru-
ments, New Brunswick, Canada). To collect ribosome-protected mRNA fragments,
hot phenol–SDS extraction was performed129. Next, mRNA fragments 10–45
nucleotides in length were selected and recovered from a 15% TBE–urea dena-
turing polyacrylamide gel (Thermo Fisher, MA, EC6885BOX) as described above.
The cDNA libraries were generated by Superscript III and were subsequently
circularized using CircLigase as described in RNA-seq preparation above. Frag-
ments belonging to ribosomal RNA were removed by a biotinylated oligo mix for
E. coli. Similar to RNA-seq, 5 μl of circularized DNA was amplified for 7–10 cycles
using Phusion HF DNA polymerase and with the o231 primer and the sample-
specific indexing primer. Only amplified products between 125 and 150 nt were
selected and recovered from an 8% TBE–urea polyacrylamide gel as described
above. Finally, these purified cDNA libraries were analyzed with a BioAnalyzer,
and pooled as described above, and sequenced on an Illumina HiSeq 2500 in
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rapid-run mode using sequencing primer CGACAGGTTCAGAGTTCTACAGT
CCGACGATC. Similar to RNA-seq data processing steps, adaptors (CTGTAGGC
ACCATCAATATCTCGTATGCCGTCTTCTGCTTG) were first trimmed off the
raw reads acquired from ribosome profiling runs using Cutadapt130 (read length >
10 nt). These trimmed reads were then aligned to the same indexed reference
sequences generated for RNA-seq. Alignments were performed using the ‘bowtie’
function of Bowtie 1.1.2131 with parameters ‘-v1 -m2 -k1’. The output files stored
all necessary information about the aligned reads (reference, position, strand, and
mapping quality) to be used for the ribosome occupancy profile generation.

Construction of ribosome occupancy profile. A center-weighting approach was
taken to map the P-site position of ribosomes on all aligned footprint reads ranging
from 23 to 42 nucleotides in length. For each aligned footprint read, 11 nucleotides
on either end were removed and the nucleotides in the remaining region were given
the same score, normalized by the length of this center region54. Therefore, the
ribosome occupancy at each nucleotide position is the sum of all the center-
weighted scores from all the reads aligned to that nucleotide. The ribosome
occupancy at each nucleotide was then normalized by the sum of all ribosome
occupancies across DNA sequences in that sample (including both genome and
circuit), and then multiplied by the total number of active ribosomes in E. coli
which is a function of cell growth rate (20,000 at 45 min doubling time64). The
resulting ribosome occupancy profile has an absolute unit which is the number of
ribosomes at each position. Contrary to RNA-seq, applying tRNA correction was
not necessary for ribosome occupancy profiles since ribosomes do not bind tRNAs
and therefore tRNA contamination is negligible. We also generated a profile of
ribosome occupancy per transcript by dividing the ribosome occupancy at each
nucleotide position by the amount of RNAP flux (in unit of RNAP/s) at the same
position, multiplied by mRNA degradation rate (γ= 0.0067 s−1)8,63. The resulting
profile has absolute units (number of ribosomes per mRNA) and is shown in
Supplementary Fig. 25 for all states of the circuit on both sense and antisense
strands. The ribosome density (RD) of each gene was calculated by averaging all
ribosome occupancies over the length of the gene, in absolute units. However, three
additional normalizations were needed to calculate RDs (following approaches by
Li and Weissman54,55): (1) to remove the effects of translation initiation and ter-
mination on ribosome density, the first and last five codons of each gene were
excluded from averaging calculation, (2) to account for the elevation of ribosome
occupancies at the beginning of the genes, an exponential decay function was
fitted to a genome-wide occupancy profile and this fitted function was used to
normalize the ribosome occupancy at each nucleotide of a given gene, and (3) to
reduce the effect of outlier ribosome occupancies, the top and bottom 5% of the
ribosome occupancies over the length of the gene were removed (90% winsoriza-
tion) if the average read density on a gene was higher than one.

