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Cryo-EM structure of coronavirus-HKU1
haemagglutinin esterase reveals architectural
changes arising from prolonged circulation in
humans
Daniel L. Hurdiss 1,2✉, Ieva Drulyte3,5, Yifei Lang1,5, Tatiana M. Shamorkina4, Matti F. Pronker 4,

Frank J. M. van Kuppeveld 1, Joost Snijder4 & Raoul J. de Groot1✉

The human betacoronaviruses HKU1 and OC43 (subgenus Embecovirus) arose from separate

zoonotic introductions, OC43 relatively recently and HKU1 apparently much longer ago.

Embecovirus particles contain two surface projections called spike (S) and haemagglutinin-

esterase (HE), with S mediating receptor binding and membrane fusion, and HE acting as a

receptor-destroying enzyme. Together, they promote dynamic virion attachment to glycan-

based receptors, specifically 9-O-acetylated sialic acid. Here we present the cryo-EM

structure of the ~80 kDa, heavily glycosylated HKU1 HE at 3.4 Å resolution. Comparison with

existing HE structures reveals a drastically truncated lectin domain, incompatible with sialic

acid binding, but with the structure and function of the esterase domain left intact. Cryo-EM

and mass spectrometry analysis reveals a putative glycan shield on the now redundant lectin

domain. The findings further our insight into the evolution and host adaptation of human

embecoviruses, and demonstrate the utility of cryo-EM for studying small, heavily glycosy-

lated proteins.
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Coronaviruses (CoVs) are enveloped positive–sense single–
stranded RNA viruses of mammals and birds with a
propensity to cross host species barriers1. Zoonotic CoV

infections pose an ever-looming threat to public health2. Indeed,
this century alone saw the advent of three novel respiratory CoVs
highly lethal to humans. The 2002/2003 SARS-CoV variant was
quickly contained3,4, and MERS-CoV, natural to dromedary
camels, does not spread efficiently within the human population5.
SARS-CoV-2, however, seems well on course to become estab-
lished in humans6. Four other respiratory coronaviruses of zoo-
notic origin did breach the species barrier successfully and are
maintained worldwide through continuous human-to-human
transmission7. Studies of these latter human CoVs and their
zoonotic ancestors are instrumental in understanding the odds
and risks of CoV cross-species transmission as well as the
requirements for adaptation to the human host.

Human CoVs HKU1 and OC43 (subgenus Embecovirus, genus
Betacoronavirus) are related but distinct8. In immunocompetent
individuals, these viruses are generally associated with common
colds, but may cause significant morbidity and even mortality in
the frail9,10. They entered the human population separately:
HKU1 presumably several hundred years ago from a yet
unknown animal reservoir11,12, whereas OC43 entered far more
recently (70–120 years ago), apparently from a bovine cor-
onavirus (BCoV) spill-over13. These embecoviruses use 9-O-
acetylated sialoglycans (9-O-Ac-Sia) as receptors to which they
attach in a highly dynamic fashion with fast on and off rates via
fusion spike protein S14,15. A second type of envelope protein
unique to embecoviruses, called the haemagglutinin-esterase
(HE), serves as a receptor-destroying enzyme8,16.

CoV HEs are 40–50 kDa type I membrane glycoproteins that
assemble into covalently-linked homodimers, disulfide–bonded in
the juxta-membrane region17. In HEs of animal embecoviruses,
an O-Ac-Sia-binding lectin domain (LD) appended to the esterase
domain (ED) upregulates sialate-O-acetylesterase activity towards
multivalent ligands such as the densely clustered sialoglycans on
mucins8,17–19. However, OC43 and HKU1, subject to convergent
evolution, lost HE lectin function8. Thus, the dynamics of virion-
glycan interactions were altered, and virion-mediated receptor
destruction was restricted, apparently as an adaptation to repli-
cation in the human respiratory tract. For OC43, the phylogenetic
record shows that after its introduction in humans (Supplemen-
tary Fig. 1), HE-mediated receptor binding was selected against
and ultimately lost completely through progressive accumulation
of subtle single site substitutions in LD. In HKU1, HE lectin
function was also lost, but here the LD underwent several
deletions8,20.

