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Phase of firing coding of learning variables
across the fronto-striatal network during
feature-based learning
Benjamin Voloh1, Mariann Oemisch1 & Thilo Womelsdorf 1✉

The prefrontal cortex and striatum form a recurrent network whose spiking activity encodes

multiple types of learning-relevant information. This spike-encoded information is evident in

average firing rates, but finer temporal coding might allow multiplexing and enhanced readout

across the connected network. We tested this hypothesis in the fronto-striatal network of

nonhuman primates during reversal learning of feature values. We found that populations of

neurons encoding choice outcomes, outcome prediction errors, and outcome history in their

firing rates also carry significant information in their phase-of-firing at a 10–25 Hz band-

limited beta frequency at which they synchronize across lateral prefrontal cortex, anterior

cingulate cortex and anterior striatum when outcomes were processed. The phase-of-firing

code exceeds information that can be obtained from firing rates alone and is evident for inter-

areal connections between anterior cingulate cortex, lateral prefrontal cortex and anterior

striatum. For the majority of connections, the phase-of-firing information gain is maximal at

phases of the beta cycle that were offset from the preferred spiking phase of neurons. Taken

together, these findings document enhanced information of three important learning vari-

ables at specific phases of firing in the beta cycle at an inter-areally shared beta oscillation

frequency during goal-directed behavior.
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The lateral prefrontal cortex (LPFC) and anterior cingulate
cortex (ACC) are key brain regions for adjusting to
changing environmental task demands1,2. Both regions

project to partly overlapping regions in the anterior striatum
(STR), which feeds back projections via the thalamus and thereby
close recurrent fronto-striatal-thalamic loops3. Neurons in this
recurrent network encode multiple learning variables during goal-
directed behaviors, including the value of currently received
outcomes, a memory of recently experienced outcomes, and a
reward prediction error that indicates how unexpected currently
received outcomes were given prior experiences4,5.

The multiplexing of outcomes, outcome history and outcome
unexpectedness (prediction errors) within the same neuronal
population is evident in firing rate modulations in fronto-striatal
brain areas6, but how this firing is temporally organized within
the larger network is unresolved7–9. A large body of evidence has
shown that ACC and LPFC synchronize their local activities at a
characteristic beta oscillation frequency10–13, and that both areas
engage in transient beta rhythmic oscillatory activity with the STR
during complex goal-directed tasks14–17. However, whether this
beta oscillatory activity is informative for learning and behavioral
adjustment has remained unresolved18–20. Prior studies have
documented that beta activity emerges specifically during the
processing of outcomes following correct trials during habit
learning17, and that, following error trials, overall beta activity is
larger when the committed error is smaller21. However, these
studies did not quantify whether neuronal spiking activity syn-
chronizing to these beta oscillations contains learning-relevant
outcome information.

We, therefore, aimed to test how outcome-related beta rhyth-
mic spiking activity relates to the behavioral learning of reward
rules in ACC, LPFC, and STR. First, we quantified firing rate
information about current outcomes, prediction errors of these
outcomes, and the history of recent reward. These variables might
be conveyed independently of network-level beta oscillatory
activity. However, theoretical studies suggest that neuronal

coding utilizing temporal organization can be efficient, high in
capacity, and robust to noise7,8,22,23. In addition, coding of
information in the temporal activity pattern has been linked to
mechanisms of efficient communication among neuronal groups,
suggesting that coherently synchronized groups can exchange
information by phase aligning their disinhibited activity peri-
ods24–30.

To test the role of temporal coding, we recorded from LPFC,
ACC, and STR while macaque monkeys engaged in trial-and-
error reversal learning of feature reward rules. We found that
during outcome processing, each area contains segregated
ensembles of neurons whose firing rates encode the current
Outcome (firing differently for correct vs. errors), the
Reward Prediction Error of those outcomes (firing differently to
an outcome when it differed versus was the same than in the
previous trial, as in e.g.,31,32), and the recent Outcome History
(increasing firing when the current outcomes matched previous
outcomes). A large proportion of rate coding neurons phase-
synchronized long-range to remote areas of the fronto-striatal
network at a shared 10–25 Hz beta frequency range. We found
that for those neurons that phase-synchronize long-range, the
three learning variables are encoded more precisely for spikes
elicited at narrow oscillation phases in the beta band. This phase-
of-firing gain of encoding significantly enhances the firing rate
code and occurs at phases that were partly away from the neu-
rons’ preferred spike phase. These findings document that neural
coding of learning variables is enhanced through the phase of
firing across the ACC, LPFC, and STR of nonhuman primates.

Results
Previous outcomes guide choice. Animals performed a feature-
based reversal-learning task5. Subjects were shown two stimuli
with opposite colors and had to learn which of them led to reward
(Fig. 1a). The same color remained associated with reward for at
least 30 trials before an uncued reversal switched the color-reward
association (Fig. 1b). During each trial, the subjects monitored the
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Fig. 1 Task design and performance. a Feature-based reversal-learning task. Animals are presented with two black/white stimulus gratings to the left and
right of a central fixation point. The stimulus gratings then become colored and start moving in opposite directions. Dimming of the stimuli served as a Go
signal. At the time of the dimming of the target stimulus the animals had to indicate the motion direction of the target stimulus by making a corresponding
up or downward saccade in order to receive a liquid reward. Dimming of the target stimulus occurred either before, after or at the same time as the
dimming of the distractor stimulus. b The task is a deterministic reversal-learning task, whereby only one color is rewarded in a block. This reward
contingency switches repeatedly and unannounced in a block-design fashion. c Accuracy relative to block start for monkey HA (orange) and KE (blue). The
shaded region represents the standard error. Subjects achieved plateau performance within 5–10 trials d Median beta coefficients from a binomial
regression of current outcome as predicted by past outcomes. The shaded region represents the standard error. Outcomes up to three trials into the past
predicted current outcome (Wilcoxon signrank, two-sided multiple comparison corrected; stars represent p < 0.05). e Schematic depicting recorded
brain areas.
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stimuli for transient dimming events in the colored stimuli. They
received a fluid reward when making a saccade in response to the
dimming of the stimulus with the reward associated color, while
the dimming of the non-reward associated color had to be
ignored. A correct, rewarded saccade to the dimming of the
rewarded stimulus had to be made in the up- or downward
direction of motion of that stimulus. This task required covert
selective attention to one of two peripheral stimuli based on color,
while the overt choice was based on the motion direction of the
covertly attended stimulus. Correct responses were those that
occurred according to the motion direction of the rewarded target
in the correct response window, whereas errors were responses
made to the incorrect, non-rewarded target, or in the incorrect
response window in response to the distractor5. In 110 and
51 sessions from monkey’s HA and KE, respectively, we found
that subjects attained plateau performance of on average 80.2%
(HA: 78.8%, KE: 83.6%) within 10 trials after color-reward
reversal (Fig. 1c). Using a binomial General Linear Model (GLM)
to predict current choice outcomes (outcomes from correct or
erroneous choices, excluding fixation breaks), we found that for
both subjects, outcomes from up to three trials into the past
significantly predicted the current choice’s outcome (Fig. 1d;
Wilcoxon signrank test, p < 0.05, multiple comparison corrected),
closely matching previous findings33.

ACC, LPFC, and STR neurons encode outcomes, their history
and their prediction error. To test how previous and current
outcomes are encoded at the single neuron level, we analyzed a
total of 1460 neurons, with 332/227 (monkey HA/KE) neurons in
LPFC, 268/182 neurons in ACC, and 221/230 neurons in anterior
STR (Fig. 1e, Supplementary Fig. 1). These regions have pre-
viously been shown to encode outcome, outcome history, and
prediction error information5,34–39. We found multiple example
neurons encoding different types of outcome variables. Some cells
responded differently to correct versus erroneous trial outcomes
irrespective of previous outcomes (Fig. 2a), while others respon-
ded strongest when the current outcome deviated from the pre-
vious trials’ outcome (signaling reward prediction error) (Fig. 2b),
or when the current outcome was similar to the previous trials’
outcome, i.e., following a sequence of correct trials or a sequence
of error trials (Fig. 2c).

We quantified these types of outcome encoding using a LASSO
Poisson GLM that predicted the spike counts during the outcome
period (0.1–0.7 s after reward onset) and extracted the character-
istic patterns of beta weights across the past and current trial
outcomes that distinguished different types of outcome encoding
(Fig. 2d). Neurons that encoded mostly the current trials’
outcome showed large weights only for the current trial
(Outcome encoding type). Neurons encoding a prediction error
showed beta weights for previous trials that were opposite in sign
to the current trial’s outcome (Reward Prediction Error (RPE)
encoding type). In neurons encoding the history of recent
rewards, beta weights ramped up over recent trials toward the
current trial outcome (Outcome History encoding type) (for
examples, see also insets in Fig. 2a–c).

We used a clustering analysis to test whether the three types of
outcome encoding were separable from each other and prevalent
in each of the recorded brain areas (Fig. 2e–g, Supplementary
Fig. 2A, B). Clustering showed that neurons encoding each the
three variables were statistically separable with reliable cluster
assignments of neurons evident in an average Silhouette measure
of cluster separability of 0.81 for LPFC, 0.57 for ACC, and 0.75
for STR (Supplementary Fig. 2C)40. The clustering does not
preclude the possibility of a more continuous encoding space, but
it statistically justifies focusing analysis on three sets of neurons

with well distinguishable encoding pattern (see Supplementary
Fig. 2D).