TSS/TTS identification. Transcriptional start sites (TSSs) across DNA sequences
are identified by calculating the ratio of RNAP flux JRNAP between each neighboring
positions, JRNAP(x+ 1)/JRNAP(x). For TSSs in the reverse strand, the inverse of the
above ratio is calculated. We also applied a threshold of ratio >5 to call a TSS. As a
limitation to our method, for promoters located immediately upstream of a ribo-
zyme, the identified TSS is the same as ribozyme cleavage site, since the cleaved
RNA product is ~10 nt long and is lost during RNA-seq sample preparation,
creating a sharp increase in RNAP flux profile at the cleavage site.

Transcriptional termination sites (TTSs) are identified by calculating an
averaged-window ratio AWR(x) profile for each nucleotide position x

AWR xð Þ ¼
1
n

Px
i¼x�n JðiÞ

� �
1
n

Pxþn
i¼x JðiÞ� � ð2Þ

where n= 10 is the length of the averaging window. For reverse strand, AWR(x) is
the inverse of Eq. 2. Similar to promoters, we applied a threshold AWR(x) > 5.
Because of the gradual decrease in RNAP flux at the termination sites, a continuous
span of multiple nucleotides can pass this threshold. To identify the most probable
termination site within this span, position x with maximum AWR(x) value is
marked as transcriptional termination site TTS.

Characterization of the Δ(ATG) HlyIIR gate. The response function was char-
acterized as previously described14. A version of the pHlyIIR-H1 plasmid14 was
constructed (pHlyIIR-H1-ΔATG, Supplementary Fig. 1 and Supplementary
Table 4) where Gibson assembly was used to delete the start codon Δ(ATG) of
hlyIIR. The original and mutated hlyIIR plasmids were transformed separately into
E. coli DH10B. In addition, a pAN1818 plasmid14 carrying an IPTG-inducible
promoter PTac for yfp transcription (Supplementary Fig. 1) was also used to
transform E. coli DH10B. Single colonies of these three strains as well as an E. coli
strain carrying the reference RPU plasmid (pJSBS.RPU, Supplementary Fig. 1) were
inoculated into 200 μl of M9 media with kanamycin in NuncTM 96-well plates and
grown for 16 h at 37 °C and 1000 rpm in ELMI plate shaker. On the next day, cells
were diluted 178-fold (two serial dilutions of 15 µl into 185 µl) into M9 media with
kanamycin, and were incubated for 3 h at 37 °C and 1000 rpm in an ELMI plate
shaker using NuncTM 96-well plates. Cells were then diluted 658-fold (two serial
dilutions of 15 μl into 185 μl, and then 3 μl into 145 μl) into M9 media with
kanamycin, and were induced with varying concentrations of IPTG (0, 5, 10, 20, 30,

40, 50, 70, 100, 150, 200, and 1000 μM). After induction, cells were grown in
NuncTM 96-well plates for 5 h at 37 °C and 1000 rpm in an ELMI plate shaker, and
then 40 μl of culture was added to 160 μl of 1× PBS solution with 2 mg/ml kana-
mycin. This mixture was incubated for 1 h and fluorescence was measured using
flow cytometry and converted to RPU (above). At each IPTG concentration, the
measured RPU of pAN1818 plasmid represents the input promoter activity x to the
both original and mutated HlyIIR gates, while the measured RPU of either hlyIIR
plasmids is the output promoter activity y of the gates. The output activity y of each
gate was plotted as a function of the input activity x for all IPTG inductions, and a
Hill function was fit to data according to Eq. 1. Fitting was performed in Python
with minimize function of scipy using the SLSQP method.

Promoter strength calculation. To characterize promoter strength δJ, first the TSS
of each promoter was identified (above). Using the identified TSS, the promoter
activity is calculated as

δJ ¼ 1
n

XXTSSþAþn

i¼XTSSþA
J ið Þ�

XXTSS�A

i¼XTSS�A�n
J ið Þ

h i
ð3Þ

where J(i) is RNAP flux at position i, n= 10 is the length of averaging window, and
A= 10 is the gap between TSS and averaging window. For promoters in reverse
strand, the δJ value calculated from Eq. 3 is multiplied by −1.