For OC43, BCoV and murine embecoviruses8,17–19, HE crystal
apo- and holo-structures revealed how HE LDs bind O-Ac-Sias
and how this property was lost in OC43. HKU1 HE, however,
proved refractory to crystallisation. Exhaustive attempts to solve
its structure and assess the structural consequences of the LD
deletions did not meet with success, prompting us to consider
alternative methods. In the last decade, single-particle analysis by
cryo-electron microscopy (SPA cryo-EM) revolutionised the field
of structural biology with methodological advances now allowing
the visualisation of large biological macromolecules at resolutions
which permit atomic model building21. In the wake of these
innovations, cryo-EM structures were determined for several CoV
S proteins, including those of OC43 and HKU1 to resolutions of
2.8 and 4 Å resolution, respectively15,22. These studies were
greatly facilitated by the considerable size (>400 kDa) and three-
fold symmetry of the S homo-trimers. Because of the low signal-
to-noise ratio of cryo-EM images, SPA reconstruction of speci-
mens smaller than 100 kDa remains problematic and only for a
handful of such proteins, high-resolution (i.e., <3.5 Å) cryo-EM

structures have been resolved23–25. Nevertheless, inspired by
these reports, we explored SPA to characterise the homo-dimeric
HKU1 HE ectodomain, a complex with an ordered protein mass
of 76 kDa plus ~30 kDa of N-glycans, of which 11 kDa are
ordered.

Here we present the structure of HKU1 HE at a global reso-
lution of 3.4 Å. The data reveal that, over centuries of HKU1
circulation in humans, the variable loops that form the LD
receptor-binding site were trimmed back completely. The jelly
roll core structure, on which these loops were grafted, remains
intact, presumably to preserve structure-function of the ED
SGNH hydrolase into which it is embedded. Conceivably, the
conservation of a functionally obsolete but structurally essential
domain in a viral envelope protein may pose an antigenic liability.
The data show that through acquisition of new N-linked glyco-
sylation sites, the HKU1 HE LD domain was provided with a
putative glycan shield. The findings provide structural insight into
the evolution of multidomain proteins after partial loss of func-
tion and a predictive evolutionary trajectory for OC43 HE.

Results
Structure determination of HKU1 HE by cryo-EM. There are
two variants of the HKU1 HE protein, type A and type B, which
share ~85% sequence identity26. For structural analysis, the
HKU1-A HE ectodomain was expressed as an Fc fusion protein
in HEK293T cells and purified by protein A affinity chromato-
graphy, followed by on-the-bead thrombin cleavage to remove the
Fc domain, and size exclusion chromatography (Supplementary
Fig. 2A and Supplementary Table 2). The protein backbone of the
HKU1 HE ectodomain construct has a molecular weight of ~40
kDa but runs as a smeared band between 50 and 75 kDa by SDS-
PAGE analysis (Supplementary Fig. 2B), indicating extensive and
heterogeneous glycosylation. Optimised cryo-EM grids, prepared
with purified HKU1 HE, revealed monodisperse particles in a
variety of orientations (Fig. 1a). Single-particle analysis produced
2D class averages corresponding to different views of the HKU1
HE dimer (Fig. 1b). Subsequently, a 3D reconstruction of HKU1
HE was produced at a global resolution of 3.4 Å (Fig. 1c and
Supplementary Figs. 3 and 4A, B). Local resolution of the map
ranges from 3.3–4.1 Å with the most well-resolved regions located
in the core of the molecule (Supplementary Fig. 4D). The quality
of the map permitted modelling of residues 15–346 (Fig. 1d, e).
Each protomer is stabilised by six disulfide bonds, the presence of
which are corroborated by the cryo-EM density (Fig. 1f).
Dimerisation of HKU1 HE is achieved by interaction of the
vestigial LDs and the membrane-proximal domains (MP)
(Fig. 2a, b).

Comparison of HKU1 HE to those of related embecoviruses.
The overall fold of HKU1 HE is like those of related murine
coronaviruses (MCoVs) and BCoV, which have functional lectin
domains (Fig. 2b–d)17,19. Indeed, comparison of the membrane-
proximal domain and esterase domain of HKU1 to these related
proteins revealed a high-level of structural conservation, with the
aligned Cα positions having RMSD values of 0.81 Å and 0.76 Å for
MCoV-New-Jersey strain (MCoV-NJ), and 0.83 Å and 0.84 Å for
BCoV-Mebus strain. While the core fold of the esterase domain is
similar between all three proteins, the α2 helix of HKU1 more
closely resembles that of BCoV17, and lacks the zinc-binding site
found in MCoV-NJ19 (Fig. 2b–d). The ED catalytic site of HKU1
HE is most similar to that of BCoV, OC43 and MCoV-DVIM
strain (Supplementary Fig. 5A, B), which all recognise 9-O-Ac-Sia.
This is consistent with functional data showing that HKU1
HE possesses sialate-9-O-acetylesterase receptor-destroying activ-
ity8. In contrast, MCoV-NJ HE recognises 4-O-Ac-Sia, thus
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rationalising the differences observed in the active site archi-
tecture19 (Supplementary Fig. 5C).