Across the population the proportion of neurons with
significant encoding, Outcome cells were the most populous
(~59%, 234/384 in monkey HA and 185/329 in monkey KE),
followed by ~26% of neurons encoding Reward Prediction Errors
(64/231 in monkey HA and 39/170 in monkey KE) and ~32% of
neurons encoding Outcome History (76/206 in monkey HA and
33/139 in monkey KE) (Fig. 2e–g; χ2 test, χ2= 86.02, p~0). The
relative frequency of these encoding types did not differ between
areas (χ2 test, χ2= 3.64, p= 0.46). On the other hand, the
strength of encoding differed on the basis of area for Outcome
cells (Kruskal–Wallis test, χ2= 26.6, p~0), with stronger encoding
in ACC than LPFC or STR, as well as for Outcome History
encoding cells (χ2-test, χ2= 19.7, p~0) with stronger encoding in
ACC and LPFC than in STR, whereas the strength of RPE
encoding was similar across areas (χ2= 2.49, p= 0.29) (see
Supplementary Fig. 2E for all pair-wise comparisons). In ACC,
LPFC and STR, Outcome, RPE and Outcome History encoding
emerged shortly (within 0.3 s) after outcomes were received (see
“Methods”; Supplementary Fig. 2G, H, Wilcoxon signrank test,
p«0.05). Neurons encoding Outcome, RPE, or Outcome History
showed similar overall firing rates (Supplementary Fig. 2F;
ANOVA; LPFC, F= 1.32, p= 0.27; ACC, F= 0.58, p= 0.58; STR,
F= 1.05, p= 0.35).

Neurons synchronize at a 10–25 Hz beta band across ACC,
LPFC, and STR. We found similar proportions and activation
time courses of encoding neurons in ACC, LPFC and STR
(Supplementary Fig. 2G, H), which raised the question how these
neuronal populations are functionally connected. One possibility
is that neuronal firing patterns are organized temporally, such
that spikes in one area phase synchronized to neuronal popula-
tion activity in remote areas. We assessed synchrony as the phase
consistency of neuronal spikes with local field potential (LFP)
fluctuations in distally recorded areas using the pairwise-phase
consistency (PPC) metric, and converting the PPC values into an
effect size41,42 (Fig. 3a; see “Methods”). Across all (n= 7938)
spike-LFP pairs, we found a pronounced peak of phase syn-
chronization in the beta band (10–25 Hz), with neurons firing on
average ~1.15 times more spikes on their preferred, average phase
than at the opposite phase when considering the population
average in the beta band (Fig. 3b), and ~1.39 times more spikes
on the preferred phase when selecting for each neuron the beta
frequency with peak synchrony (Supplementary Fig. 3A). Pro-
minent beta-band synchrony was evident for neurons that
encoded outcome variables in their firing rates and for those that
did not show encoding (Fig. 3b), with the peak synchrony being
stronger for cell-LFP pairs with non-coding rather than coding
cells (unpaired t-test, T= 7.67, p~0; Supplementary Fig. 3A).
Overall 53% (4230/7938) of the spike-LFP pairs showed sig-
nificant phase synchronization within the 10–25 Hz range
(Fig. 3c; Rayleigh test, p < 0.05, see “Methods” for prominence
criteria), with similar proportions across all three areas (LPFC,
1506/2961, 50.9%; ACC, 1473/2442, 60.3%; STR, 1292/2524,
51.2%).

Consistent with these results we found that the synchrony
effect (the proportion of spikes at preferred over non-preferred
phases) were similarly high for spike-LFP pairs with neurons
encoding Outcome (1.37 ± 0.007), RPE (1.35 ± 0.013), and Out-
come History (1.34 ± 0.011). There was only a trend for
phase synchronization to be different between encoding clusters
(ANOVA, F= 2.8, p= 0.061), which post-hoc analysis
revealed to be driven primarily by differences between Outcome
History and Outcome clusters (p= 0.078, multiple comparison
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corrected), rather than Outcome History and RPE (p= 0.80) or
RPE and Outcome clusters (p= 0.37).

Next, we tested whether spike-LFP synchronization showed
area-specificity for neurons that significantly encoded Outcome,
RPE or Outcome History in their firing rates. For each spike-LFP
pair, we selected the beta band frequency with the most
prominent PPC value. Within-area beta synchrony differed on
the basis of area (ANOVA, F= 32.6, p~0), with the strongest
synchrony within ACC, compared to LPFC (multiple comparison
corrected, p= 0.014) or STR (p~0) (Fig. 3d, e). Synchrony also
differed when assessing spikes and LFPs from different areas
(ANOVA, F= 12.7, p~0), with neurons in ACC showing stronger
between-area spike-LFP synchrony, as compared to LPFC (p~0)
and STR (p= 0.042). We found a trend for stronger between-area
synchrony with spikes originating in STR, as compared to LPFC
(p= 0.058) (Fig. 3d, f). Testing for the reciprocity of beta-band
phase synchrony showed that ACC spikes phase synchronized
more strongly to LFP beta activity in the LPFC than vice versa
(p= 0.047) (Fig. 3g). LPFC and STR pairs showed statistically
indistinguishable spike-phase synchrony strength (p= 0.92), as
did ACC and STR pairs (p= 0.26). The findings were similar

when inter-areal synchrony was analyzed separately at each
frequency (Supplementary Fig. 3b). For both monkeys, neurons
in ACC showed the strongest spike synchronization compared to
neurons from LPFC and STR (the area difference is significant in
monkey HA, and trends the same way in monkey KE; see
Supplementary Fig. 4A). Moreover, across all three areas, the
strength of 15–25 Hz phase synchronization was statistically
indistinguishable in the [−1 0] s. pre-outcome period compared
to the [0.1 1] s. post-outcome period (paired t-test, abs(T) < 1.57,
p > 0.12; Supplementary Fig. 3c). The baseline period ([−1 0]
before stimulus onset) and the post-outcome period showed
similar PPC values in ACC and STR (abs(T) <0.49, p > 0.6), while
LPFC showed stronger phase synchronization in the post-
outcome period (T= 2.82, p= 0.0049; Supplementary Fig. 3C).

Phase-of-firing at 10–25 Hz enhances encoding outcome, pre-
diction error and outcome history. Neurons that synchronized
to the LFP elicit more spikes at their mean spike-LFP phase,
which we denote as the neurons’ preferred spike phase30. This
preferred spike-phase might thus be important to encode
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information shared among areas of the network24,43. We tested
this hypothesis by quantifying how much Outcome, RPE, and
Outcome History information is available to neurons at different
phase bins relative to their mean phase. If the phase-of-firing
conveys information, then differences in spike counts between
conditions should vary across phases, as opposed to a pure firing
rate code that predicts equal information for spike counts across
phase bins (Fig. 4a)44,45. Figure 4b shows an example neuron
exhibiting such phase-of-firing coding (with spikes from ACC
and LFP beta phases from STR). This neuron exhibited increased
firing on error trials compared to correct trials, but only when
considering spikes near its preferred spike phase, with firing at the
opposite phase showing no difference. To quantify this increase of
coding when considering the phase-of-firing code for all three
information types, we selected for each neuron the frequency
within 10–25 Hz that showed maximal spike-LFP synchrony,
subtracted the mean (preferred) spike phase from all phases (i.e.,
setting the preferred phase to zero, to allow for comparison
between neurons), and binned spikes on the basis of the LFP beta
phases. To prevent an influence of overall firing rate changes
between phase bins, we adjusted the width of each of the six-
phase bins to have equal spike counts across bins (see “Meth-
ods”). We then fitted a GLM to the firing rates of each phase bin
separately to quantify the Outcome, RPE, and Outcome History
encoding for each phase bin and compared this phase specific
encoding to a null distribution obtained by randomly shuffling
the spike phases prior to binning. Figure 4c illustrates example
neurons for which the encoding systematically varied as a func-
tion of phase (for more examples, see Supplementary Fig. 5). The
example spike-LFP pair from Fig. 4b encoded the trial Outcome

significantly stronger than a phase-blind rate code in spikes
within ~[-π/2, π/2] radians relative to its preferred spike phase
and weaker than a phase-blind rate code at opposite phases
(Fig. 4c, left); Enhanced phase-of-firing encoding was similarly
evident for RPE and Outcome History as independent variable
(Fig. 4c, middle and right panels).

We estimated the strength of this phase modulation of rate
encoding for each spike-LFP pair as the amplitude of a cosine that
was fit to the phase-binned encoding metric, normalized by the
mean encoding across phase bins, which we term the Phase-of-
Firing Gain (PFG). We further accounted for the positive bias in
cosine amplitude estimation by normalizing this quantity by the
cosine amplitude obtained from fitting the phase-binned metric
after randomly shuffling spike phases. We refer to this difference
of the observed to the randomly shuffled phase modulation of
encoding as the Encoding Phase-of-Firing Gain (EPFG; see
“Methods”). This metric reflects an unbiased ratio of firing rate
differences between preferred and anti-preferred encoding-phase
bins. Of the 876 spike-LFP pairs that significantly synchronized in
the 10–25 Hz band and encoded information in their firing rate,
we found that 139 (16%) spike-LFP pairs showed significant
phase-modulation, i.e., these pairs encoded significantly more
information when taking into account the phase of firing than
their average, phase-blind firing rate (randomization test, p <
0.05). A significant EPFG was evident for neurons whose firing
encoded Outcome (Wilcoxon signrank test, Z= 8.41, p~0), RPE,
(Z= 3.27, p= 0.011), and Outcome History (Z= 3.24, p=
0.012). The EPFG did not differ between these three functional
clusters (Kruskal–Wallis test, χ2= 0.283, p= 0.87) (Fig. 4d).
Similarly, EPFG was evident for spike-LFP pairs when the spiking

LPFC
ACC

ACC
LPFC

LPFC
STR

STR
LPFC

ACC
STR

STR
ACC

Spike:
LFP:

S
pi

ke
-L

F
P

 s
yn

ch
ro

ny
[E

ffe
ct

 s
iz

e]

Spike site

LF
P

 s
ite

ACC

lat. PFC

Ant.
striatum

a

ACC
LPFC

Stria
tum

10 20 30 40 50
1.06

1.1

1.14

1.18

10 20 30 40 50
0

4

8

12

1.36

1.4

1.44

1.48

1.52

1.3

1.34

1.38

1.42

ACC

LPFC

Stria
tum

M
ea

n 
10

-2
5H

z 
sy

nc
. * * **

p = 0.058

ACC
LPFC

Stria
tum

ACC
LPFC

Stria
tum

1.3

1.34

1.38

1.42

1.46 *

%
 S

pi
ke

-L
F

P
 p

ai
rs

 w
ith

si
gn

. s
yn

c.