Calculation of ribozyme activity. The cleavage site of each ribozyme was iden-
tified as a result of TSS calculation (above) for the promoter located immediately
upstream of each ribozyme. Next, for each ribozyme, all the cut and uncut frag-
ments around the cleavage site were identified. These are the raw RNA-seq frag-
ments used to generate transcription profiles with. Cut fragments are those that
either end exactly at the cleavage site or begin with it. Uncut fragments are those
that overlap the cleavage site (Supplementary Fig. 13). The total number of cut
fragments downstream of the cleavage site Fcut was quantified as well as the total
number of uncut fragments Funcut. Ribozyme cleavage efficiency is calculated as
CE= Fcut/(Fcut+ Funcut).

Calculation of RBS strength. The translation efficiency (TE) of an RBS was cal-
culated using the ribosome density (RD) and the steady-state mRNA expression
level of the gene associated with the RBS. The number of mRNA transcripts at
steady-state (mSS) is calculated by averaging RNAP flux profile (in unit of RNAP/s)
over a 10 nt window at the end of each gene (−10 to 0), divided by mRNA
degradation rate (0.0067 s−1)8,63. Note that for amtR gene, the averaging window
was shifted 150 nucleotides into the coding section (−160 to −150) to avoid the
RNAP flux by an internal cryptic promoter. Next, translation efficiency is calcu-
lated as TE= (RD × ω)/mSS, where ω= 15 s−1 is the ribosome elongation rate107.
TE represents the number of ribosomes that finish translation and produce a new
molecule of protein per mRNA transcript per second.

RBS Calculator and mRNA secondary structure prediction. The translation
initiation rate (TIR) for each RBS sequence was predicted using RBS Calculator
(v2.0) (https://salislab.net/software/predict_rbs_calculator)90,91. The total Gibbs
free energy change ΔGtotal is calculated and used to determine TIR= Ke−βΔGtotal,
where β= 0.45 mol/kcal is the Boltzmann constant, K= 2500 is a constant, and
ΔGtotal is the total energy difference between ribosome-free and ribosome-bound
mRNA. For all calculations, 35 nucleotides before and after start codon was used as
mRNA sequence and E. coli’s 16 S rRNA (5′-ACCUCCUUA-3′) was used as anti-
Shine-Dalgarno sequence.

RNA folding Gibbs free energy (ΔG) and RNA secondary structure of ribozyme
insulators were calculated using ViennaRNA software (version 1.8.5, default
options)132. For ΔG calculations, the full sequence of each ribozyme was used.
RNA secondary structures were also predicted for two ribozymes (sarJ and riboJ57)
where their transcription started from an upstream promoter adding 63 extra
nucleotides to the 5′-UTR sequence (Supplementary Fig. 14).

Calculation of mRNA abundance. The number of full length mRNA molecules for
each gene at steady-state (mSS) is calculated as the ratio of mRNA transcription rate
(in unit of RNAP/s) and mRNA degradation rate (above).

Calculation of terminator strength. First, the TTS was identified following the
averaged-window ratio (AWR) method described above. TS is defined as the fold-
decrease in RNAP flux before and after a TTS as

TS ¼
1
n

PXTTS�A
i¼XTTS�A�n J ið Þ

h i
1
n

PXTTSþAþn
i¼XTTSþA J ið Þ

h i ð4Þ

where J(i) is the RNAP flux at position i, n= 10 is the length of averaging window,
and A= 10 is the gap between TTS and averaging window. For terminators in
reverse strand, the TS value calculated from Eq. 4 is inverted.
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Calculation of ribosome usage. The ribosome usage is defined by the number of
ribosomes sequestered by a gene at steady state, and is calculated by summing the
height of ribosome occupancy profile over the length of the gene.