The lectin domain jelly roll core is essentially conserved in
HKU1, with RMSD values of 0.95 Å and 0.89 Å for BCoV and
MCoV-NJ, respectively. However, whereas in BCoV and MCoVs
extensive loops emanate from this jelly roll core to form the LD
carbohydrate-binding site (CBS), such loops are either much
shorter or absent in the HKU1 HE structure (Fig. 2e–g). As
compared to the BCoV and MCoV HE, HKU1 HE underwent
deletions in the β5–β6 loop, the β7–β8 loop, and β9–β10 loop
(β11–β12 in BCoV) (Fig. 2 and Supplementary Fig. 6). The long
β4–β5 loop has undergone a minor deletion in HKU1 HE but is
also displaced with respect to that of BCoV and MCoV HE,
reaching a maximum distance of 10 Å between residues 144 and
148. In BCoV and MCoV HE, each of these loops participates in
ligand/receptor binding. In addition, the metal binding site (MBS)
which stabilises the β11–β12 CBS loop in MCoV-NJ and BCoV
(β13–β14) is absent in HKU1 (Fig. 2e–g). Two of the three metal
coordinating sidechains, present in BCoV HE (Supplementary
Fig. 7A), are partially conserved in HKU1, indicating that the
MBS was likely present in the ancestral protein. However, the
critical D220 site in BCoV HE falls within the β7–β8 loop deletion
of HKU1 HE (Supplementary Fig. 7B). Thus, HKU1 has lost all

essential components of the HE CBS and the LD domain has been
stripped back essentially to the jelly roll core. Following the
historical nomenclature used for naming jelly roll beta strands
(CHEF and BIDG), the deletions localise to the BC, DE, FG and
HI loops at the thin end of the wedge-shaped beta sandwich
(Supplementary Fig. 8A, B).

Mapping of N-linked glycans by cryo-EM and glycoproteomics.
HKU1 HE contains eight predicted N-linked glycosylation sites
which are strictly conserved between all HKU1 field strains stu-
died so far. To better characterise the occupancy and composition
of each of these N-linked glycosylation sites, we performed in-
depth glycoproteomics profiling of the same recombinant
HEK293T cell-derived material used for cryo-EM. HKU1 HE was
digested in parallel with trypsin, chymotrypsin and alpha-lytic
protease and analysed by reverse phase liquid chromatography
coupled with tandem mass spectrometry. We used electron
transfer high-energy collision dissociation (EThcD) fragmenta-
tion for the identification of N-linked glycopeptides (Supple-
mentary Fig. 8). A total of 150 unique glycoforms were identified
across all 8 N-linked glycosylation sites (Fig. 3a), 99 of which with
sufficient signal for semi-quantitative analysis (Supplementary
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Fig. 1 Structure determination of HKU1 HE by single-particle analysis. a Representative motion-corrected electron micrograph of HKU1 HE embedded in
vitreous ice. Scale bar= 10 nm. b Representative reference-free 2D class averages. c Orthogonal views of the HKU1 HE EM density (coloured by subunit). d
Cartoon representation of the atomic model of the dimeric HKU1 HE complex. e EM density (blue mesh) zoned 2 Å around an α-helix comprising residues
112–132. f EM density (blue mesh) zoned 2 Å around a β-sheet comprising residues 181–188, 219–224 and 243–248.
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Data 1). It should be noted that this semi-quantitative analysis
does not account for potential differences in detection efficiency
between the various glycoforms. A consolidated summary of the
site-specific glycosylation profile by compositional class, fucosy-
lation and sialylation, taken from selected protease datasets, is
presented in Fig. 3a (a full overview of the trypsin, chymotrypsin
and alpha-lytic protease datasets is presented in Supplementary
Fig. 9, with glycoform-specific replicate analyses in Supplemen-
tary Data 1). As expected for materials derived from HEK293T
and related cell-lines27, glycosylation was predominantly of
complex type and very heterogeneous, ranging from 8 to 59
unique glycoforms identified for each site (Fig. 3a). For sites
N145, N168 and N193, situated on the LD loops (Fig. 3b), we also
detected substantial signals for the unmodified asparagines,
without glycosylation. Based on the combined signal intensities of
all glycoforms, we found that the occupancy of those sites is ~81%
for N145, <2% for N168 and 44% for N193. The low occupancy of
N168 agrees with the lack of density observed in the cryo-EM
map (Fig. 3c). Furthermore, the high B-factors of the LD loops
suggests flexibility in this region (Supplementary Fig. 4E), which
explains the limited density for N110, despite having 100%
occupancy. With the exception of N168, the first core N-acetyl
glucosamine (GlcNAc) was modelled for each of the LD loop
glycans (Fig. 3c). The remaining four sites are fully occupied
based on our MS data, in accordance with strong densities
observed in the cryo-EM map. Indeed, we were able to model the
entire Man3,GlcNAc2 core for N286 (Fig. 3c). Apart from dif-
ferences in glycan occupancy, we also observed marked differ-
ences in glycan composition. Whereas the overall pattern is
dominated by complex glycosylation, sites N83 and N328 show
predominant hybrid and high-mannose glycosylation, respec-
tively. Sites N110 and N145, which contain mostly complex
glycans, are also heavily (core) fucosylated and contain higher
numbers of sialic acids. Whereas glycosylation varies substantially
from site to site, and is very heterogeneous, we did identify a set

of glycan compositions that are highly abundant and shared at
the majority of sites, as listed in Supplementary Table 3.