Non-coding 

spike site

Coding 

spike site

Mean 10–25 Hz 
spike-LFP synchrony Within-area

pairs
Between-area

pairs
Reciprocal

pairs

n = 4230

Frequency (Hz) Frequency (Hz)

b c

d e f g

1.32

1.36

1.4

1.44

Fig. 3 Spike-LFP phase synchronization. a Illustration of the regions of interest in the ACC, LPFC, and STR (in red) depicted on coronal brain sections of
the cortex and striatum. b Average PPC effect size between distal LFP and spikes at encoding (blue) and non-encoding (orange) spike sites. The shaded
area represents the standard error. There is a prominent beta peak for both. The X-axis is depicted on a log-scale for clarity. c The proportion of spike-LFP
pairs that exhibited significant, prominent locking. Pairs could contribute to more than one bin if they locked to multiple frequencies. (see “Methods”).
d Mean inter-areal synchrony between all pairs of areas for signification, prominent beta in the [10–25] Hz range. Color denotes the average. e Mean and
standard error contrasting spike-phase locking within different areas (diagonal in Fig. 3d). ACC synchronizes more strongly that either LPFC or STR.
(ANOVA with post-hoc test, multiple comparison corrected; nLPFC= 348, nACC= 305, nSTR= 444). (f) Same as (e) but for LFPs originating in other areas
(i.e., summing across columns, less the diagonals, in Fig. 3d). ACC synchronizes more strongly to distal beta, compared to LPFC or STR. (nLPFC= 829,
nACC= 890, nSTR= 647). g All pairwise comparison between regions. ACC spikes lock more strongly to LPFC beta than the inverse. (nLPFC-ACC= 314,
nACC-LPFC= 457, nLPFC-STR= 515, nSTR-LPFC= 378, nACC-STR= 433, nASTR-ACC= 269). Stars represent p < 0.05.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18435-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4669 | https://doi.org/10.1038/s41467-020-18435-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


a b

0

–1

2

0

–0.6 –0.4 –0.2 0 0.2 0.4 0.6

Correct

Error

Preferred. Phase

Anti-preferred Phase

Correct

Error

0.5

1

1.5

0.5

0.25
0.2

0.6

Example: Outcome Outcome HistoryRew. Prediction Error

Encoding Metric: I �0 I I �0  – �–1I I �0  + �–1I 

Phase Binned

Random
Phases

All Spikes

Average
Encoding

c

d

Time rel. to outcome (s)

S
pi

ke
s/

s

Tr
ia

ls

R
at

e 
di

ffe
re

nc
e

[c
or

re
ct

 –
 e

rr
or

]

m
ed

ia
n 

E
P

F
G

0

�/2

0

�/2

0

�/2

–�/2–�/2

–�–�–�

–�/2

Outcome

Time

Avg.
Encode. 

Metric

. .
 .

trial 1

trial 2

trial 3

trial n

. .
 .

Spikes

LFP phases

Spike-LFP phase bins

Spike
Count

Spike
Count

Avg.
Encode. 

Metric

Firing Rate CodePhase-of-Firing Code

e f g h

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

Out
co

m
e

RPE

Out
. H

ist
.

lat
. P

FC
ACC

Stri
at

um Frequency (Hz)

Phase gain by
function

Phase gain by
spike area

Phase gain by 
frequency

Phase gain
by sync.

Phase gain by
LFP area

lat
. P

FC
ACC

Stri
at

um

p = 0.089

Non
-lo

ck
Lo

ck
–0.5

0

0.5

1

–0.5

0

0.5

1

�1 �2 �3 �4

�1 �2 �3 �4�1 �2 �3 �4

�1 �2 �3 �4
�1 �2 �3 �4

Fig. 4 Encoded learning signals are modulated by beta phase. a Phase-dependent encoding analysis. Spikes were segregated by the phase of the LFP, with
approximately equal spikes per bin. The encoding metric was extracted for each phase bin. b Example cell showing phase-dependent outcome encoding.
(top) Raster plot on correct (top) or error (bottom) trials, with firing on the preferred (orange) or anti-preferred (blue) encoding phase. The gray box
between [−0.1 0.2]s. was not analyzed as phase was not estimated here. Vertical (dashed) lines depict the period used for GLM analysis. The horizontal
black line splits correctly from error trials. (middle) Spike density function for correct (dashed) and error (solid) trials, using spikes from preferred/anti-
preferred phases. (bottom) The difference in firing rate between outcomes is greater on preferred, rather than anti-preferred, phases. c Example of phase-
of-firing encoding for Outcome, RPE, and Outcome History cells. Colored dots reflect the encoding metric for a corresponding phase bin. Colored border
lines depict phase bins. Zero radians is the preferred (mean) firing phase. Numbers on concentric circles are the value of the encoding metric. The gray
dotted line represents the estimated encoding using all spikes. The black dotted line represents the average across many permutations of spike phases. The
red line is the average direction. These cells show stronger encoding near the 0 rad phase, compared to opposite phases. d EPFG in each functional cluster.
Black circle and vertical bars depict the median and standard error. Violin distributions were trimmed of the top/bottom 5% of data for visualization
purposes. All clusters showed some evidence of significant phase gain (Wilcoxon signrank test, p < 0.05). (e) Same as (d) but split by spike area. ACC had
a higher EPFG than LPFC or STR. (f) Same as (d) but split by LFP area. No differences emerge between areas. g EPFG per frequency for encoding and
locking cells (n= 876). EPFG was above chance at [10 20] Hz (p < 0.05, multiple comparison corrected). h EPFG when spikes locked to 10–25 Hz beta
phases (n= 876), vs. those that did not (n= 2500). Non-locking cell showed a significantly less phase gain compared to locking cells (Wilcoxon ranksum
test, p < 0.05). Stars represent p < 0.05.
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neuron was in ACC (Z= 7.5, p~0), in STR (Z= 4.98, p~0), or in
LPFC (Z= 3.86, p= 0.0001) (Fig. 4e), but the EPFG strength
differed between areas (Kruskal–Wallis test, χ2= 7.87, p= 0.02).
Neurons in ACC showed significantly larger EPFG than neurons
in LPFC (χ2= 7.66, p= 0.0056) and a trend for larger EPFG than
neurons in STR (χ2= 2.89, p= 0.089). Similarly, spike-LFP pairs
with spikes from an ACC neuron were more likely to show
individually significant EPFG (χ2 test, χ2= 17.7, p= 0.0014;
Supplementary Fig. 6). When considering encoding strength on
the basis of the LFP site of the spike-LFP pairs, EPFG was above
chance in each of the three areas (Fig. 4F; ACC, Z= 5.02, p~0;
LPFC, Z= 5.62, p~0; and STR, Z= 5.8, p~0), but did not vary by
the LFP area (Kruskal–Wallis test, χ2= 0.192, p= 0.91). EPFG
differences were more pronounced when selecting for each
encoding metric the 25% of spike-LFP pairs with the largest
EPFG. This selection revealed stronger EPFG encoding of RPE
compared to Outcome (χ2= 11.3, p~0) and Outcome History
(χ2= 11.3, p= ~0). It also provided additional confirmation that
EPFG was larger for neurons in ACC than in LPFC (χ2= 10.4,
p= 0.0013), with a similar trend for STR (χ2= 2.41, p= 0.12).
Likewise, EPFG did not vary on the basis of LFP area
(Kruskal–Wallis, χ2= 0.192, p= 0.91). These results were similar
in each monkey (Supplementary Fig. 4B).

EPFG was similar for neurons that showed narrow (N) and
broad (B) action potential waveforms that correspond putatively
to distinct cell classes with their encoding phase-of-firing gain
statistically indistinguishable in the ACC (NN= 70, mean=
−0.026 ± 0.029; NB= 48, mean=−0.0047 ± 0.06; Kruskal–Wallis
test for equal median, p= 0.49), LPFC (NN= 85, mean= 0.11 ±
0.04; NB= 54, mean= 0.0057 ± 0.080; p= 0.28), and STR (NN=
37, mean= 0.014 ± 0.08; NB= 41, mean= 0.017 ± 0.11; p= 0.40)
(see “Methods”).

We next asked whether the EPFG for RPE encoding
distinguishes the rewarded color that animals learned within a
reversal block. Previously we showed that the firing rate of subsets
of neurons encoded not only a scalar RPE signal but additionally
showed stronger RPE signaling for only one or the other color in
the task5. These color-specific RPE signals can boost the reversal
learning because they carry information not only about how
much updating should take place (which scalar RPE’s signal) but
the specific content of what needs to be updated (one or the other
color during reversal learning). We quantified this feature-specific
RPE encoding by separately testing whether the EPFG is
significant when considering only trials when one or the other
color was rewarded. We found that of all cell-LFP pairs encoding
RPE’s, 3% (3/102) showed individually significant EPFG in both
conditions (in other words, a non-feature-specific RPE), and
~15% (15/102), showed a significant EPFG only for one of two
colors (a feature-specific RPE). The frequency of cell-LFP pairs
where the EPFG was significant for neither, both, or only one
color condition differed from chance (χ2 test, χ2= 109, p~0).
Importantly, feature-specific EPFG was more common than
feature non-specific EPFG (χ2= 6.72, p= 0.01). The proportion
of colour-specific EPFG tended to be most prevalent in ACC with
~27% (9/34) of cases, compared to 10% (5/50) in LPFC and 6%
(1/18) for STR (χ2 test, χ2= 5.26, p= 0.07).