Calculation of proteome fraction. Ribosome profiling data are used to estimate
the fraction of total cellular proteome Φ(i) that is occupied by a particular gene
product i as

ΦðiÞ ¼ RDiMWiP
k RDkMWk

ð5Þ

where RDi is ribosome density of gene i and MWi is the molecular weight of its
protein product54. The estimated proteome fraction of the circuit at each induction
state is calculated by summing the proteome fraction of its regulatory proteins
(repressors and sensors) and yfp reporter. This value was compared against the
estimated total proteome fraction of all DNA-binding regulatory proteins in E. coli
genome. A list of 302 unique DNA-binding proteins in E. coli MG1655 was
identified using EcoCyc database (https://ecocyc.org/)133, from which 283 were
found to be present in E. coli DH10B. In addition, the impact of estimated circuit
proteome fraction on cellular metabolism (below), RNAP and ribosome expression,
and cellular maintenance for proteins and mRNAs was studied. To calculate the
RD of ribosomes, the RD of all 54 ribosomal proteins in E. coli DH10B
(rpsABCDEFGHIJKLMNOPQRSTU in 30 S and rplABCDEFIJKLMNOPQR-
STUVWXY and rpmABCDEFGHIJ in 50 S subunits) were summed as an estimate
for the RD of ribosomes. Similarly, RD of RNAP was estimated as the sum of the
RD of rpoBCZ, RD of rpoD (σ70), and half of the RD of rpoA due to its 2:1 stoi-
chiometry in RNAP. Finally, the average RD of genes involved in the unfolded
protein response of E. coli (htpG, dnaJ/K, groES/EL, grpE, hslOUV, yegD, ybbN,
secB, taken from EcoCyc133) was calculated and correlated with the change in the
estimated circuit proteome fraction across induction states.

EdgeR and gene ontology analysis. To study the impact of estimated circuit
proteome fraction on cellular metabolism, first, a list of up and downregulated
genes was generated by comparing the ribosome density (RD) of each gene in the
cell containing the circuit with that of the control cell. RD was used as the
estimate of protein expression level. We calculated these differences for all eight
circuit induction states. To do that, differential gene expression analysis was
performed using EdgeR134, where its ‘exact test’ analysis was performed in
R (version 3.4.4) and adjusted p-values were calculated using built-in false
discovery rate (FDR) correction. EdgeR requires biological replicates for its exact
test analysis in order to estimate the dispersion in data (dispersion= BCV2

where BCV is the biological coefficient of variation). A fixed BCV= 0.1 was used
in all exact test analysis. Genes >2-fold change in expression and with p value
and FDR less than 0.05 were selected as differentially expressed genes. These up
and downregulated genes were used as the input for Gene Ontology analysis
(GO)135,136, where a GO annotation ID= 511145 was used for E. coli. GO
identifies a list of regulated pathways based on their co-regulated gene members.
Each regulated pathway was evaluated for potential relationship with estimated
circuit proteome fraction across induction states. To do that, correlation between
RD of each gene member in the pathway and the estimated circuit proteome
fraction across induction states was calculated. Not all pathways were correlated.
Only those pathways/genes with continuous decrease or increases in RD as a
function of estimated circuit proteome fraction are reported in Supplementary
Tables 2 and 3.

Prediction of repressor off-target binding. RD values of all native genes in
E. coli were tested for correlation against the RD of individual repressors in the
circuit (RD was used as the estimate of protein expression level). We were
specifically searching for sigmoidal relationships, resembling off-target
repression by repressors. To do that, for each repressor, the eight induction
states of the circuit were divided into two subgroups, in which the repressor was
either on or off. Next, for all the genes across the genome, RD values within each
subgroup were averaged, resulting in an RDON,i and RDOFF,i for each native gene
i. We then calculated a fold-repression for each native gene i using RDOFF,i/
RDON,i and selected those native genes with >5-fold-repression for visual
inspection of sigmoidal relationship. Only hlyIIR repressor showed significant
off-target activity, with aceB, tonB, and mipA being the most repressed
native genes. To identify potential binding site of hlyIIR repressor for its
genomic off-targets, 100 nucleotides upstream or downstream (depending
on the strand orientation) of the annotated TSS of each off-target gene was
taken (upstream for aceB and tonB and downstream for mipA). The operator
sequence of hlyIIR repressor (5′-ATATTTAAAATTCTTGTTTAAA-3′)16 was
then aligned to each DNA sequence using Needleman–Wunsch aligning algo-
rithm137 with mismatch penalty= 0, gap penalty=−2, and gap extension
penalty= 0.