Glycosylation of HKU1 HE lectin domain. Side-by-side com-
parison of HKU1, MCoV-NJ, BCoV and OC43 reveals that
HKU1 HE lectin domain has a much flatter topography
(Fig. 4a–d). In addition to the dramatically altered LD, HKU1 has
undergone substantial changes in the pattern of N-linked glyco-
sylation in this region. Interestingly, the conserved N-linked
glycan present at the LD dimer interface in MCoV-NJ (N241),
BCoV (N236) and OC43 (N235) is lost in HKU1 (Fig. 4e–h).
Compared to related embecoviruses, the LD of HKU1 has four
unique N-linked glycosylation sites: N110, N145, N168 and N193,
two of which localise to the remnants of the elongated β5-β6 loop
and β7-β10 loop. The small β4-β5 loop deletion in HKU1 dis-
rupts a conserved glycosylation site in OC43, BCoV and MCoV-
DVIM (Supplementary Fig. 6). However, HKU1 reacquired an
equivalently positioned glycan (N145) in the β4-β5 loop (Fig. 4a).
Interestingly, HKU1 and OC43 have independently acquired a
glycan adjacent to the former sialic acid binding site, N110 and
N114, respectively (Fig. 4a, d). When viewed in the context of the
dimeric structure, HKU1 appears to have distributed its N-linked
glycans to the periphery of the lectin domain.

In an attempt to understand the evolutionary benefit of LD
loop deletions and increased N-linked glycosylation, we first
looked at the sequence conservation of BCoV HE. The BCoV LD
exhibits modest sequence variation which localises primarily to
the prominent β5–β6 loop, which participates in 9-O-Sia binding
(Fig. 5a). In contrast, comparison of available HKU1-HE
sequences reveals greater overall sequence variation on the
vestigial LD (Fig. 5b). In the sharpened cryo-EM map, the glycans
on the LD are not visible beyond the first core GlcNAc. However,
mass spectrometry analysis confirms that these primarily contain
complex glycans, comprising between 9 and 16 saccharide units.
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Fig. 2 Comparison of HKU1 HE to related embecoviruses. a Linear representation of HE domain organisation. The membrane-proximal domain (MPD),
esterase domain (E) and receptor domain (R) are coloured red, green and blue, respectively. Grey segments indicate the signal- peptide (SP) and
transmembrane (TM) domain. The bracket indicates the part of the protein for which the structure of HKU1 HE was solved. b Ribbon representation of the
dimeric HKU1-A HE (residues 15–346), c MCoV-NJ HE (PDB ID: 5JIL, residues 20–388) and d BCoV-Mebus HE (PDB ID: 3CL5, residues 19–376)
structures. One monomer is coloured grey, the other by domain organisation shown in (a). Bound 4-O-acetylated (MCoV) or 9-O-acetylated (BCoV) sialic
acid is coloured orange. Sodium (MCoV) and potassium (BCoV) ions are coloured purple and zinc is grey. e Expanded view of the region corresponding to
the LD carbohydrate-binding site (CBS) in HKU1 HE, f MCoV, and g BCoV.
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To understand where these lesser-ordered regions are situated, a
difference map of the N-linked glycans was generated and a
gaussian filter was applied in order to highlight low resolution
features. Interestingly, the disordered portion of these glycans
forms a crown of glycan density, which encircles the LD and
covers much of its surface (Fig. 5c). Of note, density belonging to
the N110 glycan of HKU1 overlaps with the former sialic acid
binding site. Side-by-side comparison shows that the LD of
HKU1 is ~8 Å shorter than BCoV, with none of the CBS loop
remnants protruding above the glycan crown (Fig. 5d–f). While
our mass spectrometry data reveals that the N168 site is only 1.6%
occupied, we do observe difference density which extends

tangentially from this position. The esterase domain active site
is highly conserved in both BCoV and HKU1 (Fig. 5d–f).

