
ARTICLE

Intermediate-phase-assisted low-temperature
formation of γ-CsPbI3 films for high-efficiency
deep-red light-emitting devices
Chang Yi1,4, Chao Liu1,4, Kaichuan Wen1, Xiao-Ke Liu 2, Hao Zhang1, Yong Yu2, Ning Fan1, Fuxiang Ji2,

Chaoyang Kuang 2, Bo Ma1, Cailing Tu1, Ya Zhang1, Chen Xue3, Renzhi Li1, Feng Gao 2✉, Wei Huang1,3✉ &

Jianpu Wang 1✉

Black phase CsPbI3 is attractive for optoelectronic devices, while usually it has a high for-

mation energy and requires an annealing temperature of above 300 °C. The formation energy

can be significantly reduced by adding HI in the precursor. However, the resulting films are

not suitable for light-emitting applications due to the high trap densities and low photo-

luminescence quantum efficiencies, and the low temperature formation mechanism is not

well understood yet. Here, we demonstrate a general approach for deposition of γ-CsPbI3
films at 100 °C with high photoluminescence quantum efficiencies by adding organic

ammonium cations, and the resulting light-emitting diode exhibits an external quantum

efficiency of 10.4% with suppressed efficiency roll-off. We reveal that the low-temperature

crystallization process is due to the formation of low-dimensional intermediate states, and

followed by interionic exchange. This work provides perspectives to tune phase transition

pathway at low temperature for CsPbI3 device applications.
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A ll-inorganic halide perovskites such as CsPbX3 (X= Cl,
Br, I) are attractive materials for light emitters and pho-
tovoltaic applications due to their potential in overcoming

long-term stability issues of organic–inorganic hybrid halide
perovskites1–5. The low-temperature solution-processed phase-
stable CsPbX3 perovskites are mainly based on bromide and
chloride with suitable tolerance factors6. Optically active CsPbI3
black phases (α (cubic), β (tetragonal) or γ (orthorhombic))
usually require high annealing temperature (300–370 °C) to
overcome the energy barrier for phase transition7,8. Moreover, the
CsPbI3 black phases can readily transform to yellow-phase δ-
CsPbI3 in ambient conditions due to the thermodynamic
instability9–11, inhibiting their application in optoelectronic
devices12,13. In perovskite solar cells, a general method of forming
black phases CsPbI3 at low temperature is by adding hydroiodic
acid (HI) in CsPbI3 precursor solution prior to spin coating13,14.
It has been observed that the judicious amount of HI would
decompose the solvent dimethylformamide (DMF) to form
dimethylammonium iodide15, while the mechanism of how this
process affects the crystallization of CsPbI3 is still under intensive
debate with two arguments. One argument is that the formed
DMA would sublimate and lead to a fast crystallization of
CsPbI34,16,17. Another argument is that the DMA becomes the
part of the crystal structure and the formed black phase is not
CsPbI3 but CsxDMA1−xPbI318,19.

For CsPbI3-based light-emitting diodes (LEDs) applications,
the low-temperature HI doping method is difficult to achieve
high performance devices, mainly due to the high trap density
and strong nonradiative recombination with those perovskite
films (typical photoluminescence quantum efficiency (PLQE) <
1%)20. Alternatively, high-efficiency LEDs has been demonstrated
based on CsPbI3 quantum dots (QDs)21,22. However, those col-
loidal QDs are synthesized ex situ in flasks by the hot-injection
method, which usually requires a temperature above 170 °C and
complicated processing conditions21–24. In addition, usually those
perovskite QD-based LEDs only show high efficiency at low
current densities with strong efficiency roll-off due to the strong
nonradiative Auger process in perovskite QDs21,25,26. In this
work, we report an effective approach for achieving high quality
γ-CsPbI3 at low annealing temperature (~100 °C) for high per-
formance LEDs applications. More importantly, we reveal that
the low-temperature formation process of black phase CsPbI3 can
be generally observed when intermediate states are formed, fol-
lowed by an interionic exchange in the presence of large organic
ammonium cations.