Robustness of phase-of-firing modulation of encoding. The
EPFG is an effect size measure for how strong firing rate is
modulated by LFP phase between conditions. However, it does
not take into account the variability of firing rates across trials,
leaving open the question of whether such mean firing rate
changes may be effectively decoded. To address this question, we
performed additional tests at the same beta frequencies at which
neurons maximally synchronized. Firstly, we calculated how

much the percent explained deviance varied as a function of
phase, which quantifies how well the model fit the data with
spikes extracted on individual phase bins. We term this quantity
EPFGD2 (see “Methods”). We found that across areas and all
spike-LFP pairs with significant encoding, EPFGD2 was sig-
nificantly larger than chance (Wilcoxon signrank test, p~0).
EPFGD2 was significantly above chance for Outcome (Wilcoxon
signrank test, p~0) and RPE (p= 0.001) clusters, but not for
spike-LFP pairs with neurons from the Outcome History cluster
(p= 0.24) (Supplementary Fig. 7A).

In a second approach, we tested whether the EPFG is evident
even when the statistical testing preserves the within-trial
correlation of spike phases. So far, we tested for significance of
EPFG by constructing a random distribution that shuffled all
spike phases irrespective of the trials in which they occurred.
While this preserves the overall degree of synchrony, it destroys
any within-trial correlation of spikes. When constructing null
distributions by randomly perturbing the phase of spikes on each
trial by the same amount, we found an overall significant EPFG of
0.080 ± 0.018 (Wilcoxon signrank test, Z= 7.6, p~0). As in the
other statistics, EPFG was significant for Outcome (p~0),
Outcome History (p= 0.002), and RPE (0.039) (Supplementary
Fig. 7B). Similarly, phase-of-firing modulation significantly
differed by spike area (Kruskal–Wallis test, p= 0.032), with
spike-LFP pairs with spikes of neurons in ACC showing higher
EPFG than LPFC (p= 0.012) and a trend for higher EPFG in
ACC than STR (p= 0.069) (Supplementary Fig. 7B). Thus, the
observed phase gain for the firing rate information is evident even
when within-trial autocorrelation is preserved.

In a third approach of analyzing the robustness of the EPFG
finding, we considered an alternative normalization of our main
encoding metric. The EPFG is a normalized quantity that
accounts for the fact that simply fitting a cosine will result in
positive amplitudes, implying that a cosine amplitude on its own
has an upwards bias. A similar bias is evident in the null
distribution of cosine amplitudes. As a consequence, the EPFG
should be a considered a lower bound on the degree of
modulation. This is evident when normalizing the cosine
modulation not by the null distribution of the cosine, but by
the encoding strength determined using all spikes. With such a
normalization, encoding strength is ~0.61 ± 0.03, implying
encoding is ~61% stronger on preferred vs anti-preferred phases.
Similarly, normalizing the cosine modulation by the over-all
firing rate of the cell, we obtained a median EPFG of 0.18 ± 0.010,
implying that encoding is on average ~18% stronger on preferred
rather than anti-preferred phases.

In a final set of analyses, we considered the stability of
encoding. Encoding designation was stable across phase bins,
with ~90% of spike-LFP pairs exhibiting similar beta coefficient
signs across all phase bins, and was not dependent on the number
of phase bins used (no correlation of EPFG with [4, 6, 8, and 10]
number of bins (Spearman rank correlation, R= 0.023, p= 0.18).

Relation of phase-of-firing encoding modulation to the
strength and phase of synchronization. We next tested whether
EPFG was specific to the beta frequency band and how the
strength of EPFG related to the strength of synchronization. First,
we found that EPFG was strongest and significant at the popu-
lation level in the same beta frequency band that showed the
strongest spike-LFP synchronization (Fig. 4g; Wilcoxon signrank
test, p < 0.05, multiple comparison corrected). Overall, EPFG
was most prevalent and significantly larger in spike-LFP pairs
that showed significant phase synchronization (Fig. 4h;
Kruskal–Wallis test, χ2= 31.2, p~0). These results indicate that
EPFG was evident when neurons encoded Outcome, RPE, and

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18435-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4669 | https://doi.org/10.1038/s41467-020-18435-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Outcome History in their firing rate and when they synchronized
at beta-band frequencies.

Second, we tested whether the phase-of-firing modulation of
encoding is associated with stronger spike-LFP synchronization
in one task condition than in another condition (e.g., in error
trials versus correct trials). Such site-specific selectivity of
neuronal synchronization has been reported in previous studies
(e.g.,42,46,47.). To test this possibility, we correlated the phase-of-
firing encoding with the difference in spike-LFP synchronization
(indexed with the PPC) of those two trial conditions that were
predicted to have the maximal firing rate difference. For Outcome
encoding we calculated the PPC difference for correct versus
error trials; for RPE encoding we compared correct trials
following error trials versus error trials following correct trials;
and for Outcome History encoding we compared correct trials
following correct, versus errors following errors. We then
correlated the absolute difference in PPC in the beta band
between two conditions with the EPFG. We found that the EPFG
was uncorrelated with the PPC differences between conditions for
neurons encoding RPE (Spearman correlation, R= 0.083, p=
0.36), or Outcome History (R= 0.074, p= 0.41). For Outcome
encoding cells we found a moderate positive correlation with
higher EPFG associated with larger differences in spike-LFP
synchronization for correct versus error trials (R= 0.11, p=
0.0067).

In addition to the strength of synchronization, phase-of-firing
modulation of encoding might also become evident as a
difference of the preferred phase of synchronization between
conditions. To test this possibility, we compared the average
phase between conditions for each encoding cluster. We found
that for neurons in the Outcome encoding cluster, the mean firing
phase in correct and error trials did not differ (mean phase
difference=−0.026 ± 0.0021 SE radians, bootstrap randomiza-
tion test, p= 0.57). On the other hand, Outcome History cells
significantly synchronized on average at different phases between
conditions (−0.20 ± 0.0059 SE radians, p= 0.011), with a similar
trend for RPE cells (−0.22 ± 0.014 SE radians, p= 0.059).

We next asked whether the synchronizing phases that carried
information were endogenously generated or whether they were
externally triggered by the reward onset. We calculated the EPFG
with and without subtracting the reward-onset aligned evoked
LFP response (see “Methods”). We found that the EPFG was not
different with (median= 0.096 ± 0.012 SE) versus without
(median= 0.10 ± 0.019 SE) subtraction of the time-locked,
evoked potential, suggesting that the beta oscillation events
providing informative phases were endogenously generated
(Kruskal–Wallis test, χ2= 0.03, p= 0.86). In line with this, we
found that band-limited power in the beta band was a prominent
and sustained component of the LFP after reward onset
(Supplementary Fig. 8A) but without a reward-onset locked
phase consistency (Supplementary Fig. 8B). We also tested
whether LFP power variations or overall firing rate fluctuations
influenced the phase-of-firing modulation of encoding. We found
that overall the EPFG did not correlate with beta band power
variations (Spearman rank correlation, R= 0.050, p= 0.14), but
positively correlated with the overall firing rates of neurons
(Spearman rank correlation, R= 0.13, p~0).

In addition to overall variations of power and firing rates,
recent studies have shown that beta-band activity emerges in
individual trials as transient bursts that can be linked to
behavioral success in working memory and perceptual recogni-
tion paradigms48–50. To test whether such burst occurrences may
underlie the significant EPFG we report so far, we restricted the
analysis of the EPFG to those beta band periods that were part of
a suprathreshold, oscillatory burst event (see “Methods”). This
analysis was performed for spike-LFP pairs when neurons fired

sufficient numbers of spikes (here: ≥30 spikes) per condition. The
beta burst rate sharply increased after reward onset, as compared
to a pre-reward onset period (see Supplementary Fig. 9A). We
found that for spikes occurring within bursts, the median EPFG
was 0.067 ± 0.034, which was significantly above chance
(Supplementary Fig. 9B; n= 191; Wilcoxon signrank test, Z=
2.40, p= 0.016). EPFG for spikes outside bursts was 0.038 ±
0.017, which was also above chance (Supplementary Fig. 9B; n=
769; Z= 4.51, p~0). Although encoding was higher inside rather
than outside of bursts, this difference was not significant
(Kruskal–Wallis test, χ2 = 0.057, p = 0.81).

Preferred spiking-phase and encoding spiking-phase differ for
prediction error. The previous result suggests that the encoding
gain through the phase-of-firing is only weakly or not system-
atically associated with the strength of spike-LFP phase syn-
chronization. This finding is consistent with a scenario in which
the spiking-phase at which neurons maximally synchronize does
not always coincide with the spiking-phase at which encoding of
task variables is maximal. Indeed, we often observed that the
phase with maximal encoding was not at the zero-phase bin, i.e.,
it deviated from the preferred spike-phase (see examples in
Fig. 4c; Supplementary Fig. 5). We tested this scenario by first
calculating the preferred spike-phase for each neuron, and then
quantifying the phase with maximal encoding relative to that
phase. We found that all encoding neurons synchronized on
average at similar phases, above what would be expected by
chance (Outcome, average phase: −0.28 ± 0.0034 SE radians;
Hodges–Ajne test for non-uniformity, p~0; RPE. average phase:
0.35 ± 0.0034 SE radians, p= 0.00084; Outcome History. average
phase: −0.68 ± 0.0045 SE radians, p= 0.0013) (Fig. 5a). The
preferred spike-phase differed between the three encoding classes
(Watson–Williams test, p~0, F= 12.8; each pairwise comparison
showed: Watson–Williams test, F > 7.7, p < 0.02; Fig. 5b).