Discussion
Coronaviruses pose a constant zoonotic threat, as poignantly
illustrated by the ongoing SARS-CoV-2 pandemic6. It is, there-
fore, of relevance to understand how they cross-species barriers
and subsequently adapt to their new hosts. Viruses in the sub-
genus Embecovirus, a minor clade in the genus Betacoronavirus,
seem particularly apt at crossing species barriers. Two of its
members, OC43 and HKU1, arose from separate zoonotic
introductions to become firmly established human pathogens12.
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and coloured according to sequence conservation (67 sequences). N-linked glycosylation sites are labelled, coloured orange and, if modelled, shown as
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Their adaptation to replication in the human respiratory tract
selected for loss of HE-mediated receptor-binding, which in turn
downregulated HE receptor-destroying activity with con-
sequences for dynamic virion-receptor interactions. In OC43,
which emerged only recently13, HE lectin function was reduced
and ultimately lost through accumulation of single site mutations
in LD8. HKU1 likely followed a similar evolutionary trajectory
early upon its entry into the human population, but after pro-
longed circulation11, the HE LD underwent far more con-
sequential structural changes as revealed here by our cryo-EM
analysis. Its overall structure is still highly similar to that of other
CoV HEs, especially in the ED. Of the LD, the jelly roll core
remains intact, but the CBS loops are almost completely gone
and, concomitantly, the number of N-linked glycosylation sites
increased. The data suggest that during HKU1 evolution, the LD
was trimmed back substantially, once it became functionally
obsolete. However, the core structure of the LD and the integrity
of its fold are essential for the correct folding and function of the
esterase domain and so it remains a functional module. The
findings beg the question as to why the CBS loops were deleted.
One possible explanation is that the protruding surface-exposed
regions of the LD, once they lost their function in ligand binding,
remained an antigenic liability. Indeed, embecovirus HEs are
under selective pressure of the humoral immune response, as
antibodies against HE neutralise BCoV and OC43 infectivity
in vitro and confer protection against BCoV and MCoV
in vivo28–31. The considerable sequence variation in the
remaining surface exposed LD regions of HKU1 HE is suggestive
of immune pressure26,32.

Compared to HEs that retain their receptor-binding function,
the LD of HKU1 HE exhibits increased N-linked glycosylation.
There are eight N-linked glycosylation sites (Supplementary
Fig. 10), strictly conserved among HKU1 HEs, four of which
encircle the LD. Remarkably, however, the LD dimer interface
glycan conserved in BCoV, MCoV and OC43, was lost in HKU1
(Fig. 4e–h). Conceivably, this dimer interface glycan could serve a
structural role in stabilizing the CBS architecture, no longer
required in HKU1 HE. Here we show that the site-specific glycan
occupancy and composition varies widely from site to site,
including those in the LD, in the recombinant materials used for
these structural studies. Previous glycoproteomics analyses of
coronavirus spike proteins have suggested that site-specific glycan
processing and distribution of compositional classes are accu-
rately represented in recombinant materials, compared to whole
virions33. Whether this is also the case for HKU1 HE remains to
be investigated, but this represents a significant challenge due to
the difficulties of culturing HKU1 virions in sufficiently large
quantities34. Our data suggest that in the context of recombinant
expression in HEK293T cells, the HKU1 HE ectodomain struc-
ture poses several local restrictions to glycan occupancy and
processing, resulting in a highly varied site-specific glycosylation
pattern.

There are several possible explanations for the newly acquired
N-linked glycans in the LD, including (i) with loss of the
hydrophilic LD loops they add hydrophilicity and thereby aid
folding of the hydrophobic core (Supplementary Fig. 11), (ii) they
form a glycan shield, and/or (iii) some of them contributed to loss
of receptor-binding function early on in HKU1 evolution. With
respect to the latter option, the introduction of a glycan at N110
would predictably have sterically hindered receptor binding in the
context of a functional LD, as its calculated difference density
would have overlapped with the 9-O-Ac-Sia binding site. Indeed,
in OC43 HE, the introduction of a glycosylation site at residue
114 in the same loop was one of four mutations acquired early
after viral introduction in humans, and which contributed the
most to loss of CBS affinity8.

During circulation of OC43 in the last 70–120 years, the HE
LD lost its capacity to bind 9-O-Ac-Sia through the accumulation
of single site mutations, but its structure remained essentially
intact. Over a longer timespan OC43 HE may well follow the fate
of its HKU1 homologue, however, through similar deletions of
the surface-exposed loops in the LD.

From a general evolutionary perspective, our data offers
insights into how viruses deal with a structurally integral but
functionally obsolete component of multidomain proteins. A
number of parallels can be drawn between our observations of
HKU1 HE and the haemagglutinin (HA) protein of influenza
viruses. Firstly, the presence of a vestigial lectin domain in HKU1
HE is reminiscent of the vestigial esterase domain observed in the
HA protein of influenza A and B viruses35, albeit over a much
shorter evolutionary period. In addition, similarly to the HKU1
and OC43 HEs, the HAs of both H1N1 and H3N2 influenza
viruses have acquired and retained N-glycosylation sites since
their introduction to humans, most of which localise to the
variable globular head domain36. Finally, receptor binding site
loop deletions have also been reported for H7N2 and H9N2 avian
influenza HA. In both cases, sialic acid binding was retained but
the receptor preference was altered. In the latter example, these
deletions were shown to facilitate immune escape37,38.