Results
Low temperature formed γ-CsPbI3 films. A DMF precursor
solution of imidazolium iodide (IZI), CsI, and PbI2 with a molar
ratio of 4:1.5:1 (referred as IZI-CsPbI3) is spin coated onto
polyethylenimine ethoxylated (PEIE) modified ZnO substrates
(referred as ZnO/PEIE). We note that ZnO/PEIE has been widely
used as an electron transporting layer in perovskite LEDs27. After
thermal annealing at 100 °C for 5 min, the IZI-CsPbI3 film shows
X-ray diffraction (XRD) peak of 14.3 and 28.9° without any
splitting (Fig. 1a), corresponding to the (110) and (220) crystal
planes of γ-CsPbI3, respectively. An absorbance edge at ~1.75 eV
and a photoluminescence (PL) peak at ~700 nm are also observed
for this film (Fig. 1b). These results are consistent with the
characteristics of γ-CsPbI3 obtained through thermal annealing
above the transition temperature (around 310 °C) and rapid
cooling process8,13. In addition, the scanning electron micro-
scopic (SEM) measurement shows that the IZI-CsPbI3 film is
discrete, consisting of particles with an average size of ~80 nm
(Fig. 1c). The film shows good emission properties with PLQE

reaching up to 38% (Fig. 1d). Time-correlated single photon
counting measurement shows that the PL lifetime increases with
the increasing amount of IZI (Supplementary Fig. 1a), suggesting
that the nonradiative recombination of the γ-CsPbI3 is sup-
pressed with increasing IZI. This result is consistent with the
PLQE result (Supplementary Fig. 1b). More importantly, the IZI-
CsPbI3 film exhibits negligible degradation after exposing for
36 days in ambient air at room temperature with 80% relative
humidity (Fig. 1d). In contrast, the regular γ-CsPbI3 obtained
from the high-temperature annealing process can only retain for
4 h in the same environment (Supplementary Fig. 2). The PL
intensity of IZI-CsPbI3 film dropped to 50% over 8 days in the
ambient air (Supplementary Fig. 3), suggesting significantly
improved phase and optical stability compared to previously
reported results4,19.

The mechanism behind low temperature formed γ-CsPbI3
films. To investigate the mechanism of IZI on facilitating the
formation of γ-CsPbI3 perovskite at the low temperature, we
monitor the crystal phase evolution of the as-spun IZI-CsPbI3
film by XRD measurements under various annealing time
(Fig. 2a). At early stage of the thermal annealing process (10–15
s), CsI with the peak at 27.6° remains unchanged, while an
intermediate phase with peaks at 11.3 and 25.4° is formed. This
intermediate phase can be assigned to one dimensional (1D)
IZPbI3, since their XRD peaks are consistent (Fig. 2a red line and
Supplementary Table 1). Upon further annealing (~30–60 s), both
the XRD peaks (11.3, 25.4, and 27.6°) of intermediate phase
IZPbI3 and CsI disappear. In the meantime, XRD peaks (14.3 and
28.9°) of γ-CsPbI3 perovskite appear. These facts suggest that the
1D IZPbI3 perovskite transforms to the γ-CsPbI3 perovskite
during the low-temperature annealing process. This transforma-
tion process requires an interionic exchange process of IZ+

embedded in face-shared PbI6 chains with external Cs+.
The corresponding morphology of IZI-CsPbI3 films annealed at
100 °C for various time durations is also monitored by SEM
measurement (Supplementary Fig. 4). The unannealed film dis-
plays a dense, planar morphology (Supplementary Fig. 4a). With
a short-time annealing (t= 10 s), mounts of small grains of about
40 nm emerge (Supplementary Fig. 4b), corresponding to the
intermediate phase. By extending the annealing time duration to
15 s, the small grains grow bigger and the layer becomes discrete
(Supplementary Fig. 4c), corresponding to the mixed phase with
1D and 3D. When annealed over 30 s, the discrete γ-CsPbI3
grains with an average size of ~80 nm form and disperse on the
ZnO/PEIE substrate (Supplementary Fig. 4d–f).