Next, we quantified for each cluster whether the phases
showing maximal encoding were consistent across spike-LFP
pairs, because the phase heterogeneity can be informative about
possible readout strategies51,52 (Fig. 5c). To this end, we extracted
the phase offset from our cosine fit, which represents the phase at
which encoding was maximal relative to the preferred spike-
phase. Outcome encoding neurons showed preferred encoding
phases that varied across the whole oscillation cycle (average
phase: −0.92 ± 0.34 SE radians; Hodges–Ajne test, p= 0.38), as
did Outcome History neurons (average phase: 1.19 ± 0.49 SE
radians, p= 0.66) (Fig. 5c). In contrast, RPE encoding neurons
significantly encoded at similar phase-offsets relative to the
neuron’s synchronizing phases (average phase: −2.76 ± 0.047 SE
radians, p= 0.0004, corresponding to 27ms away from the mean
spike phase at a 15 Hz oscillation cycle), which was significantly
different than the mean spike phase (Median test, p= 0.027).
This effect was particularly pronounced for RPE cells in ACC
(Supplementary Fig. 10), and was consistent across both monkeys
(Supplementary Fig. 4C). Qualitatively similar results were
obtained when extracting the preferred encoding phases derived
from model deviances (Supplementary Fig. 7C). The phase of
maximal encoding did not differ with varying number (4, 6, 8, 10)
of phase bins used (Circular–Linear correlation, R= 0.013, p=
0.76). We next compared the relative phases showing maximal
encoding between neurons encoding Outcome, RPE, and Out-
come History and found that their average, relative encoding
phases significantly differed (Watson–Williams test; F= 83.4,
p~0; Fig. 5D). These results show that the preferred spike phase
and the encoding phases are typically dissociated from one
another, and—for RPE’s—were systematically offset from the
preferred (mean) spike phase.
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Given these results, we next tested whether the dissociation of
spike- and encoding- phases is not based on possible systematic
phase shifts due to differences in the peak oscillation frequencies
within the beta band. We validated that this was not the case and
found that the three sets of neuronal encoding clusters
synchronized on average at the same ~15 Hz center frequency
(Kruskal–Wallis, χ2=0.95, p= 0.62; Supplementary Fig. 11A),
and that they showed maximal phase-of-firing encoding at similar
frequencies (also ~15 Hz) (Kruskal–Wallis test, χ2= 0.39, p=
0.82; Supplementary Fig. 11B). Moreover, the frequency showing
strongest spike-LFP synchronization and the frequency showing
maximal encoding-phase gain matched closely (median frequency
ratio: 1 ± 0.01 SE; Supplementary Fig. 11C). This similarity of
synchronization and encoding frequency did not differ on the
basis of the functional designation (Kruskal–Wallis test, χ2=
0.047, p= 0.98), nor the area from which the spikes were sampled
(Kruskal–Wallis test, χ2= 0.53, p= 0.77).

Discussion
Here, we found a significant proportion of neurons whose phase-
of-firing in a band-limited beta frequency conveyed significantly
more information about three learning variables than their firing
rates alone. This encoding-phase gain was evident for spikes
generated within the ACC, LPFC and STR of nonhuman primates
in a [0.1 0.7] second period of outcome processing during reversal
learning performance. Phase-of-firing encoding was most pro-
minent at the 10–25 Hz beta frequency at which spikes syn-
chronized to the local fields across areas. However, the strength of
spike-LFP phase synchronization could not necessarily explain
the strength of the phase-of-firing encoding. Rather, maximal
encoding occurred for many neurons at phases away from
the preferred spiking phase. The dissociation of spiking and

encoding phases was particularly prominent for information
about the RPE.

Taken together, these results show population-level informa-
tion multiplexing of learning variables at segregated phases of a
beta oscillation across synchronized medial and lateral fronto-
striatal loops. These findings suggest that spike-LFP oscillation
phases are carriers of information, above and beyond that of a
phase-blind firing rate code. The gain of information through the
phase of firing provides an intriguing dynamic code that could
link principles of efficient neuronal information transmission
with the demands of representing multiple types of information
in the same dynamical neural system.

We found that three critical variables needed for adjusting
behavior are represented in partly segregated neuronal popula-
tions not only in their firing rates, but in phase-specific firing at a
beta frequency that is shared among ACC, LPFC and STR. This
finding suggests that the beta frequency could serve as an
important conduit for the fast distribution of learning-related
information within fronto-striatal networks19,20. Prior studies
have shown that ACC, LPFC and STR causally contribute to fast
learning of object values. With lesioned ACC, rhesus monkeys fail
to use outcome history for updating values and show persevera-
tive behaviors53. Without LPFC, rhesus monkeys fail to recognize
when a previously irrelevant object becomes relevant as if they fail
to calculate RPE’s needed for updating their attentional set54.
When the anterior STR is lesioned, nonhuman primates tend to
stick to previously learned behavior and show a lack of sensitivity
to reward outcomes4,35. These behavioral lesion effects are con-
sistent with the important role of each of these brain areas to
track the history of recent outcomes, registering newly encoun-
tered (current) outcomes, and calculating the unexpectedness of
experienced outcomes (prediction error). Consequently, our
finding of segregated neuronal ensembles encoding Outcome,
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Prediction Error and Outcome History complements a large lit-
erature that documents how these variables are represented in the
firing of neurons across fronto-striatal areas.

What has been left unanswered, however, is how this firing rate
information about multiple variables emerges at similar times and
similar proportions across areas. Prior studies suggest that firing
rate correlations between brain areas are relatively weak and poor
candidates for veridical information transfer5,8,26, while tempo-
rally aligning the spike output of many neurons to the phases of
precisely timed, synchronized packets are a theoretically, parti-
cularly powerful means in affecting postsynaptic neuronal
populations24,26,27,55,56. Our findings support this notion of a
temporal code using synchronized oscillations by showing that
those neurons that carry critical information in their firing rates
also tend to synchronize long-range between ACC, LPFC, and
STR at a shared 10–25 Hz beta frequency. This beta frequency is
thus a candidate means for enhancing distributed information
transfer, because spike output of many neurons is concentrated at
the same phase and thus activate postsynaptic membranes
at similar times. This scenario of beta rhythmic information
exchange within fronto-striatal networks is supported by previous
nonhuman primate studies that demonstrated 10–25 Hz
beta rhythmic synchronization during active task processing
states between ACC and LPFC12,13,57, between PFC and STR15,
between ACC and FEF10, between LPFC and FEF46,47, and
between LPFC or FEF with posterior parietal cortex46,47,58–60.
Each of these studies has shown short-lived rhythmic long-range
synchronization between distant brain areas during cognitive
tasks at a ~15 Hz frequency, similar to studies in humans (e.g.,61).
Our findings critically complement these studies by revealing that
10–25 Hz spike-LFP synchronization is prevalent not only during
cognitive processing, but also during the processing of outcomes
after attention has been deployed and choices have been made.
During this post-choice outcome processing, fronto-striatal cir-
cuits are likely to adjust their synaptic connection strength to
minimize future prediction errors and improve performance4,5,62.
Our results suggest that this updating utilizes beta rhythmic
activity fluctuations during the post-choice outcome processing
period.

Our finding that spiking output carries separable types of
information at different phases of the same oscillation frequency
has potentially far-reaching implications. By finding that Out-
come, Prediction Error and Outcome History were encoded at
separate phases, the population of neurons effectively multiplexes
independent information streams at different phases of beta
synchronized firing. This stands in contrast to prior studies
reporting that long-range beta rhythmic synchronization between
LPFC, ACC or STR in the primate encoded relevant task variables
via the strength of beta synchrony10,15,47,58,63. For example, some
prefrontal cortex neurons synchronize stronger at beta to pos-
terior parietal areas when subjects choose one visual category over
another46, or when they maintain one object over another in
working memory47. These findings are broadly consistent with a
communication-through-coherence schema where upstream
senders are more coherent with downstream readers when they
successfully compete for representation24,64,65. Yet it has
remained unclear how such a scheme may operate when multiple
items must be multiplexed and transmitted in the same recurrent
network7,23,28,66–68. Computationally, the multiplexing and the
efficient transmission of information can operate in tandem when
the temporal organization of activity is exploited at the sending
and receiving site8,26,27,69. Consequently, selective synchroniza-
tion between distal sites could be leveraged to enhance trans-
mission selectivity, whereas temporally segregated information
streams could enhance transmission capacity70. Our results
resonate with this view by showing that neurons that synchronize

long-range at one oscillation phase carries information of any of
three learning variables at phases systematically offset from the
synchronizing phase.

By finding evidence for such a temporal multiplexing in the
beta frequency band, we critically extend previous reports of
phase encoding of information for object features, object iden-
tities, and object categories at theta, alpha and gamma
frequencies45,67,71–73. In our study, the beta phase enhanced
encoding applied to three complex learning variables that were
needed to succeed in the behavioral learning task. In particular,
the presence of reward prediction error information provides a
critical teaching signal that indicates how much synaptic con-
nections should change to represent future value expectations
more accurately5,62. Our results suggest that this updating can
utilize spike-timing-dependent plasticity mechanisms that are
tuned to firing phases ~27 ms away from the preferred syn-
chronization phase in the beta frequency band. How such a
temporal organization in the beta band is used in the larger
fronto-striatal network will be an important question for future
studies.

A caveat in interpreting the phase-modulated coding we report
is that it is consistent with multiple coding schemes beyond a
phase-based multiplexing74. For example, spiking activity may be
phase-synchronized in one condition but not another, or alter-
natively, conditions may be encoded on separate phases. Our
results provide support for both coding schemes. Outcome cells
resemble coding via an asynchronous code; that is to say, spike-
LPF phase synchronization is higher in one condition than
another, with no evidence of phase differences between condi-
tions. On the other hand, RPE and Outcome History cells show
evidence of phase-separation coding. These cells showed no sig-
nificant difference in PPC between conditions but did show a
(near significant) trend towards firing on different phases. These
suggestions depend on a proper estimation of phase, which can be
influenced by the level of background noise75 and the degree of
synchrony of individual cells within a population76. However, we
believe this would not affect the main conclusions of our study, as
we observed (1) significant increases in encoding-phase gain both
when oscillatory bursts were prominent or not, and (2) significant
phase encoding gain when controlling for outcome induced
activity.

So far, evidence in humans and rodents suggested that pro-
cesses linked to beta frequency activity during the evaluation of
outcomes support the detection of errors and the updating of
erroneous internal predictions17,77. In fact, there have been
conflicting views on whether beta oscillations related to outcome
signals are more likely to reflect a weighted integration of recent
outcomes, or the unexpectedness of the current, observed out-
come relative to recent outcomes17,21. Our findings reconcile
these viewpoints by documenting that encoding of Outcome
History weights and of Prediction Errors coexist in the same
circuit at the same oscillation frequency in phase-dependent fir-
ing of single neurons.

