Abstract
Efficient generation of phonons is an important ingredient for a prospective electricallydriven phonon laser. Hybrid quantum systems combining cavity quantum electrodynamics and optomechanics constitute a novel platform with potential for operation at the extremely high frequency range (30–300 GHz). We report on laserlike phonon emission in a hybrid system that optomechanically couples polariton BoseEinstein condensates (BECs) with phonons in a semiconductor microcavity. The studied system comprises GaAs/AlAs quantum wells coupled to cavityconfined optical and vibrational modes. The nonresonant continuous wave laser excitation of a polariton BEC in an individual trap of a trap array, induces coherent mechanical selfoscillation, leading to the formation of spectral sidebands displaced by harmonics of the fundamental 20 GHz mode vibration frequency. This phonon “lasing” enhances the phonon occupation five orders of magnitude above the thermal value when tunable neighbor traps are redshifted with respect to the pumped trap BEC emission at even harmonics of the vibration mode. These experiments, supported by a theoretical model, constitute the first demonstration of coherent cavity optomechanical phenomena with exciton polaritons, paving the way for new hybrid designs for quantum technologies, phonon lasers, and phononphoton bidirectional translators.
Introduction
Hybrid devices composed of different physical components with complementary functionalities constitute one trending line of research for novel quantum communication technologies for signal storage, processing, conversion, and transmission^{1}. Cavity optomechanics^{2} constitutes one domain, in which hybrid designs have been envisaged both for the test of fundamental quantum physics at the mesoscopic level, as well as for new functionalities^{3}. In cavity optomechanics photons are confined and strongly coupled to vibrational degrees of freedom, thus leading, under appropriate conditions, to dynamical backaction phenomena, including optically induced coherent selfoscillation of the mechanical mode^{4,5} and, conversely, to laser cooling of the mechanical mode, even down to the quantum ground state^{6,7,8,9}. One application of cavity optomechanics is in the bidirectional conversion between signals of contrastingly different frequency, for example, between classical microwaves and optical light^{10,11,12}, with prospects for the transfer of quantum states^{13}. Cavity polaritons, the strongly coupled quantum states combining an exciton (as a twolevel artificial atom) and a cavityconfined photon, are the fundamental excitations of another hybrid quantum system^{14}. Since the initial discovery of cavity polaritons in semiconductor microcavities, their Bose–Einstein condensation (BEC)^{15}, superfluidity^{16}, lasing^{17}, also under electrical pumping^{18}, and multistable behavior^{19} have been reported.
Hybrid quantum systems combining both cavity quantum electrodynamics and cavity optomechanics have been theoretically proposed^{20,21}, with predictions of cooling at the singlepolariton level, peculiar quantum statistics, and coupling to mechanical modes of both dispersive and dissipative nature. Cavity optomechanics with a polariton BEC opens intriguing perspectives, particularly in view of the potential access to an optomechanical strongcoupling regime, and the possibility of using vibrations to actuate on such a macroscopic quantum fluid. Indeed, the strength of the optomechanical interaction in conventional photon cavity optomechanics is quantified by the optomechanical cooperativity, \(C=\frac{4{g}_{{\rm{0}}}^{{\rm{2}}}{n}_{{\rm{cav}}}}{\kappa {\Gamma }_{{\rm{m}}}}\). Here, g_{0} is the singlephoton optomechanical coupling factor, n_{cav} is the number of photons in the cavity, and κ and Γ_{m} are the photon and mechanical decay rates, respectively^{2}. For a polariton BEC one expects strongly enhanced values of the cooperativity C due to the very large coherent population of the condensate, coherence times that can be two orders of magnitude larger than the photon lifetime in the cavity, and optomechanical coupling interactions mediated by the excitons that can be resonantly enhanced^{22}. Hybrid optomechanical systems based on BEC have, to the best of our knowledge, so far only been demonstrated with cold atoms in cavities coupled to lowfrequency kHz vibrational degrees of freedom^{23}.