We find that without the underneath ultrathin PEIE layer, the
low-temperature phase transformation can be still observed by
XRD measurement (Supplementary Fig. 5). It cannot be formed
at 100 °C without ZnO layer, where both the 1D phase and CsI
remain unchanged even after 10 min annealing (Supplementary
Fig. 6). UV–vis absorption spectra measurement result is
consistent with the above XRD result (Supplementary Fig. 7).
These results suggest that during the formation of γ-CsPbI3 from
the intermediate phase IZPbI3, the ZnO substrate plays important
roles in the interionic exchange process.

We then use X-ray photoelectron spectroscopy (XPS) mea-
surement to reveal the role of the ZnO substrate in the interionic
exchange process. Particularly, the chemical interaction between
the films (IZI, IZI-CsPbI3) and ZnO is investigated. Figure 2b
shows the high resolution XPS spectra of N 1s, O 1s, and Zn 2p of
these films. The XPS spectrum of IZI prepared on ITO substrate
shows two N 1s peaks at around 401.7 eV (N-3) and 400.2 eV (N-
1), respectively (Fig. 2b black and pink line). When IZI film is on
top of ZnO layer, the N-3 peak disappears and a new peak
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positioning at a lower binding energy of 398.8 eV shows up. The
two peaks of the ZnO/IZI film are in well agreement with those of
imidazole (IZ), and the peak at 398.8 eV can be attributed to the
N-2 of IZ (Fig. 2b blue line)28,29. The above XPS result indicates
that the ZnO can deprotonate the IZ+ cation of IZI. Importantly,
this deprotonation process can be also observed in the IZI-CsPbI3
film with ZnO and ZnO/PEIE substrate, respectively (Fig. 2b and
Supplementary Fig. 8). Moreover, compared to the bare ZnO film
on ITO, the ZnO/IZI and ZnO/IZI-CsPbI3 films show signifi-
cantly suppressed XPS peak at 530 eV ascribed to O 1s of Zn–O
bonding (Fig. 2c black line)30,31, and their peaks of the Zn 2p of
Zn–O bonding shift to higher energies (Fig. 2d). These further
XPS observations can be explained by the presence of H+ in the
Zn–O–H bonding which decreases electron cloud density around
Zn atoms32, consistent with the result of deprotonation of the IZ+

cation by ZnO. Figure 2e shows a scheme of this deprotonation
process of IZ+ by ZnO. In addition, attenuated total reflection
Fourier-transform infrared (ATR-FTIR) spectroscopy measure-
ment result can further confirm this scenario. As shown in
Supplementary Fig. 9, the N–H stretching vibration at 3260 cm−1

of IZI in the films on the ZnO/PEIE substrate is shifted to higher
wavenumber (3330 cm−1). Correspondingly, the broad stretching
vibration of Zn–O is red shifted from 556 to 538 cm−1,33. And the
signature peak of IZ at about 3130 (CH stretching), 1543 (NH
bend), 1328 (CH bend), 1263 (ring breathing), 1055 (CH bend),
841 (ring bend), 757 (CH out-of-plane bend), and 658 (torsion)
cm−1 are clearly observed34. We note that the similar
deprotonation process can also be observed in films with the
intermediate phase of IZPbI3 (Supplementary Fig. 10) and
FAPbI3 perovskites35.