Promoter motif identification. Cryptic promoters were examined to determine
whether they have motifs consistent with a σ70 promoter. First, the TSSs were
identified (above), for which we found 228 forward and reverse cryptic promoters
across the circuit DNA sequence and across the induction states. Those peaks

associated with ribozyme cleavage were manually removed. Promoter strength was
calculated for each cryptic promoter using Eq. 3, and those promoters with activity
>10−5 RNAP/s per promoter were selected for motif identification (27 promoters
passed the threshold, Supplementary Table 1), for which 50 nucleotides upstream
of the TSS was taken for sequence analysis. Next, the −10 and −35 boxes of each
promoter were manually identified. Not all promoters had both of the two boxes,
and the spacing between them varied between 16 and 18 nucleotides. Finally,
WebLogo (version 2.8.2)138 was used to find common motifs across these promoter
sequences (Supplementary Fig. 8).

Measurement of cell growth. Individual colonies of circuit containing E. coli
cells were inoculated into 5 ml M9 minimal media with kanamycin and spec-
tinomycin in a 14 ml culture tube (Corning, MA, 352059) and grown overnight
for 16 h at 37 °C and 250 rpm in an Innova 44 shaker (Eppendorf, CT). The
following day, cultures were diluted 5.6 µl into 1 ml M9 media with antibiotics
and grown under the same condition for 3 h. The growth culture was then
diluted 658-fold (45.5 µl into 30 ml) in 125 ml Erlenmeyer flasks (Pyrex) and
different combinations of inducers were added. After 4 h of incubation where
cells passed the lag phase and started the exponential phase of growth, 1 ml cell
cultures were sampled intermittently and its OD600 was read using a Cary 50 Bio
spectrophotometer (Agilent, CA, 10068900) over the span of 6 hours. Cell
growth rate μ was calculated as the slope of linear fit between log(OD600)
(natural log) and time t before cultures entered stationary phase of growth. The
doubling time τ= log(2)/μ.

Calculation of the gate’s K and n parameters. For each gate, the input and
output promoter strengths (in units of RNAP/s) were obtained from RNA-seq data
(Fig. 4a). From this data, the minimum and maximum output promoter strengths
were assigned to ymin and ymax, respectively, for use in Hill equation (Eq. 1). The
Hill equation was then rearranged to log-linear format and optimal values for the
dissociation constant (K) and cooperativity (n) parameters were found by Poisson
regression using negative log-likelihood loss function. Calculations were performed
in Python with the minimize function of scipy using the Nelder–Mead method
since the loss function is convex. Each calculation was performed multiple times
with varying initial guesses to verify convergence. For HlyIIR and BetI gates, the
two outliers were excluded from fitting. K was obtained in units of RNAP/s and n is
dimensionless. The fits for all 7 gates have been plotted in Supplementary Fig. 19.
The fitted K was then converted to the repressor binding constant k in units of
protein number using Eq. 22. Repressor binding constant k and n are presented in
Table 2.

Kinetic simulations of the genetic circuit. A model is developed that
tracks the mRNA and protein production over time and includes parameters
associated with each genetic part, for which quantitative values can be extracted
from the –omics data (Tables 1 and 2). The kinetics of protein dimerization and
protein binding to DNA are assumed to be much faster than transcription,
translation, and degradation, and thus are treated as being at pseudo-steady-state.
In addition, the model does not take either RNAP or ribosome movement into
account and assumes that every initiation event results in the production of a
mRNA or protein, respectively. Thus, transcriptional attenuation and ribosomal
pausing and early truncation are not taken into account. Second, there is no
coupling between devices due to ribosomal and RNAP usage and no impact from
the circuit on the host cell, including changing the growth rate. Note, however, that
since the parameters are empirically extracted from –omics data involving the
entire circuit, these effects will be accounted for to some extent in their values.
Equations for the number of copies of the mRNA mi of gene i are written below.
Consider first the equation for the PhlF gate, which is located at the 5′-end of the
circuit DNA sequence,