It is the purpose of this paper to investigate the rich physics emerging from the coupling of a polariton BEC in a semiconductor microcavity with superhighfrequency vibrations confined in the same resonator^{24,25}. The studied system contains GaAs/AlAs quantum wells (as twolevel artificial atoms) coupled to cavityconfined optical and vibrational modes. Planar semiconductor microcavities are microstructured to laterally confine the polaritons, and the phonons, in stripes and in trap arrays. Optomechanically induced amplification (OMIA) experiments are presented to evidence the efficient coupling between the resulting exciton–polariton condensates to 20 GHz breathinglike vibrations confined in the same cavity. Highresolution spatially resolved lowtemperature photoluminescence (PL) experiments evidence the emergence of mechanical selfoscillation, when polariton traps neighbor to the pumped one are reddetuned by even multiples of the confined phonon frequency. This observation highlights the relevance of highorder resonant optomechanical coupling in these devices. A theoretical model of resonant polaritondriven quadratic optomechanical coupling is introduced to describe the experimental observations. Conclusions are drawn showing that the findings contribute to developing new directions in the optomechanics and cavitypolariton fields, with applications in the technologically relevant extremely highfrequency range (30–300 GHz).
Results
The polariton optomechanical device
The studied system consists of cavity polaritons in μmsized traps created by microstructuring the spacer of an (Al,Ga)As microcavity^{26}. The lateral spacer modulation creates confinement potentials in 2D (wires and stripes), 3D (dots), as well as dot arrays consisting of nonetched areas surrounded by etched barriers (see a detailed description of the structure in the Supplementary Note 1). These polariton traps were studied by lowtemperature PL in ref. ^{26}. The sample is in the strong coupling regime both in the etched and nonetched regions, leading to microcavity polaritons in these two regions with different energies and photon/exciton content. BECs can be induced in the traps both with nonresonant and resonant excitation. As previously reported for similar planar^{24} and pillar^{25} microcavities, these structures also confine breathinglike longitudinal vibrations polarized along the growth direction, z, with a fundamental frequency around \({\nu }_{{\rm{m}}}^{{\rm{0}}} \sim 20\) GHz and overtones at \({\nu }_{{\rm{m}}}^{n}=(1+2n){\nu }_{{\rm{m}}}^{{\rm{0}}}\). We will concentrate here on experiments performed on a 40μmwide stripe (i.e., with weak lateral confinement), as well as on a square array of coupled square traps of 1.6 μm lateral size separated by 3.2μmwide etched regions.
Optomechanically induced amplification
Figure 1a, b shows the spectrally and spatially resolved PL image of the 40μmwide polariton stripe recorded at 5 K. The photonic mode in this microstructure is slightly negatively detuned with respect to the QW heavyhole exciton state. The PL was nonresonantly excited using a TiSapphire cw laser (1.631 eV) with pump powers P_{Pump} below, and above the condensation threshold power, P_{Th}. At low powers (Fig. 1a, P_{Pump} = 10^{−4} P_{Th}), the closely packed laterally confined levels in the stripe can be identified. Above threshold (Fig. 1b, P_{Pump} = 2.3 P_{Th}), the polariton BEC is evidenced by the narrowing and concentration of the emission at the bottom of the trap, as well as by the blueshift of the states induced by polariton–polariton interactions mediated by their excitonic component, as well as polariton interactions with the excitonic reservoir^{17}.
Figure 1c–f summarize the results of a twolaser OMIA experiment^{27}, performed on this 40μmwide stripe. The first (pump) laser creates a BEC in the stripe. The second weak (probe) laser was scanned from higher to lower energies and through the condensate energy (details are provided in the Supplementary Note 2). The color map in Fig. 1c shows the PL intensity as a function of the probe laser energy. Figure 1d displays the integrated PL intensity, showing the emission of the closely spaced polariton states of the stripe. OMIA is evidenced by the variation of the PL intensity at the peak of the BEC emission as a function of the probe laser energy, which is also displayed in Fig. 1e. Notably, a series of peaks separated by the energy of the fundamental breathinglike cavityconfined vibrational mode (~20 GHz ~ 83 μeV) appears at the highenergy side of the BEC peak. A fit of the OMIA peak detunings, showing a clear lineal dependence, is presented in Fig. 1f. OMIA with the final state corresponding to the polariton fundamental energy is similar to a stimulated Raman process. The spectrum in Fig. 1e shows that the first and higherorder Stokes replicas (creation of one or several phonons) are amplified, but the antiStokes ones (annihilation of a phonon) are not. This asymmetry is attributed to the double optical resonance condition, which is satisfied for the Stokes processes, but not for the antiStokes ones^{28}. In fact, the probe beam can only resonantly couple to modes with energy higher than that of the BEC. On the contrary, no modes are available at energies below the BEC, thus strongly suppressing this channel. The observation of up to five replicas of the 20 GHz phonon evidences a strikingly efficient optomechanical interaction.