We found that the beta phase allowing maximal encoding of
Prediction Errors was offset ~27 ms on average from the phase at
which most spikes synchronized to the local fields. Such a dis-
sociation of mean spike-phase and encoding-phase has been
reported previously for the beta frequency band in parietal cortex,
where maximal information of joint saccadic and joystick choice
directions were best predicted by spike counts at ~50 degrees
away from the preferred beta spike phase44. Such phase offsets
underlying maximal encoding in parietal cortex as well as in
ACC, LPFC, and STR in our study provide constraints on the
possible circuit mechanisms that permit temporal segregation of
inputs streams through phase-specific oscillatory dynamics7. One
possible circuit mechanism that implements and utilizes
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multiplexed information streams through phase-specific firing
has been described and computationally modeled specifically for
the low 10–20 Hz frequency range23,78. This work suggests that
distinct sets of pyramidal neurons can encode distinct input
streams in their firing phases at 10–20 Hz beta activity when these
inputs streams arrive with a phase offset to each other, e.g., when
they arrive sequentially in time. According to this schema, a first
input stream activates pyramidal neurons in deep cortical layers
that feed information to superficial layers whose interlaminar
inhibitory connections closes an interlaminar reverberant loop of
activity. This interlaminar ensemble follows a beta activity
rhythm due to cell specific dynamics that maintains the beta-
phasic firing of active neurons23,43. When a second input stream
activates another set of pyramidal cells within the same beta
rhythmic neural population, the input timing of that second
stream was maintained at a different phase than the phase of the
first activated ensemble23. The parallel coding of information at a
common beta rhythm in these models provides a qualitative proof
of concept about phase-specific encoding of multiple types of
inputs in larger beta rhythmic ensembles, and suggests a possible
mechanistic realization of enhanced encoding by the phase of
firing in the beta band23. Moreover, these models23,43 also suggest
possible reasons why encoding phases and the average, preferred
spiking phases can differ. In our study RPE encoding was max-
imal for spikes that occurred 27 ms away from the preferred beta
phase at which most spikes of the neurons were elicited. In the
context of these models, a phase offset could indicate that RPE’s
are part of an input stream that is arriving already with a delay to
the major beta rhythmic input stream that this neuron sees. For
example, input carrying prediction error information might arrive
from the ventral tegmental area while the dominant beta rhyth-
mic firing (that determines the mean phase) might be based on
local cortical mechanisms coupled to other cortical areas. Con-
sistent with such a scenario, a prior rodent study79 has shown
that the phase of phase-synchronous prefrontal cortex neurons
shifted with the learning of new reward locations, consistent with
a dopaminergic influence form the ventral tegmental area on the
phase of spike-LFP synchrony. Alternatively, a 27 ms phase offset
for encoding prediction error information might have a local
origin, with the delay reflecting the computation of the error in
prediction based on input that carries the prediction itself. This
scenario gains plausibility when considering that a prediction
error reflects a transformation of two signals, i.e., it is the dif-
ference of the expected value and the received outcome. This
transformation will take time. In the temporal domain, this delay
is likely reflected in a latency difference with prediction error
signals emerging typically after outcomes are processed (which
we found, Supplementary Fig. 2G, H). In a recurrent circuit, this
delay in computing an error might additionally be reflected in a
phase offset. According to this view, the 27 ms offset in maximal
encoding of RPE indicates a local transformation of two input
streams (predicted value and outcome) into their difference (the
error in value prediction). Future work needs to specify whether
these scenarios are realized by beta rhythmically firing ensembles
of neurons and how long-lasting and robust the encoding with
phase-specific firing is with regard to the overall firing rates and
firing variability of individual neurons during active brain states.

In summary, we have documented that learning variables are
better encoded when taking into account the phase of firing of
neurons that synchronize long-range across primate fronto-
striatal circuits. These neurons that showed a phase encoding
gain of their firing also carried information in overall firing
rate modulations which clarifies that an asynchronous rate code
and a synchronous temporal code coexist in the same circuit8.
By exploiting the temporal structure endowed in long-range
neuronal synchronization our findings suggest how neuronal

assemblies in one brain area could be read out from neural
assemblies in distally connected brain areas29. This phase-of-
firing schema entails key features required from a versatile neural
code including the efficient neural transmission and the effective
representation of variables needed for adaptive goal-directed
behavior80.

Methods
Experimental animals. Data were collected from two adult, 9 and 7-year-old, male
rhesus monkeys (Macaca mulatta) following procedures described in ref. 5. All
animal care and experimental protocols were approved by the York University
Council on Animal Care and were in accordance with the Canadian Council on
Animal Care guidelines.

Behavioral paradigm. Monkeys performed a feature-based reversal-learning task
that required covert attention to one of two stimuli based on the reward associated
with the color of the stimuli. Which stimulus color was rewarded remained
identical for ≥30 trials and reversed without explicit cue. The reward reversal
required monkeys to utilize trial outcomes to adjust to the new color-reward rule.
Details of the task have been described before5. Each trial started when subjects
foveated a central cue. After 0.5–0.9 s, two black and white gratings appeared. After
another 0.4 s, the stimuli either began to move within their aperture in opposite
directions (up-/downwards) or were colored with opposite colors (red/green or
blue/yellow). After another 0.5–0.9 s, they gained the color when the first feature
was motion, or they gained motion when the first feature had been color. After
0.4–0.1 s, the stimuli could transiently dim. The dimming occurred either in both
stimuli simultaneously, or separated in time by 0.55 s. Dimming represented the
go-cue to make a saccade in the direction of the motion when it occurred in the
stimulus with the reward associated color. The dimming acted as a no-go cue when
it occurred in the stimulus with the non-rewarded color. A saccadic response was
only rewarded when it was made in the direction of motion of the stimulus with the
rewarded color. Motion direction and location of the individual colors were ran-
domized within a block. Thus, the only feature predictive of reward within a block
was color. Color-reward associations were constant for a minimum of 30 trials.
Block changes occurred when 90% performance was reached over the last 12 trials,
or 100 trials were completed without reaching criterion. The block change was
uncued. Rewards were deterministic.

Electrophysiology. Extra-cellular recordings were made with 1–12 tungsten
electrodes (impedance 1.2–2.2 MOhm, FHC, Bowdoinham, ME) in ACC (ACC;
area 24), prefrontal cortex (LPFC; area 46, 8, 8a), or anterior STR (STR; caudate
nucleus (CD), and ventral striatum (VS)) through a rectangular recording cham-
bers (20 by 25 mm) implanted over the right hemisphere (Supplementary Fig. 1).
Electrodes were lowered daily through guide tubes using software-controlled pre-
cision micro-drives (NAN Instruments Ltd., Israel and Neuronitek, Ontario,
Canada). Data amplification, filtering, and acquisition were done with a multi-
channel acquisition system (Neuralynx). Spiking activity was obtained following a
300–8000 Hz passband filter and further amplification and digitization at 40 kHz
sampling rate. Sorting and isolation of single unit activity was performed offline
with Plexon Offline Sorter, based on analysis of the first two principal components
of the spike waveforms. Experiments were performed in a custom-made sound
attenuating isolation chamber. Monkeys sat in a custom-made primate chair
viewing visual stimuli on a computer monitor running with a 60 Hz refresh rate.
Eye positions were monitored using a video-based eye-tracking system (EyeLink,
SRS Systems) calibrated prior to each experiment to a nine-point fixation pattern.
Eye fixation was controlled within a 1.4°–2.0° radius window. During the experi-
ments, stimulus presentation, monitored eye positions, and reward delivery were
controlled via MonkeyLogic. The liquid reward was delivered by a custom-made,
air-compression controlled, and mechanical valve system. Recording locations were
aligned and plotted onto representative atlas slices81.

Data analysis. The analysis was performed with custom Matlab code (Matlab
2019a), using functions from the fieldtrip toolbox. For Elastic-net regression, the
glmnet package in R was used82. Only correct and error responses were analyzed.
Error responses included those where the responses were made to the incorrect
target, or in the incorrect response window. We included all trials from learned
blocks, with a minimum of two blocks, unless otherwise indicated. The trial
immediately following a reversal event was not included in analysis. Learned blocks
were defined as ones where animals reached 90% correct responses within the last
10 trials within the block. Standard errors of the median were estimated via
bootstrapping (200 repetitions, unless otherwise indicated).

Data analyses proceeded through multiple steps. First, we quantified how
outcomes (reward/no-reward for correct/error outcomes) affected monkeys’
choices. After showing that outcomes are integrated over recent trials, we next
asked how this is reflected in the firing rate activity of individual neurons during a
post-outcome period using a penalized GLM. We used a data-driven clustering
approach to assign functional labels to cells exhibiting similar sensitivities to
experienced outcomes in their rate. On the basis of these functional labels, we

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18435-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4669 | https://doi.org/10.1038/s41467-020-18435-3 | www.nature.com/naturecommunications 11

http://www.brown.edu/Research/monkeylogic/
http://www.fieldtriptoolbox.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


extracted a corresponding encoding metric for neurons in each functional cluster.
We then analyzed how the encoding metrics depend on time, or the phase of
oscillatory activity in the LFP. For the latter analysis, we used standard spectral
decomposition techniques and spike-phase consistency measures to characterize
how spikes and phases between distal electrodes are related. We quantified and
compared differences in phase-dependent encoding in terms of (1) the degree of
phase-dependent modulation of encoding, and (2) the phase at which encoding is
maximal.

Behavioral analysis. To determine the timescale over which past outcomes are
integrated, we used a binomial GLM:

Y ¼
X5
i

βt�iXt�i; ð1Þ

where Y was the current outcome, Bt−i is the influence of outcome Xt−i on trial t−i.
The outcome for trial t−5 was defined as a nuisance variable that accounted for all
responses occurring over very long time-scales (similar to ref. 33).