dmphlF

dt
¼ JphlF � γ η53 1� bð Þ þ b

� �
mphlF

ð6Þ
The RNAP flux from the two input promoters are summed as

JphlF ¼ ySrpR þ yBetI ð7Þ
The degradation term includes the ribozyme cleavage efficiency ηi∈[0,1] of

the RiboJ(i) insulator. Uncleaved mRNA degrades more quickly, captured in the
parameter b= 2, the value of which is obtained from the literature139. The
mRNA degradation rate γ= 0.0067 s−1 is also taken from the literature and
assumed to be equal for all the circuit mRNAs8,63. The next gate on the circuit
DNA has a similar form, except that it also has the possibility of RNAP read-
through from the upstream gate (PhlF) due to an imperfect terminator. This can
be written as

dmsrpR

dt
¼ JsrpR � γ η10 1� bð Þ þ b

� �
msrpR

ð8Þ

JsrpR ¼ yBAD;1 þ yTet;1 þ
JphlF
T37

ð9Þ

where the last term captures the read-through due to the terminator (Eq. 7). The
terminator strength is T37 (subscript is the last two digits of the terminator
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name), the value of which is ratio of RNAPs that are blocked versus
progressed27. The mRNAs produced by the remaining genes in the circuit are
expressed as:

dmbm3R1

dt
¼ Jbm3R1 � γ ηsarJ 1� bð Þ þ b

� �
mbm3R1 ð10Þ

Jbm3R1 ¼ yPhlF þ yHlyIIR þ
JsrpR
T00

ð11Þ

dmbetI

dt
¼ JbetI � γ η57 1� bð Þ þ b

� �
mbetI ð12Þ

JbetI ¼ yAmtR þ yAmeR þ
Jbm3R1

T2P11
ð13Þ

dmameR

dt
¼ JameR � γ η54 1� bð Þ þ b

� �
mameR ð14Þ

JameR ¼ yTet;2 þ
JbetI
T3P11

ð15Þ

dmhlyIIR

dt
¼ JhlyIIR � γ η51 1� bð Þ þ b

� �
mhlyIIR

ð16Þ

JhlyIIR ¼ yTac þ
JameR

T31
ð17Þ

dmamtR

dt
¼ JamtR � γ ηbydvJ 1� bð Þ þ b

� �
mamtR ð18Þ

JamtR ¼ yBAD;2 þ
JhlyIIR
T36

ð19Þ

where the flux terms Ji capture all the transcription coming from upstream of the
gate because they are all oriented in the same direction. Finally, the transcription
of yfp from the circuit output promoter is written as

dmyfp

dt
¼ yBM3R1 � γ ηriboJ 1� bð Þ þ b

� �
myfp

ð20Þ
The induction of the sensor and gate output promoters is assumed to be fast

with respect to the repressor production or degradation140. The pseudo-steady-
state approximation allows the response function of the gates to be used to
calculate the activity of the output promoter as a function of the number of
repressor proteins in the cell,

yi ¼ ymin;i þ ymax;i � ymin;i

� � knii
knii þ Rni

i

ð21Þ

where ymin,i, ymax,i and ni for gate i are measured from the RNA-seq data (Tables 1
and 2, and Supplementary Fig. 19). The term ki is the binding constant of repressor
i to the output promoter of gate i and is in units of protein number. This is related
to the term Ki used in the response function of gate i (Supplementary Fig. 19, in
units of RNAP/s), through

ki ¼
αi

γμ ηi 1� bð Þ þ b
� �

 !
Ki ð22Þ

where αi is the translation efficiency of the RBS controlling the translation of the
repressor mRNA, μ= 0.00026 s−1 is assumed to be dominated by cell division (the
magnitude of which corresponds to a 45 min doubling time). Fits for the
calculation of the ki for each gate are shown in Supplementary Fig. 19. Note that
the parameters in Eq. 22 are not varied as part of the sensitivity analysis; rather, the
simulation of the mutation of the output promoter is done by varying ki. Finally,
the number Ri of protein i in the cell can be calculated using simple mass action
kinetics and the mRNA number:

dRphlF

dt
¼ αP3mphlF � μRphlF

ð23Þ

dRsrpR

dt
¼ αS2msrpR � μRsrpR

ð24Þ

dRbm3R1

dt
¼ αB2mbm3R1 � μRbm3R1 ð25Þ

dRbetI

dt
¼ αE1mbetI � μRbetI ð26Þ

dRameR

dt
¼ αF1mameR � μRameR ð27Þ

dRhlyIIR

dt
¼ αH1mhlyIIR � μRhlyIIR

ð28Þ

dRamtR

dt
¼ αA1mamtR � μRamtR ð29Þ

dRyfp

dt
¼ α64myfp � μRyfp

ð30Þ

The equations are numerically solved using Python and the forward Euler
method (δt= 10 s) and typically solved to 12 hours. For each simulation trajectory,
the equations are initiated by solving them until they reach steady-state under the
initial states of the sensor inputs, noting that two sensors control two identical
promoters in the circuit [yTac, (yTet,1, yTet,2), (yBAD,1, yBAD,2)]. At t= 0, a step change
is applied to change the sensor promoters to their new activities. The on/off values
used for the promoters are: 0.045/0.0000018 RNAP/s (yTac), 1.537/0.0000266
RNAP/s (yTet,1), 0.982/0.0000018 RNAP/s (yTet,2), 0.043/0.0000018 RNAP/s
(yBAD,1), 0.054/0.0000037 RNAP/s (yBAD,2), also measured from RNA-seq data
(Table 1). For the sensitivity analysis, one input variable was moved keeping all
others at their nominal values. For each of 8 induction states, a full simulation
trajectory (including reinitialization) was then run to 12 h with the new input
variable. The YFP protein level at steady-state (end value of the simulation
trajectory) was obtained for all eight induction states. The circuit by design has two
on states (+/–/–, +/+/+) with IPTG/aTc/Ara induction, and six OFF states (the
remaining combinations of inducers). The circuit score is calculated by taking the
minimum RYFP of the two states that should be on, and dividing it by the
maximum RYFP of the six states that should be off. This process was repeated
with 1000 different values for each input variable, the variable was then returned
to its nominal value before the sensitivity analysis was conducted for the next
variable. Changes in circuit score as a function of each input variable are plotted in
Fig. 5c; a circuit score less than 1 renders the circuit nonfunctional. A higher
margin of circuit score= 3 was used as a cutoff for the plots. Parameters for the
promoters are plotted for y/N, where N= 9 is the plasmid copy number for p15A
to present in units of RNAP/s per DNA. For PBM3R1, N= 4 is used due to the
output promoter being on a different plasmid than the circuit with a higher copy
number18.

Statistics and reproducibility. For each statistical comparison, R2 and p value
were calculated using corrcoef function in MATLAB (R2020a). When p value
<0.05, the corresponding R2 is considered significant. Cell doubling times and
fluorescence measurements were each repeated three times with similar results. For
each induction state of the circuit, RNA-seq and ribosome profiling were
performed once.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. FPKM, RD, and proteome fraction of all circuit
and genomic proteins are listed in Supplementary Data 1. RNA-seq and ribosome
profiling data collected in this study (both raw and processed) as well as the
Supplementary Data 1 were deposited to Gene Expression Omnibus under the accession
number GSE152664. EcoCyc database (https://ecocyc.org/)133 was used to obtain a list of
DNA-binding proteins in E. coli MG1655 genome, and DNA sequence of E. coli DH10B
genome (NC_010473.1) was obtained from NCBI (https://www.ncbi.nlm.nih.gov/
nuccore/NC_010473). Any other relevant data are available from the authors upon
reasonable request.

Code availability
Python scripts that implement the complete characterization of genetic circuits,
sensitivity analysis, and dynamic model of genetic circuits are released as open‐source
software under the MIT license (GitHub repository: https://github.com/VoigtLab/
Comprehensive_Genetic_Circuit_Analysis).
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