Our findings reinforce the notion that for embecoviruses, the
HE, in addition to S, should be considered a viable candidate for
vaccine development. Moreover, the highly conserved HE ester-
ase active site offers an attractive target for the development of
broad-spectrum antivirals against OC43 and HKU1 as well as
against novel human embecoviruses, should such emerge in the
future. By demonstrating that cryo-EM can be used to study CoV
HEs at high-resolution, we expand the structural biology toolkit
for future research, which may focus on antibody or inhibitor
complexes.

Methods
Protein expression and purification. The human codon-optimised sequence for
HKU1 HE (Q5MQD1) was cloned into a pCD5-T-Fc expression plasmid17. The
resulting construct encodes a chimeric protein comprising of the HE ectodomain
fused to the human IgG1 Fc domain, with the domains separated by a thrombin
cleavage site. The HE-Fc was produced by transient expression in HEK293T cells
grown in 293 SFM II expression medium (Invitrogen) supplemented with 44.1 mM
sodium bicarbonate, 11.1 mM glucose, Primatone RL-UF (3.0 g/liter), penicillin
(100 IU/ml), streptomycin (100 μg/ml), 1% glutaMAX (Gibco), and 1.5% DMSO.
The HE-Fc was then purified from cell culture supernatants by protein A affinity
chromatography (GE Healthcare). The HE-Fc bound protein A beads were pelleted
at 400 × g, washed four times with cleavage buffer (10 mM Tris-HCl pH 8.2 con-
taining 50 mM NaCl), followed by on-bead thrombin (Sigma Aldrich) cleavage
overnight at room temperature17. The next day, the beads were pelleted, the HE
ectodomain in the supernatant was concentrated to a volume of ~150 µl and
injected on a Superdex200 increase column (GE Healthcare) pre-equilibrated in 10
mM Tris-HCL pH 8 and 50 mM NaCl. Monodisperse dimeric fractions were
concentrated to a final concentration of 4.0 mg/ml (Supplementary Fig. 1A).
Sample purity was assessed by SDS-PAGE gel analysis (Supplementary Fig. 1B).

Cryo-electron microscopy. Three μl of purified HKU1 HE (4 mg/ml) was dis-
pensed on Quantifoil R1.2/1.3 200-mesh grids (Quantifoil Micro Tools GmbH)
that had been freshly glow discharged for 30 seconds at 20 mA using GloQube
Glow Discharge system (Quorum Technologies). Grids were blotted for five sec-
onds using Whatman No. 1 filter paper and immediately plunge-frozen into liquid
ethane cooled by liquid nitrogen using a Vitrobot Mark IV plunger (Thermo Fisher
Scientific) equilibrated to ~95% relative humidity, 4 °C. Movies of frozen-hydrated
HKU1 HE were collected using Titan Krios G4 Cryo-TEM (Thermo Fisher Sci-
entific) operating at 300 keV and equipped with a Falcon 4 Direct Electron
Detector (Thermo Fisher Scientific). All cryo-EM data were acquired using the
EPU 2 software (Thermo Fisher Scientific). Microscope was aligned to produce
fringe-free imaging (FFI) allowing five acquisition areas within a hole and
aberration-free image shift (AFIS) was used to acquire images from up to 21 holes
per single stage move. Movies were collected in electron counting mode at 96,000×
corresponding to a calibrated pixel size of 0.805 Å/pix over a defocus range of −1.0
to −2.5 μm. 6,029 movies were collected using a dose rate of 5 e−/pix/s for a total of
5.6 s (207 ms per fraction, 27 fractions), resulting in a total exposure of ~40 e−/Å
(1.5 e−/Å2/fraction).
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Image processing. Collected movie stacks were manually inspected and then
imported in Relion version 3.0.1.39 Drift and gain correction were performed
with MotionCor240, and GCTF41 was used to estimate the contrast transfer
function for each movie. Movies with a GCTF-estimated resolution of 10 Å or
worse were discarded. One thousand particles were picked manually and 2D
classified. The resulting classes were then used as templates for autopicking in
Relion, resulting in 936,260 particles. Fourier binned (2 × 2) particles were
extracted in a 90 pixel box and subjected to a round of 2D classification after
which 565,194 particles were retained. Using the ‘molmap’ command in UCSF
chimera42, the HKU1 HE homology model was used to generate a 40 Å reso-
lution starting model for 3D classification. Particles selected from 2D classifi-
cation were subject to a round of 3D classification (with C2 symmetry). Particles
belonging to the best class (119,717 particles) were re-extracted unbinned in a
320 pixel box to ensure delocalised high-resolution information was not
excluded. Subsequent 3D auto-refinement (with C2 symmetry) and post-
processing yielded a map with a resolution of 3.79 Å. Further sub-classification
attempts did not lead to improvements in map quality or resolution. Per particle
defocus estimation improved the resolution to 3.73 Å. Relion’s Bayesian pol-
ishing procedure was then performed on these particles, with all movie frames
included, which produced a 3.68 Å map43. Next, particles were assigned to their
respective AFIS group and subject to beam-tilt refinement, which further
improved the resolution to 3.48 Å. Data processing were then continued in
Relion version 3.1b44, where a final round of per-particle defocus and per-
micrograph astigmatism estimation was performed. This produced a 3.39 Å
resolution map, based on the gold-standard FSC= 0.143 criterion. A negative B-
factor of −122 Å2 was applied during the final post-processing step. Local
resolution estimations were performed using Relion. An overview of the data
processing pipeline is shown in Supplementary Fig. 2.