On the basis of the above phase evolution and chemical
elementary analysis, we can have a clear picture of the mechanism

of the γ-CsPbI3 formation process at low temperature, as shown
in Fig. 2f. It first forms an intermediate phase IZPbI3, followed by
the formation of γ-CsPbI3 through the interionic exchange of IZ+

with external Cs+ in the process of the deprotonation of IZ+ with
ZnO. The overall chemical reaction of phase formation can be
presented as follows:

Stage 1 : PbI2 þ C3N2H5Iþ Csþ ! ðC3N2H5ÞPbI3 þ Csþ
forming intermediate phase;

Stage 2 : 2ðC3N2H5ÞPbI3 þ 2Csþ þ 2ZnO ! 2CsPbI3 þ 2C3
N2H4 þ ZnðOHÞ2 þ Zn2þ ion exchange and forming γ�CsPbI3:

Since the ZnO induced deprotonation process likely mainly
occurs at the ZnO interface, it is interesting to investigate how
thick the perovskite can be formed by this approach. Supple-
mentary Fig. 11 shows the absorbance of the films with various
thickness fabricated from different concentration of precursor
solutions. It shows the absorbance at 687 nm from the black
phase CsPbI3 increases linearly with the film thickness <200 nm.
Above 200 nm, the absorbance saturates and declines. This result
suggests that the ZnO substrate can facilitate the γ-CsPbI3
formation within the film thickness of 200 nm.

Kinetic of phase transition. We further investigate the crystal-
lization kinetics of the γ-CsPbI3 films with various IZI contents
by using time-dependent UV–vis spectroscopy. The reaction
progress of these films with different contents of IZI in precursor
solutions (IZI/PbI2 molar ratio is x, x= 0, 0.5, 1, 2, 3, 4, and 5)
were monitored through change in absorbance (A(t)) at ~687 nm
(Fig. 1b). The value of formed γ-phase fraction χ(t) is defined as:

χðtÞ ¼ AðtÞ
AðtendÞ

; ð1Þ
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where the A(tend) represents the maximum absorbance at the final
state. As shown in Fig. 3a, the rate of γ-phase formation increases
with the increasing amount of IZI at a constant annealing tem-
perature of 90 °C. And Fig. 3b shows that the rate also increases
with increasing annealing temperature when the IZI content is
constant. More detailed measurement results on different mole
ratios and various annealing temperature are shown in Supple-
mentary Fig. 12. The activation energy of the γ-CsPbI3 formation
for various IZI contents can be estimated by using the Mitte-
meijer model36, as shown in Supplementary Fig. 12g. Figure 3c
shows a summary of the estimated activation energies barrier,
which can be significantly decreased from 150 to 29 kJ mol−1

with increasing molar ratio of IZI to PbI2 from 0.5 to 5.

Generality of the low temperature formed γ-CsPbI3 films. In
order to further demonstrate the generality of the low-temperature
formation of black CsPbI3 through the intermediates, we add var-
ious RNH3

+-based large organic cations, such as butylammonium
iodine (BAI), hexylammonium iodine (HAI), phenethylammonium
iodine (PEAI), and naphthylethylammonium iodine (NMAI) into
the CsPbI3 precursor and spin coated on top of ZnO substrates. As
shown in Supplementary Fig. 13, all those films exhibit formation of
intermediates, decomposition, and interionic exchange during
the annealing process. And finally, the black CsPbI3 films form at
100 °C. Therefore, we believe that the process we plotted in Fig. 2f is
general for forming black CsPbI3 at low temperature assisted by
RNH3