Mechanical selfoscillation
To exploit such an efficient polariton–vibrational coupling for polaritondriven coherent phonon emission, we propose a double resonant scheme^{5}, involving two confined states at neighboring sites of a square array of 1.6μmwide traps with a pitch of 4.8 μm. The color map in Fig. 2a displays the pump power dependence of the PL induced by a pumping spot focused onto a trap array. Spatially resolved PL images below and above threshold power are also presented (cf. Fig. 2b, c). While the ~3μmwide laser spot mainly addresses a single trap, neighboring traps can be excited through the tails of the laser Gaussian spot, as well as via polariton tunneling from the central trap and lateral propagation of the excitons in the reservoir. The fundamental and first excited states of the pumped trap, as well as weaker contributions from neighbor traps, can be identified in the color map and spatial images in Fig. 2. With increasing pump power the polariton modes blueshift. Above a threshold value, the intensity of the fundamental mode increases nonlinearly evidencing polariton BEC. Concomitantly with the nonlinear amplitudes increase, the emission linewidth narrows strongly. The measured linewidth is limited by the resolution of the tripleadditive spectrometer. Measurements using a custommade tandem Fabry–Perot–tripleadditive spectrometer^{29}, allow to access the true linewidth. The longest coherence time, observed at ~37 mW of pump power, is ~530 ps (linewidth ~8 μeV), two orders of magnitude larger than the polariton lifetime measured at low powers (~6–10 ps). Note that the neighbor traps also blueshift with increasing power, though with a weaker slope, thus attaining a power dependent redshift with respect to the pumped trap. This feature will become of critical relevance in what is discussed next.
The spatial image in Fig. 2c also shows that at some pump powers the BEC develops wellresolved equally separated sidebands, both on the high and lowenergy sides of the main peak. Such kind of sidebands are a signature of a coherent modulation of the BEC emission^{30}, as previously observed for example for narrow emitters (semiconductor quantum dots^{31} and diamond NV centers^{32}) externally driven by surface acoustic waves. The condition for the observation of these wellresolved sidebands is that the lifetime of the emitter exceeds the period of the modulation. It is particularly noteworthy that there is no external harmonic driving in the experiments displayed in Fig. 2, the only external source being the cw laser used for the nonresonant excitation of the semiconductor QWs.
Figure 3a shows the highresolution spectra (in log intensity scale) for the full scan of measured powers, corresponding to the polariton traparray PL shown in Fig. 2a. Again the blueshift and narrowing of the main BEC peak on increasing power can be clearly observed, together with the appearance of the redshifted PL from neighbor traps. The arrows with labels 1–3 in Fig. 3a and the side insets highlight excitation regions leading to: (1) intense and equally spaced lowenergy sidebands, which are reminiscent of phonon assisted PL; (2) wellresolved sidebands on both sides of the polariton BEC at the fundamental and the first excited confined states; and (3) reapperance of the sidebands for both the fundamental and first excited polariton states at high powers.
The observed sidebands correspond precisely to equally spaced secondary peaks separated by the energy of the fundamental cavityconfined breathing mode (ν_{0} ~ 20 GHz ~ 83 μeV). Under a coherent harmonic vibrational driving, the polariton BEC PL spectrum is expected to be proportional to P[ω] according to^{31}:
that is, a sum of Lorentzians with linewidths 2γ, weighted by squared Bessel functions \({J}_{{{n}}}^{{\rm{2}}}(\chi )\). χ is a dimensionless parameter expressing the frequency shift on the BEC (Δω_{BEC}) induced by the harmonic driving, stated in units of the driving frequency ω_{d} (χ = Δω_{BEC}/ω_{d}). The Lorentzians have maxima at frequencies ω = ω_{BEC} − nω_{d}, where n is an integer. An example, Fig. 4a, b shows fits of Eq. (1) to the curves corresponding to the fundamental and excited BEC states, respectively, marked as 2 in Fig. 3a. The fits reproduce very well the measured spectral shape and yields χ = 0.65, and consequently ΔE_{BEC} ~ 55 μeV. From a calculation of the polariton energy dependence on strain (deformation potential (DP)) and cavity thickness (interface displacement) and using the value obtained for ΔE_{BEC}, we estimate the amplitude of the coherent confined phonon field, and from there the average number of phonons (〈N〉) associated to the regenerative selfoscillation induced by the BEC (see the Supplementary Note 5 for details). We obtain a phonon number 〈N〉 ~ 2 × 10^{5}, which far exceeds the thermal occupation of this mode at 5 K of 〈N〉_{Thermal} ~ 5, thus evidencing a very efficient polaritontophonon conversion. This phonon number corresponds to a maximum breathing of the cavity of ~660 pm, implying a strain of ~0.1%.