Rate encoding of outcome history. To test how individual units integrated
outcome history, we used a Poisson GLM:

logðλÞ ¼
X5
i

βt�iXt�i; ð2Þ

where λ was the conditional intensity (spike count), Bt−i is the influence of out-
come Xt−i on trial t−i. Firing counts on each trial were determined in a [0.1 0.7]s
window after outcome onset5. Neurons were included in the analysis if they were
isolated for more than 25 (learned) trials across at least two blocks, and if they
showed an overall firing rate of >1 Hz. With these criteria, we analyzed a total of
1460 neurons, with an average of 230.56 ± 3.44 trials and 5.75 ± 0.082 blocks.

To mitigate issues of multi-collinearity, and extract only the most predictive
regressors, we employed elastic-net regularization using the R package glmnet82.
This procedure shrinks small coefficients to zero, and smoothly interpolates
between ridge and lasso regularization by controlling a parameter alpha (with
alpha= 0 corresponding to ridge regression, and alpha= 1 to lasso regression)82.
We used an alpha of 0.95, which tends to select only one regressor in the presence
of collinearity (as in pure lasso regression83), while at the same time avoiding issues
with degeneracy if correlations among regressors are particularly strong82. The
optimal value of the shrinkage parameter (lambda) was the minimum as selected
by 10-fold cross validation. To assess model stability and extract significant fits, we
used a bootstrap approach, whereby trials were sampled with replacement 1000
times and the procedure was rerun. As the LASSO shrinks non-valuable predictors
to zero, a model fit was said to be significant if at least one relevant regressor
(outcome t−4 to t−0) was non-zero more than 95% of the time.

Functional clustering based on neural encoding. Our ultimate goal is to describe
how encoding varies as a function of phase (and time). However, encoding cells
showed variability in how they responded to experienced outcome (e.g., Fig. 2;
Supplementary Fig. 2D). Thus, in order to properly evaluate changes in encoding in
time and phase, we must first define populations of cells that encode similar types
of information. To determine the putative function of significantly encoding units,
we used a clustering approach via bootstrapped K-means. We clustered cells on the
basis of their mean beta weights as determined by the penalized regression model
(see above). As a preprocessing step, for units where the current outcome was
negatively encoded (i.e., encodes errors), we flipped the sign of every coefficient in
that model. This has the effect of erasing the directionality of any functional
association, and thus collapses neurons with similar functions (for example, Error
or Correct encoding units become Outcome encoding units). Cells were inde-
pendently clustered for each area.

We clustered cells on the basis of their clustering stability84. We opted for this
method because k-means clustering can be sensitive to initial conditions85. This
involved three steps: (1) choosing the optimal number of clusters Nc, (2) measuring
clustering stability, and (3) performing the final clustering. For steps 1–2, we used
k-mean clustering with a cosine distance metric, which is insensitive to the
magnitude of the vector and is instead concerned with the direction, unlike, for
example, the Euclidian distance. In other words, we clustered based on the relative
pattern of beta weights of each cell, irrespective of differences in magnitude
between cells.

To determine the optimal number of clusters, we extracted the Silhouette metric
over many bootstrap iterations. In brief, cells were sampled with replacement 1000
times and for each iteration, the optimal number of clusters was extracted where
the silhouette was maximal. The overall optimal number of clusters Nc was the
mode over all bootstrap iterations.

Next, we assessed the clustering stability of pairs of cells. To do so, we built a
similarity matrix S via a bootstrap approach, where similarity was defined as the
proportion of times that pairs of cells were clustered together. First, we resampled
with replacement individual cells. Next, we ran K-means with cosine distance and
Nc clusters. For units that were clustered together, their respective cell in the

similarity matrix was incremented by one. Because bootstrapping could sample the
same units twice, these pairs were ignored. Bootstrapping was run 100,000 times.

To compute the final cluster assignment, we first formed a dissimilarity matrix
D= 1−S, before performing agglomerative clustering with Euclidian distance and
Nc clusters.

Metric for outcome, outcome history, and prediction error. We quantified the
degree of encoding of Outcome (Eoutcome), Outcome History (Ehistory), and
Reward Prediction Error (ERPE) on the basis of the GLM weights for trials −1 and
0:

Eoutcome ¼ abs B0ð Þ; ð3Þ

Ehistory ¼ abs B�1 þ B0ð Þ; ð4Þ

ERPE ¼ absðB0 � B�1Þ ð5Þ
We refer to these generically as Encoding Metrics.

Latency analysis. To determine the latency of encoding for each functional cluster,
we performed a time-resolved analysis (Supplementary Fig. 2G, H). On the basis of
our previous results showing that the outcome on trial 0 and −1 were most
predictive (Fig. 2), we used a simpler GLM of just the current and previous out-
come. For the response variable, we calculated the spike density using a sliding
Gaussian window, with a 200 ms window and 50ms standard deviation. We
performed this analysis [−0.4 0.7] around outcome onset. We thus obtained a
time-resolved estimate of encoding.

To determine the latency of significant encoding, we looked at time points in
the post-outcome period that were significantly different from the pre-outcome
period. We thus determined, for each cell, when encoding exceed a threshold
criterion in a time-of-interest. First, we z-score normalized each individual cell’s
encoding metric to the pre-outcome period ([−0.4 0] s). Next, we asked, for each
time point, whether the population response was significantly different from zero
via a Wilcoxon signrank test. We then extracted the largest cluster mass of
contiguous significant time points (at an alpha= 0.05, e.g.,86) to find a time-of-
interest. Finally, we extracted, for each individual cell, the time point where the area
under the curve of the encoding metric in this time-of-interest reached 10% of the
total. Thus, we obtain for each encoding cluster a distribution of latencies of when
they started to show significant encoding of Outcome, Outcome History, or
Prediction Error.

Spectral decomposition and spike-LFP phase synchronization. To determine
how encoding varied as a function of phase, we extracted the estimate of phase at
the time of spikes, for frequencies from 6 to 60 Hz. We first characterized the
degree of spike-phase synchronization, described below. We focused spike-phase
analysis on pairs of distally recorded sites, thus obviating any concerns of spike
energy bleeding into the LFP87. For frequencies from 6 to 30 Hz, the resolution was
1 Hz, and above that it was 2 Hz. For every frequency F, we determined the spike-
LFP phase by extracting an LFP segment centered on the spike of length 5/F (i.e.,
5 cycles), as is standard to balance temporal and spectral resolution. Spectral
decomposition was done via an FFT after applying a Hanning taper. This proce-
dure was applied separately to the pre-outcome period [−1 0]s, and the post-
outcome period [0.1 1]s.

The strength of spike-LFP synchronization was quantified using the pairwise-
phase consistency (PPC), which is unbiased by the number of spikes41. The PPC is
quantified on the basis of pairwise differences between spike-phases. If spikes tend
to fire on specific phases, phase difference will be concentrated, and thus the PPC
will take on a high value, whereas if spikes are distributed randomly relative to the
LFP phase, phase differences will be random and the PPC will tend towards zero.
The PPC effect size was determined as previously reported12,13

Effect size ¼ 1þ 2*sqrt PPCð Þ
1� 2*sqrt PPCð Þ : ð6Þ

This effect size can be interpreted as the relative increase in spike rate at the
cell’s preferred (mean) phase over its anti-preferred (opposite) firing phase. For
example, a PPC value of 0.01 corresponds to a 1.5 times greater spike rate at the
preferred phase.

We determined the frequency at which spike-LFP phase synchronization was
significant by determining peaks in the PPC spectrum. A cell was said to
synchronize to a particular frequency if the following criteria were met: (1) Peaks
had to be above a threshold of 0.005, (2) show a minimum prominence of 0.005,
and (3) show significant Rayleigh test (i.e., phase concentration).

To test for inter-areal differences in spike-beta synchronization, we extracted
the maximal significant/prominent PPC peak in the [10 25] Hz band that showed
significant encoding. For those encoding cells that did not show significant PPC
peaks, we extracted the frequency of the maximal PPC in this band instead. We
tested for differences in synchronization strength using a one-way ANOVA, and
report on pairwise comparisons after multiple comparison correction.
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Phase-of-firing dependent encoding of outcome, outcome history, and pre-
diction error. To determine if spikes falling on certain phases of the LFP were
more informative, we re-ran the (reduced) GLM on phase-binned spikes, using
only the previous and current outcomes (see “Latency analysis” above).

We first aligned all spike-triggered-phases to the circular mean of their
distribution. Phases were extracted from the frequency of the corresponding
maximal peak in the [10 25] Hz band in the PPC. However, if spikes are phase
locked to an LFP, the firing rate around the preferred phase will naturally be
higher. Thus, we used non-equal bin sizes, adjusting the bin limits such that they
had the same spike count. On average the spike-count equalized bin has a spike
rate of 1.85 Hz, range: 1.80–1.86 Hz across bins). Phase bins with equalized spike
counts were on average 7.5% larger for the bin around the non-preferred phase
(spanning ~21% of the full cycle) than for the bin around the preferred phase
(spanning ~13.5% of the full cycle).

We then re-ran the GLM analysis on spikes falling within a particular bin and
computed the encoding metrics as described previously. To aid in comparison, we
also fit the model using randomly permuted phases (thus preserving the over-all
rate response structure). We ignored spike-LFP pairs where the GLM could not
converge to a solution and threw a warning, or where the beta coefficients were
above 20 (however, relaxing or tightening this constraint did not qualitatively
change the results).