+-based large organic cations.
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LED device performance. As shown in Fig. 4a, the LED devices
have a structure of ITO/ZnO/PEIE/IZI-CsPbI3/poly (9,9-dioctyl-
fluorene-co-N-(4-butylphenyl)diphenylamine) (TFB)/molybde-
num oxide (MoOx)/gold (Au). Detailed fabrication process can be
found in “Methods.” The valence bands of IZI-CsPbI3 film is
obtained via ultraviolet photoelectron spectroscopy measurement
(Supplementary Fig. 14), and the conduction band was estimated
using the band gap derived from the absorption band edge
(Fig. 1b). A cross-sectional image of the device shows the for-
mation of the discrete CsPbI3 particles layer with a thickness of
~40 nm (Fig. 4b). We note that the residual IZI can locate
between the discrete particles, which can prevent the device from
short-circuit current and enhance the light-outcoupling effi-
ciency, and similar studies have been demonstrated early37–39.
The current density and luminance versus voltage (J–L–V) and
EQE curves of the device with different contents of IZI are shown
in Supplementary Fig. 15. The electroluminescence (EL) peak is
located at ~698 nm and the shape remains unchanged under
different bias voltages (Fig. 4c). The champion device based on
the IZI-CsPbI3 film (mole ratio of 4:1.5:1 for IZI:CsI:PbI2) exhi-
bits a peak EQE of 10.4% with luminance of 340 cd m−2, and the
turn-on voltage is as low as 2 V (Fig. 4d, e). We note that our
device peak EQE is a record for 3D CsPbI3 film-based red
LEDs40,41. Moreover, the efficiency roll-off of the device is sig-
nificantly suppressed, and the EQE remains high (~8%), under a
high current density of 100 mA cm−2 (Fig. 4e). This feature is
very different compared with previous QD-based CsPbI3 LED
devices21,26, where high EQE can only be obtained at low exci-
tations likely due to the strong nonradiative Auger process. In
addition, the IZI-CsPbI3 devices exhibit highly reproducible with
average EQE of 8.1% for 75 devices (Supplementary Fig. 15c). The
best device shows a half-lifetime of 20 min at a constant current
density of 100 mA cm−2, and the EL peak position remains
constant over time (Fig. 4f).

Discussion
In summary, we have developed a low-temperature method of
forming CsPbI3 black phases for high performance CsPbI3 LED
applications via synergistic effect of IZI and ZnO electron transport
layer. The judicious amount of IZ+ in the precursor promotes the
intermediate phase formation, followed by the formation of γ-
CsPbI3 through the interionic exchange of IZ+ with external Cs+ in
the process of the deprotonation of IZ+ with ZnO. The phase
transition engineering can efficiently reduce the formation energy of
CsPbI3 black phase, and facilitate the formation of discrete CsPbI3
particles film with high PLQE and long-term stability. The resulting
CsPbI3 LED shows a peak EQE of 10.4% with suppressed efficiency
roll-off. Importantly, the low-temperature formation process can be
generally observed with various RNH3

+-based large organic cations.
So we believe that our work provides useful perspectives to tune the
phase transition pathway, and offers an effective approach to fab-
ricate low-temperature processed CsPbI3 black phase film for LEDs
applications.

Methods
Synthesis of ZnO colloidal solution. ZnO were synthesized by following the
previously reported method27. The dimethyl sulfoxide solution of Zn(Ac)2·2H2O
(3 mmol in 30 mL) was mixed in ethanol solution of tetramethylammonium
hydroxide pentahydrate (TMAH·5H2O) (5.6 mmol in 10 mL) and stirred at 30 °C
for 24 h. The ZnO colloids were precipitated with ethyl acetate, and washed it three
times with ethanol and ethyl acetate. Finally, the obtained ZnO colloid were dis-
persed in ethanol and set aside in the fridge until serve.

Synthesis of organic ammonium salt. IZI was prepared by mixing IZ (2 g) and
excess hydroiodic acid (45 wt% in water) in 15 mL of ethanol at 0 °C. After the
reaction mixture was stirred for 2 h, 60 mL diethyl ether was added into the
mixture to obtain the precipitates. The collected precipitates were washed three

times with diethyl ether and stored in an oven. BAI, HAI, PEAI, and NMAI were
prepared by similar method.