Coherent selfoscillation in cavity optomechanics is attained either when the external cw laser excitation is blueshifted with respect to the cavity mode in a singlecavity system or, in a coupled cavity system, when the higher cavity mode is excited^{27}. The polariton BEC as an internal coherent source cannot thus, by itself, induce selfoscillation, because both Stokes and antiStokes processes would be equally probable. In our experiments, this symmetry is broken through the coupling of the BEC to the redshifted neighbor traps. Figure 3b shows details of the spectra from Fig. 3a, presented as a function of the detuning with respect to the BEC emission. The clearly resolved sidebands appear precisely when one of the neighbor traps is reddetuned by integer numbers of \({\nu }_{{\rm{m}}}^{{\rm{0}}} \sim 20\) GHz. The experimental observations can then be understood as follows: (i) the optomechanical interaction pumped by a confined BEC coupled to a precisely reddetuned neighbor trap (equivalent to a polariton population inversion) induces selfoscillations at the harmonics of the fundamental vibrational frequency \({\nu }_{{\rm{m}}}^{{\rm{0}}}=20\,\) GHz, and (ii) these coherent oscillation backacts by modulating the BEC, thus leading to the observed sidebands. Furthermore, a closer look at Fig. 3b shows that the intensity of the phonon sideband increases when the neighbor trap is reddetuned by even numbers of \({\nu }_{{\rm{m}}}^{{\rm{0}}} \sim 20\) GHz: \(\delta \nu =2{\nu }_{{\rm{m}}}^{{\rm{0}}} \sim 40\) GHz, \(\delta \nu =4{\nu }_{{\rm{m}}}^{{\rm{0}}} \sim 80\) GHz, and \(\delta \nu =6{\nu }_{{\rm{m}}}^{{\rm{0}}} \sim 120\) GHz. This observation points to the relevance of both linear and quadratic terms in the optomechanical interaction^{30,33}, as previously described, e.g., for the membrane in a cavity configuration^{34,35}, a geometry to which the QWs in a cavity we are describing here can be mapped. Note that the transition to the selfoscillation regime could be controlled either by tuning the neighbors’ adequate energy level by the proper design of the system, so that their detuning is resonant with the mechanical frequency at a certain power, or by including an additional nonresonant pump laser to independently finetune the neighbors fundamental modes energy.
Optomechanical model with linear and quadratic coupling
Polaritons exert force by radiation pressure (RP, i.e., through their photonic fraction) and by electrostriction (via the DP mediated by the excitonic component). The optomechanical coupling factor can be expressed as \({g}_{{\rm{0}}}={S}_{{\rm{x}}}\ {g}_{{\rm{0}}}^{{\rm{DP}}}+{S}_{{\rm{c}}}\ {g}_{{\rm{0}}}^{{\rm{RP}}}\), where S_{x}(S_{c}) denotes the exciton (photon) fraction of the polariton mode, and \({g}_{{\rm{0}}}^{{\rm{DP}}}({g}_{{\rm{0}}}^{{\rm{RP}}})\) the electrostrictive (RP) contribution to the optomechanical coupling factor (see the Supplementary Note 7). The excitons in the QWs can lead to a resonantly enhanced optical force^{22}. In the studied sample, the QWs are positioned at the antinodes of the optical field in the unstructured regions to optimize the polariton strong coupling. The phonon strain vanishes at these positions, so that the DP coupling is not expected to contribute significantly except in the barriers between traps, where the asymmetric etching results in a departure from this cancellation. Evaluation of these forces shows that RP couples mainly to the fundamental 20 GHz mode, while electrostriction does with the overtone mode at ~60 GHz (see the Supplementary Note 6). We will thus consider in the following only the RP coupling leading to BEC modulation at harmonics of 20 GHz.