Model building and refinement. Initially, a homology model of HKU1 HE
(uniprot ID: Q5MQD1) was generated using the phyre2 server45. Each protomer
was individually fitted in EM density map using the UCSF Chimera ‘fit in map’
tool42. The resulting dimeric model was then edited in Coot using the ‘real space
refinement’, carbohydrate module and ‘sphere refinement’ tools46,47. Iterative
rounds of manual fitting in Coot and real space refinement in Phenix48 were
carried out to improve non-ideal rotamers, bond angles and Ramachandran out-
liers. During real space refinement, secondary structure and NCS restraints were
imposed. Validation was carried out using Molprobity (general/protein49) and
Privateer50,51. All data collection, image processing and refinement information
can be found in Supplementary Table 1.

Analysis and visualisation. The N-linked glycan difference map was generated in
UCSF chimera42. Firstly, the ‘molmap’ command was used to generate a 4 Å
resolution density map from the fitted protein-only atomic coordinates of the
HKU1 HE dimer. This simulated map was then resampled on the grid of the
experimental cryo-EM density map using the ‘vop resample’ command. Subse-
quently, a gaussian filter (σ= 4) was applied to the simulated and experimental
map using the ‘volume filter’ tool. The ‘vop subtract’ command was then used to
subtract the value of the simulated map from the experimental map. The ‘minRMS’
option was used to automatically scale the simulated map to minimize the root-
mean-square sum of the resulting subtracted values at grid points within the lowest
contour of the simulated map. The location of the resulting difference density
agreed with the location of the modelled N-linked glycans, and disordered N and
C-terminal regions located at the membrane-proximal region. A similar difference
map could be obtained by using the ‘color zone’ tool to erase cryo-EM density
within 3 Å of a fitted protein-only atomic coordinates and then applying a gaussian
filter (σ= 4) to the remaining density. Multiple sequence alignments of BCoV and
HKU1 HE were generated using NCBI BLAST and subsequently plotted onto their
respective structures using UCSF Chimera (Supplementary Data 2). Alignment of
the representative HKU1 genotype A and B sequences (Supplementary Fig. 10) was
generated using the EMBL-EBI Clustal Omega programme52. Surface colouring of
BCoV and HKU1 HE using the Kyte-Doolittle hydrophobicity scale was performed
in UCSF chimera. RMSD values were calculated using the ‘MatchMaker’ tool of
UCSF Chimera with default settings. Figures were generated using UCSF Chi-
mera42, UCSF ChimeraX53 and PyMOL (The PyMOL Molecular Graphics System,
Version 2.0, Schrödinger, LLC).

Sample preparation for glycoproteomics analysis. Nine μg of CoV-HKU1 HE
were incubated in 100 mM Tris pH 8.5, 2% sodium deoxycholate, 10 mM tris(2-
carboxyethyl)phosphine, and 40 mM iodoacetamide at 95 °C for ten minutes and at
25 °C for 30 min in the dark. Denatured, reduced and alkylated CoV-HKU1 HE (3
μg) was then diluted into fresh 50 mM ammonium bicarbonate and incubated
overnight at 37 °C either with 0.056 μg of trypsin (Promega), chymotrypsin (Sigma
Aldrich) or alpha-lytic protease (Sigma Aldrich). Formic acid was then added to a
final concentration of 2% and the samples were centrifuged at 21,100 × g for 20 min
at 4 °C, followed by another round of centrifugation for 5 min to precipitate the
sodium deoxycholate and collect the peptides from the supernatants. Then, the
CoV-HKU1 HE tryptic, chymotryptic and alpha lytic protease digests were desalted

using 30 µm Oasis HLB 96-well plate (Waters). The Oasis HLB sorbent was acti-
vated with 100% acetonitrile and subsequently equilibrated with 10% formic acid in
water. Next, peptides were bound to the sorbent, washed twice with 10% formic
acid in water and eluted with 100 µL of 50% acetonitrile/5%formic acid (v/v). The
eluted peptides were vacuum-dried and resuspended in 100 µL of 2% formic acid
in water.