To determine the phase and degree of phase-dependent encoding, we fit a
cosine function to the phase-binned encoding values (illustrated in Fig. 4a)45,67.
One encoding value was selected for each spike-LFP pair, on the basis of the cluster
assignment of the spiking neuron. From this fit, we obtain three values: T (phase
offset, or phase of cosine maxima), A (amplitude), and M (overall mean, or offset).
The value T is thus the phase at which encoding is maximal, relative to the
preferred firing phase. To compare the strength of encoding across functional
clusters, we computed the empirical phase-of-firing gain:

PFGE ¼ 2*
A
M

: ð7Þ
This quantity represents the difference in encoding between the peak and

trough relative to the overall encoding strength. A PFGE value of 0 implies that
phase-of-firing adds no information (corresponding to a pure rate code), whereas
PFG= 1 means that encoding between the peak and trough is 100% stronger
compared to the overall encoding strength. To determine if phase significantly
added information above that of a phase-blind rate code, we opted for a
randomization approach. For each cell, we first permuted the phase label of each
spike, re-ran the GLM, re-fit a cosine and extracted the encoding phase-of-firing
gain. This procedure was repeated 50 times, from which we obtain a distribution
PFGR of randomized encoding gains. For this procedure, because phase labels were
permuted, the distribution of phases remains the same, and thus the bin-widths
need not be re-calculated. We report on the “excess” PFG, defined as the difference
between empirical and the median of the randomized phase-of-firing gain, which
we refer to in the manuscript at the Encoding Phase-of-Firing Gain (EPFG):

EPFG ¼ PFGE �median PFGRð Þ: ð8Þ
A positive value implies that encoding is modulated by phase above what would

be expected by chance.
To assess whether individual units showed significant encoding, we compared

PFGE against the null distribution PFGR. Units were deemed significant at an alpha
level of 0.05.

The procedure described above destroys any within-trial correlation between
spike phases. Thus, in a related analysis, we determined PFGR by adding a random
phase in the range [0 2pi] to all spikes within a single trial, thus preserving their
correlation structure. In this case, the phase bin widths were re-calculated for every
randomization.

The EPFG effectively quantifies the difference in mean firing rates between
conditions, as a function of LFP phase. However, this does not necessarily imply
that the information is easily decodable by other brain circuits. To address this
question, we asked how much variance can be explained by the model fit to data in
each phase bin. To this end, for each fit on each phase bin, we extracted the percent
deviance explained (analogous to the ANOVA percent variance explained but
modified for a Poisson GLM). The percent deviance explained D2 was
calculated as88:

D2 ¼ 1� Residual Deviance
Null Deviance

� �
: ð9Þ

The deviance for a Poisson distribution is defined as:

Deviance ¼ 2*
Xn
i

Yi* log
Yi

λi

� �
� Yi � λið Þ; ð10Þ

where Yi is the observed spike count on trial i, and λi is the predicted spike count.
We then determined how D2 varied as a function of phase using the same
procedure as described above; namely, we fitted a cosine to the D2 of each phase
bin, extracted the amplitude and phase, and compared it to a null distribution
where phases have been permuted. We call this quantity the Encoding Phase-of-
Firing Gain (D2), or EPFGD2.

We tested the stability of encoding across phase bins for each neuron (with
significant rate encoding) by determining the sign of the encoding metric (i.e.,

before taking the absolute value). We found that for the vast majority of cell-LFP
pairs (~90%), the sign of the encoding metric was the same for all 6/6 phase bins as
for the full model.

To test the frequency specificity of the EPFG, we extended the above analysis to
the larger 6–60 Hz frequency range (Fig. 4g). We statistically tested the EPFG
across frequencies using the Wilcoxon signrank test. To correct for multiple
comparisons, we used a cluster-based permutation approach89. First, we
determined the largest cluster mass of contiguous significant samples (p < 0.05).
Next, we shuffled empirical and randomized PFGE and PFGR across cell-LFP pairs
to determine a randomized EPFGR and re-calculated the largest cluster mass. We
performed this procedure 200 times. Significant clusters were those whose mass
exceeded that of the randomized distribution.

We also tested the degree to which our results may be influenced by cue-aligned
activity. To this end, we first obtained the average evoked potential for each LFP
channel and subtracted this component from individual trials. We then performed
all steps of the analysis again to compare the original EPFG with the EPFG free
from potential cue-aligned biases.

To test whether the preferred firing phase or relative phase with maximal
encoding was concentrated above what would be expected by chance, we used the
circular Hodges–Ajne test (Fig. 5). To determine whether the phase showing
maximal encoding differed from the preferred firing phase in each functional
encoding cluster, we performed the Median test to test if the phase differed from
zero90 (Fig. 5b).

We tested how the strength of phase synchronization related to the strength of
phase-of-firing encoding by performing two analysis. First, we compared encoding
in cells that showed significant spike-phase synchronization to those that did not.
For non-synchronizing cells, we selected the center frequency with the maximal
PPC in the [10 25] Hz range, and computed the EPFG at this frequency. We
compared EPFG between locking and non-locking populations using the
Kruskal–Wallis test (Fig. 4h). Second, we asked whether spike-phase synchrony in
different trial conditions contained similar information to that of the phase-of-
firing. To this end, for each encoding cell, we compared trials that were predicted to
have the maximal firing rate differences. For Outcome encoding, we compared
correct versus error trials. For Reward Prediction Error encoding we compared
correct trials following error versus following error trials following correct. For
Outcome History cells, this was errors followed by errors versus correct outcomes
followed by correct. We took the absolute difference of the PPC between the two
conditions and correlated it with the EPFG of the respective cell using the
Spearman rank correlation. In a similar vein, we also tested whether the mean
phase differed between the conditions outlined above. After extracting the mean
phase per condition for each cell-LFP pair, we performed a bootstrap test to test if
the difference in phase between conditions differed from zero90.

We also tested whether phase gain depended on the number of bins used to fit
the cosine function. We performed the analysis for 4, 6, 8, and 10 bins. We used
Spearman rank correlation to determine if EPFG was related to the number of bins,
and circular–linear correlation to associate the phase of maximal encoding with the
number of bins90.

We tested for the presence of feature-specific phase-of-firing encoding for those
cells clustered as RPE encoding. We calculated the PFGE for each cell-LFP pair
twice, using only trials from blocks where either color 1 or 2 was rewarded. We
analyzed pairs with a minimum of 30 trials, and where the PFGE was well-defined
for both colors. A total of 102 pairs were thus selected. The average number of trials
for color 1 was 136 ± 5.4, from an average of 3.15 ± 0.13 blocks. Color 2 analysis
used 129 ± 4.85 trials from 3.07 ± 0.12 blocks. We then asked, for each color,
whether the PFGE was above chance (described above). PFGE could be significant
for neither color, one-color (defined as feature-specific encoding), or both colors
(non-feature-specific encoding). We tested whether the relative frequencies of non-
encoding, feature-specific encoding, and non-feature specific encoding differed by
chance using a χ2 test. We used the same test to determine if the proportion of
feature-specific encoding differed between areas.

Cell-type classification and analysis. To determine if phase-modulated encoding
of information differed based on cell type, we focused the following analysis on
highly isolated single units that showed encoding of learning-relevant variables and
significant, prominent spike-beta locking. Detailed information is provided in ref. 5.
In brief, to distinguish putative interneurons (narrow-spiking) and putative pyr-
amidal cells (broad-spiking) in LPFC and ACC, we analyzed the peak-to-trough
duration and the time for repolarization for each neuron. After applying principal
component analysis (PCA) using both measures, we used the first principal to
discriminate between narrow and broad-spiking cells. This allowed for better
discrimination than using either measure alone. We confirmed that a two-Gaussian
model fit the data better than a one-Gaussian model using the Akaike and Bayesian
Information Criterion (AIC, BIC). We then used the two-Gaussian model to define
narrow and broad-spiking populations.

A similar analysis was applied to striatal units to distinguish putative
interneurons from medium spiny projection neurons (MSN). Here, we use the
peak-width and Initial Slope of Valley Decay (ISVD)5:

ISVD ¼ Vt � V0:26

APT
; ð11Þ
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where VT is the most negative value (trough) of the spike waveform, V0.26 is the
voltage at 0.26 ms after VT, and APT is the peak-to-trough amplitude. After PCA
and two-Gaussian modeling (as described above), we defined two cut-off points.
The first cutoff was the point at which the likelihood of narrow-spiking cells was
three times larger than the likelihood of broad-spiking cells, and vice-versa for the
second cutoff.

We compared differences in Encoding Phase-of-Firing Gain between narrow
and broad-spiking neurons using the Kruskal–Wallis test, independently for each
area. To clarify, we analyzed spike-LFP pairs here; thus, the same neuron may be
included more than once.

Assessing encoding linked to the temporal evolution of LFP. We assessed how
the sites we analyzed were related to the temporal evolution of the LFP in two ways,
first, by assessing how the LFP power and phase changed with stimulus onset; and
second, how encoding changed as a function of periods of particularly high or low
beta power.

We determined how power and phase were distributed relative to the stimulus
or reward onset. As for the spike-aligned analysis, we decomposed the LFP via the
Fourier transform after Hanning tapering. We determined the spectral content
6–60 Hz frequency window, from [−2 2] s stepped every 5 ms.

Power was taken as the squared magnitude of the spectra representation. Power
was normalized for 1/f noise. To determine the spectral peak across sites and
epochs, we z-score normalized the power across all time points and epochs for each
LFP individually. We report on the median of this normalized quantity.

To determine if there was evidence of phase resetting, we performed, for each
LFP, a Rayleigh test at every point in time for every frequency, and extracted the Z
statistic. We report on the median Raleigh Z value, with higher values related to a
greater phase consistency across trials.

Finally, we assessed how encoding varied during burst periods50,91. We took an
approach conceptually similar to Lundqvist and colleagues91. For each LFP
channel, we first normalized the power for 1/f noise. Next, we averaged this signal
in the same [10 25] Hz window we used for spike-aligned analysis above. Following
this, we Z-scored beta power within each trial individually. Bursts were defined as
periods where the normalized power exceeded 1.5 SD for a minimum of 3 cycles
(=45 ms). The burst proportion was defined as the mean across trials at each point
in time.

To assess how encoding varied as a function of burst periods, we separately
selected spikes that either occurred within burst periods, or outside of burst
periods, before calculating the EPFG as before. We only analyzed cell-LFP pairs
with a minimum of 30 spikes after this selection.

Data availability
Raw data is available upon reasonable request. A reporting summary for this Article is
available as a Supplementary Information file. The source data underlying Figs. 4d–f and
5 are provided as a Source Data file. Source data are provided with this paper.

Code availability
Code for analysis and reproduction of main conclusions is available online at https://
github.com/att-circ-contrl/ana_phaseGain.
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