The theoretical model for the resonant linear coupling between two polariton modes presented in the Supplementary Note 7 yields an optomechanically modified phonon lifetime Γ_{eff} = Γ_{m}(1 − C). The cooperativity C is formally equivalent to the conventional one presented in the introduction, but replacing n_{cav} by the number of polaritons in the pumped trap (N_{1}), and interpreting κ as the decoherence rate of the polaritons in the traps. The optical excitation threshold for selfoscillations (i.e., corresponding to C > 1 (refs. ^{2,27})) is \({P}_{{\rm{Th}}}^{{\rm{so}}}=\frac{1}{\eta \times 1{0}^{7}}\frac{\kappa {\Gamma }_{{\rm{M}}}}{4{({g}_{{\rm{0}}}^{{\rm{RP}}})}^{2}} \sim \frac{0.7}{\eta }\) [mW] under double resonance conditions (see the Supplementary Note 7). η is the fraction of nonresonantly excited electron–hole pairs in the exciton reservoir that condense into the BEC. Assuming η = 40% (ref. ^{36}), and a value of \({g}_{{\rm{0}}}^{{\rm{RP}}}\) previously reported for a pillar DBR microcavity^{37}, this estimation yields \({P}_{{\rm{Th}}}^{{\rm{so}}} \sim 0.4\) mW. The hybrid polariton BEC optomechanical system already fulfills this conditions for selfoscillations at the BEC condensation threshold (P_{Th} ~ 19 mW for the 1.6 μm traps). We note however that \({g}_{{\rm{0}}}^{{\rm{RP}}}\) was calculated for two modes of an isolated pillar. For the studied trap array, the initial and final polariton states belong to spatially separated traps. The penetration of the polariton ground states in the barriers, obtained from realistic calculations based on the lowpower known trap potential^{26}, amounts to ~1 μm for low excitation densities. The separation between traps in the studied array is 3.2 μm and thus the overlap integral based on these trap ground state wavefunctions should be small. The spatial images at the powers where selfoscillation is observed evidence a large transfer of polaritons between traps (see the Supplementary Note 8 and the Supplementary Fig. 7). We speculate that repulsive interactions may modify the polariton distribution within the traps^{38}, as well as blueshift the polariton levels, thus enhancing the tunnel coupling between neighboring traps.
While the previously described linear coupling process can explain phonon lasing, the experiments also suggest that a quadratic coupling is relevant. Namely, the selfoscillations become strongly enhanced at detunings corresponding to even harmonics of \({\nu }_{{\rm{m}}}^{{\rm{0}}} \sim 20\) GHz. Under these conditions a BEC also forms at the neighbor trap, thus implying stimulation into the final state in this trap. We have evaluated the conditions for selfoscillation for the quadratic resonant coupling between two polariton states separated by \(2{\nu }_{{\rm{m}}}^{{\rm{0}}}\) (see the Supplementary Note 7), assuming a polariton–phonon quadratic coupling strength G_{2}. The effective phonon linewidth is in this case given by
with
where \(\tilde{\kappa }\equiv \kappa +\frac{4{G}_{2}^{2}{N}_{{\rm{b}}}^{2}}{\kappa }\), describes the phononinduced broadening of the polariton modes. According to Eq. (2), selfoscillations start when either Σ_{0} or the factor \({\left{\Sigma }_{0}\right}^{2}{\left{\Sigma }_{1}\right}^{2}\) reduces to zero. The quadratic coupling selfoscillation threshold depends not only on the external pumping rate (through N_{1}), but also on the steadystate number of phonons (N_{b}) and final state polaritons (N_{2}). From the intensity of the neighbor trap emission under selfoscillation in Fig. 3, we estimate that a quadratic coupling constant G_{2} = 2π × 1 Hz suffices to induce a selfoscillation threshold power of 10 mW. This G_{2} is more than two orders of magnitude smaller than the quadratic coupling constants previously reported for other optomechanical devices^{33}, thus providing plausibility to the proposed mechanism.