Mass spectrometry. Six μl of resuspended peptides for the glycoform identifica-
tion and two μl two-fold diluted peptides for the glycoform quantification were run
on an Orbitrap Fusion Tribrid (ThermoFisher Scientific, Bremen) mass spectro-
meter coupled to nanospray UHPLC system Agilent 1290 (Agilent Technologies)
in duplicates. A 90-min LC gradient from 0% to 35% acetonitrile was used to
separate peptides at a flow rate of 300 nl/min. A Poroshell 120 EC C18 (50 cm × 75
µm, 2.7 µm, Agilent Technologies) analytical column and a ReproSil-Pur C18 (2
cm × 100 µm, 3 µm, Dr. Maisch) trap column were used for the peptide separation.
The data were acquired in data-dependent mode. Orbitrap Fusion parameters for
the full scan MS spectra were as follows: an AGC target of 4 × 105 at 60,000
resolution, scan range 350–2000m/z, Orbitrap maximum injection time 50 ms. Ten
most intense ions (2+ to 8+ ions) were subjected to fragmentation with electron-
transfer/higher energy collision dissociation ion fragmentation scheme54. The
supplemental higher energy collision dissociation energy was set at 30%. The
MS2 spectra were acquired at a resolution of 30,000 with an AGC target of 5∗105,
maximum injection time 250 ms, scan range 120–4000m/z and dynamic exclusion
of 16 s.

Mass spectrometry data analysis. The acquired data were analysed using
Byonic55 against a custom database of recombinant CoV-HKU1 HE protein and
used proteases, searching for glycan modifications with 12/24 ppm search win-
dows for MS1/MS2, respectively, and a False Discovery Rate (FDR) set to 1%. Up
to three missed cleavages were permitted using C-terminal cleavage at R/K for
trypsin, F/Y/W/M/L for chymotrypsin and T/A/S/V for alpha-lytic protease.
Carbamidomethylation of cysteine was set as fixed modification, methionine
oxidation as variable common 1, glycan modifications as variable common 2,
allowing up to max. 2 variable common parameters per one peptide. A glycan
database containing 305 N-linked glycans was used in the search. Glycopeptide
hits reported in the Byonic results file were initially accepted if the Byonic score
was ≥200, LogProb ≥2, and peptide length was at least 6 amino acids. Accepted
glycopeptides were manually inspected for quality of fragment assignments. The
glycopeptide was considered true-positive if the appropriate b, y, c and z frag-
ment ions were matched in the spectrum, as well as the corresponding oxonium
ions of the identified glycans. All glycopeptide identifications were merged into a
single non-redundant list per sequon. Glycans were classified based on HexNAc
content as high-mannose (2 HexNAc), hybrid (3 HexNAc) or complex (>3
HexNAc). Byonic search results were exported to mzIdentML format to build a
spectral library in Skyline56 and extract peak areas for individual glycoforms
from MS1 scans. The full database of variable N-linked glycan modifications
from Byonic was manually added to the Skyline project file in XML format.
Glycopeptide identifications from Byonic were manually inspected in Skyline
and evaluated for correct isotope assignments and well-defined elution profiles,
suitable for peak integration. In the case of multiple missed cleavages, reporting
on the same site-specific glycoform, peak areas were summed in the semi-
quantitative analysis. Reported peak areas were pooled based on the number of
HexNAc, Fuc or NeuAc residues to distinguish high-mannose/hybrid/complex
glycosylation, fucosylation and sialylation, respectively. The semi-quantitative
analysis of the glycosylation profile was performed per site, per protease. For the
data presented in Fig. 3a, protease datasets were selected based on coverage and
overall signal for the corresponding glycosylation site. The quantified data were
represented with GraphPad Prism 8 software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Coordinates are deposited in the Protein Data Bank under accession code 6Y3Y. The
corresponding EM density maps (final unsharpened, sharpened, local resolution filtered,
half maps, N-linked glycan difference map, and mask) have been deposited to the
Electron Microscopy Data Bank under the accession EMD-10676. The unaligned gain-
normalised movies are available on the Electron Microscopy Public Image Archive under
the accession EMPIAR-10390. The raw LC-MS/MS files and glycoproteomics analyses
have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD017545. All reagents and relevant data are
available from the authors upon request.
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