Perovskite precursor solutions preparation. The CsPbI3 precursor solution were
prepared by dissolving IZI, CsI, and PbI2 with a molar ratio of x in DMF at weight
percent (wt%) of 6% (IZI and PbI2 molar ratio is x:1, x= 0, 1, 2, 3, 4, CsI and PbI2
molar ratio fixed at 1.5:1), and the solution with molar ratio of x= 4 is referred as
IZI-CsPbI3. The IZI–PbI2 precursor solutions were prepared by dissolving IZI and
PbI2 with a molar ratio of 4:1 in DMF. BAI-CsPbI3, HAI-CsPbI3, PEAI-CsPbI3, and
NMAI-CsPbI3 precursor solution were prepared by dissolving BAI, HAI, PEAI,
NMAI in DMF solution of CsI and PbI2 with molar ratio of 4:1.5:1, 2:1.5:1, 4:1.5:1,
2:1.5:1, respectively.

Perovskite film deposition. ZnO colloidal solution was deposited onto the ITO
substrate using spin-coating technique at 4000 rpm for 45 s, followed by annealing at
150 °C for 30min The PEIE (1.5mgmL−1 in methoxyethanol) was spin coated onto
the ZnO films at a speed of 5000 rpm and annealed at 100 °C for 10min. Finally, the
precursor solution was spin coated onto ITO/ZnO/PEIE substrate (4000 rpm, 30 s) or
ITO substrate with 100 °C annealing for various time to form films, respectively.

Device fabrication. The devices were fabricated with a structure of ITO/ZnO/
PEIE/perovskite/TFB/MoOx/Au. After the deposition of the ZnO, PEIE and per-
ovskite films as mentioned above, the TFB (12 mgmL−1 in chlorobenzene) layer
was spin coated by 3000 rpm for 30 s. Finally, MoOx (7 nm) and Au (80 nm) were
deposited by thermal evaporation, respectively

Perovskite film characterization. XRD measurements were performed with a
Rigaku Smart lab (3 kW) XRD patterns with Bragg–Brentano focusing, a diffracted
beam monochromator and a conventional Cu target X-ray tube set to 40 kV and
30 mA. Time-dependent UV–vis absorption spectra were obtained on PerkinElmer
Lambda 950 spectrometer. The general morphologies of the films were char-
acterized by FEI (Quanta 200 FEG) SEM under a voltage of 5 kV. XPS tests were
carried out using a Thermo ESCALAB250 Xi X-ray photoelectron spectrometer
with Al Kα X-ray as the excitation source. All binding energies were referred to the
C 1s peak at 284.8 eV of the surface areas of the samples. ATR-FTIR spectra of
films were characterized by a Thermo-Niclet IS50 equipped with a Smart SAGA
reflectance accessory in the range of 450–4000 cm−1. PL spectra were obtained
using a fluorescent spectrophotometer (F-4600, HITACHI) with a 200W Xe lamp
as an excitation source. The Excitation-intensity-dependent PLQE of perovskite
films was monitored by a joint control of a 450 nm continuous wave laser, 1000 μm
slit width, optical fiber spectrometer, and integrating sphere42. The film thickness
was determined by a surface profiler (KLA-Tencor).

Kinetic modeling of the phase transition. The dependence of rate on tempera-
ture indicates a significant activation energy barrier (Ea) for the process of the γ-
CsPbI3 formation. We worked out the activation energy barrier using the Mitte-
meijer model:36

ln tx2 � tx1ð Þ ¼ Ea

RT
� ln k0 þ ln βx2 � βx1

� �
; ð2Þ

where Ea is the effective activation energy barrier, tx1 and tx2 are the annealing time
at which the transformed fraction is χ(t)= 0.2 and 0.8, R is the gas constant, T is
the temperature, and k0 is a rate constant prefactor.

Device characterization. The LED was measured in glove box at room tem-
perature, and detailed setup can be found in reference38. A Keithley 2400 source
meter with a step of 0.05 V s−1 and a fiber integration sphere (FOIS-1) coupled
with a QE65 Prospectrometer were used for the device measurements. The device
area is 7.25 mm2. The device lifetime was measured by using the same setup under
a constant current density of 100 mA cm−2.

Data availability
The data that support the finding of this study are available from the corresponding
author upon reasonable request.
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