Discussion
We have demonstrated coherent phonon generation and selfmodulation at ultrahigh vibrational frequencies using a twomode polariton BEC. In contrast to other demonstrations of laserinduced regenerative selfoscillations of a phonon mode^{2,4,5}, the selfoscillations in our scheme are driven by an internally emitting (population inverted) polariton condensate, a source that can be electrically pumped^{18}. The coherently generated phonons are efficiently emitted into the supporting substrate^{39}, thus providing a new platform for an electrically driven parametric phonon laser. The cavity quantum electrodynamics features of the system result in a strong energyconserving coupling between photons and excitons, while the optomechanics term couples offresonant mechanical and photonic modes of widely different frequencies (GHz and hundreds of THz, respectively). Thus, the demonstrated polariton platform can be at the base of novel technologies for frequency conversion between light and mechanical (or microwave) signals in the 20 GHz range^{10,11,13,40}. Similarly, our findings demonstrate that mechanical vibrations can coherently actuate on a macroscopic quantum fluid (the BEC) at frequencies exceeding its decoherence rate. The strength of the coupling can be enhanced by several orders of magnitude exploiting the resonant character of the photoelastic coupling mediated by excitons in QWs^{22}. Finally, the present optomechanics platform enables coupling to cavity mechanical modes of hundreds of GHz^{41}, thus providing access to operation and signal transduction at the socalled extremely highfrequency range.
Methods
Experimental details
For the twolaser OMIA type experiments in the 40μmwide polariton stripe at 5 K, a cw Spectra Physics TiSapphire Matisse laser was used for the nonresonant excitation at 1.631 eV. A second weaker Toptica semiconductor stabilized laser, incident with a finite angle, was tuned around the energy of the BEC, and light was collected along the normal to the sample. The highresolution spectroscopic experiments in the trap array were performed at 5 K with cw nonresonant excitation (1.631 eV), with a microluminescence setup based on a ×20 microscope objective (NA = 0.3, spot size ~3 μm) and a tripleadditive spectrometer (resolution ~0.15 cm^{−1} ~20 μeV).
Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.
Data availability
The Source data that support the findings of this study are available from the corresponding author upon reasonable request. All these data are directly shown in the corresponding figures without further processing.
References
 1.
Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866 (2015).
 2.
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
 3.
Rogers, B., Gullo, N. L., De Chiara, G., Palma, G. M. & Paternostro, M. Hybrid optomechanics for quantum technologies. Quantum Meas. Quantum Metrol. 2, 11 (2014).
 4.
Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiationpressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).
 5.
Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable twolevel system. Phys. Rev. Lett. 104, 083901 (2010).
 6.
O’Connell, A. D. et al. Quantum ground state and singlephonon control of a mechanical resonator. Nature 464, 697 (2010).
 7.
Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011).
 8.
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011).
 9.
Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantumcoherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63 (2012).
 10.
Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712 (2013).
 11.
Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81 (2014).
 12.
SafaviNaeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phononphoton translator. N. J. Phys. 13, 013017 (2011).
 13.
Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014).
 14.
Weisbuch, C., Nishioka, C. M., Ishikawa, A. & Arakawa, Y. Observation of the coupled excitonphoton mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992).
 15.
Kasprzak, J. et al. BoseEinstein condensation of exciton polaritons. Nature 443, 409 (2006).
 16.
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805 (2009).
 17.
Bajoni, D. et al. Polariton laser using single micropillar GaAsGaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).
 18.
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348 (2013).
 19.
Rodriguez, S. R. K. et al. Interactioninduced hopping phase in drivendissipative coupled photonic microcavities. Nat. Commun. 7, 11887 (2016).
 20.
Restrepo, J., Ciuti, C. & Favero, I. Singlepolariton optomechanics. Phys. Rev. Lett. 112, 013601 (2014).
 21.
Kyriienko, O., Liew, T. C. H. & Shelykh, I. A. Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability. Phys. Rev. Lett. 112, 076402 (2014).
 22.
Jusserand, B., Poddubny, A. N., Poshakinskiy, A. V. Fainstein, A. & Lemaitre, A. Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells. Phys. Rev. Lett. 115, 267402 (2015).
 23.
Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a BoseEinstein condensate. Science 322, 235 (2008).
 24.
Fainstein, A., LanzillottiKimura, N. D., Jusserand, B. & Perrin, B. Strong opticalmechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and nearinfrared light. Phys. Rev. Lett. 110, 037403 (2013).
 25.
Anguiano, S. et al. Micropillar resonators for optomechanics in the extremely high 1995GHz frequency range. Phys. Rev. Lett. 118, 263901 (2017).
 26.
Kuznetsov, A. S., Helgers, P. L., Biermann, K. & Santos, P. V. Quantum confinement of excitonpolaritons in a structured (Al, Ga) As microcavity. Phys. Rev. B 97, 195309 (2018).
 27.
Kharel, P. et al. Highfrequency cavity optomechanics using bulk acoustic phonons. Sci. Adv. 5, eaav0582 (2019).
 28.
Fainstein, A., Jusserand, B. & ThierryMieg, V. Raman scattering enhancement by optical confinement in a semiconductor planar microcavity. Phys. Rev. Lett. 75, 3764 (1995).
 29.
Rozas, G., Jusserand, B. & Fainstein, A. FabryPérotmultichannel spectrometer tandem for ultrahigh resolution Raman spectroscopy. Rev. Sci. Instrum. 85, 013103 (2014).
 30.
Zhang, L. & Kong, H. Y. Selfsustained oscillation and harmonic generation in optomechanical systems with quadratic couplings. Phys. Rev. A 89, 023847 (2014).
 31.
Metcalfe, M., Carr, S. M., Muller, A., Solomon, G. S. & Lawall, J. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett. 105, 037401 (2010).
 32.
Golter, D. A., Oo, T., Amezcua, M., Stewart, K. A. & Wang, H. Optomechanical quantum control of a nitrogenvacancy center in diamond. Phys. Rev. Lett. 116, 143602 (2016).
 33.
Paraiso, T. K. et al. Positionsquared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X 5, 041024 (2015).
 34.
Thompson, J. D. et al. Strong dispersive coupling of a highfinesse cavity to a micromechanical membrane. Nature 452, 72 (2008).
 35.
Ludwig, M., SafaviNaeini, A. H., Painter, O. & Marquardt, F. Enhanced quantum nonlinearities in a twomode optomechanical system. Phys. Rev. Lett. 109, 063601 (2012).
 36.
Kasprzak, J. In Condensation of Exciton Polaritons (Condensed Matter [condmat], Université JosephFourier, Grenoble I, 2006).
 37.
Villafañe, V. et al. Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities. Phys. Rev. B 97, 195306 (2018).
 38.
Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).
 39.
Huynh, A. et al. Subterahertz phonon dynamics in acoustic nanocavities. Phys. Rev. Lett. 97, 115502 (2006).
 40.
Rueda, A. et al. Efficient microwave to optical photon conversion: an electrooptical realization. Optica 3, 597 (2016).
 41.
Villafañe, V. et al. Quantum well photoelastic comb for ultrahigh frequency cavity optomechanics. Quantum Sci. Technol. 4, 014011 (2018).
Acknowledgements
We thank Evelyn G. Coronel and J. Stotz for helping with the experiments in the initial stages of this project. We acknowledge partial financial support from the ANPCyTFONCyT (Argentina) under grants PICT20151063 and PICT201803255, from the German Research Foundation (DFG) under grant 359162958, and the joint Bilateral Cooperation Program between the German Research Foundation (DFG) and the Argentinian Ministry of Science and Technology (MINCyT) and CONICET.
Funding
Open Access funding provided by Projekt DEAL.
Author information
Affiliations
Contributions
D.L.C, S.A., A.E.B., and A.S.K. performed the phonon lasing and OMIA experiments, and processed the data. A.S.K., K.B., and P.V.S. designed and fabricated the structured microcavity sample. A.A.R., A.E.B., and A.F. outlined the theoretical aspects. All authors contributed to the discussion and analysis of the results. P.V.S. and A.F. conceived and directed the project. A.F. prepared the manuscript with inputs from all coauthors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chafatinos, D.L., Kuznetsov, A.S., Anguiano, S. et al. Polaritondriven phonon laser. Nat Commun 11, 4552 (2020). https://doi.org/10.1038/s4146702018358z
Received:
Accepted:
Published:
Further reading

Electrically Driven Microcavity ExcitonPolariton Optomechanics at 20 GHz
Physical Review X (2021)

Remote Phonon Control of Quantum Dots and Other Artificial Atoms
Advanced Quantum Technologies (2021)

Cavity optomechanics with a laserengineered optical trap
Physical Review B (2021)

Acoustically Triggered Optical Memories
ACS Photonics (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.