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Taking electrodecarboxylative etherification
beyond Hofer–Moest using a radical C–O coupling
strategy
Ángel Manu Martínez1, Davit Hayrapetyan1, Tim van Lingen1, Marco Dyga 1 & Lukas J. Gooßen 1✉

Established electrodecarboxylative etherification protocols are based on Hofer-Moest-type

reaction pathways. An oxidative decarboxylation gives rise to radicals, which are further

oxidised to carbocations. This is possible only for benzylic or otherwise stabilised substrates.

Here, we report the electrodecarboxylative radical-radical coupling of lithium alkylcarbox-

ylates with 1-hydroxybenzotriazole at platinum electrodes in methanol/pyridine to afford

alkyl benzotriazole ethers. The substrate scope of this electrochemical radical coupling

extends to primary and secondary alkylcarboxylates. The benzotriazole products easily

undergo reductive cleavage to the alcohols. They can also serve as synthetic hubs to access a

wide variety of functional groups. This reaction prototype demonstrates that electro-

decarboxylative C–O bond formation can be taken beyond the intrinsic substrate limitations

of Hofer-Moest mechanisms.
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Oxygen-containing substituents are abundant in natural
products1, pharmaceuticals2 and functional materials3,
and efficient synthetic entries are highly sought-after.

Decarboxylative C–O bond formation is a particularly attractive
synthetic strategy since carboxylic acids are widely available in
great structural diversity4. Thermal and photochemical strategies
for decarboxylative C–O bond formation, including metal-
mediated oxidative decarboxylations using MnIII5,6, InIII7, TlIII8,
PbIV9,10 or CeIV11,12, as well as precious metal-catalysed proce-
dures such as Ru13,14, Ir15,16, Ag17,18 or Au19, are relatively well
developed. Photochemical reaction variants proceed under mild
conditions but require expensive photocatalysts or pre-
functionalised substrates (i.e. redox-active esters)20–24.

Electrosynthetic concepts have a long history25, with con-
tributions, e.g. by Shono26, Lund27, Torii28, Osa29 or Grimshaw30,
but only recently shifted back into the focus of method devel-
opment31–35. In the context of C–O bond formation, electro-
decarboxylative strategies may open up synthetic opportunities
with a potentially lower environmental footprint36. The use of
carboxylic acids in electrochemical transformations was pio-
neered by Faraday and Kolbe37,38. Anodic oxidation of carboxylic
acids induces their decarboxylation with the formation of carbon-
centred radicals, which swiftly undergo homocoupling with for-
mation of alkanes39–41. A transfer of this sustainable concept to
C–heteroatom bond formation was first described by Hofer and
Moest who showed that for some carboxylates, the electro-
generated radicals are oxidised further to carbocations which can
be trapped by O-nucleophiles (originally H2O and MeOH,
Fig. 1a)42,43.

However, a century after their discovery, many challenges are
still associated with Hofer–Moest reactions, some of which appear
to be a direct consequence of the underlying reaction mechanism:
the alkyl radicals generated at the anode are prone to Kolbe
dimerisation and various other side reactions44–46. Further ano-
dic oxidation of these intermediates results in highly reactive
carbocations, which are prone to rearrangement, elimination or
coupling with any nucleophile in their proximity47,48. High
selectivity can only be achieved if the radical and the positive

charge are stabilised by electron-donating substituents49,50,
resonance51,52 or conjugation with α-O53,54, α-N55,56 or α-S
substituents57. Still, the O-nucleophile is often added in large
excess. Synthetic methods for electrodecarboxylative C–O bond
formation are therefore limited to tertiary, benzylic/allylic and α-
O/N substituted carboxylates, but simple alkylcarboxylates remain
challenging substrates. Acetate has been converted to methanol,
albeit in poor yields58. However, it has also been used as an inert
electrolyte59 or oxygen nucleophile in electrodecarboxylative C–O
bond formation (Fig. 1a, X= CH3C(O))60,61. In the leading
reference work by Hammerich and Speiser25, the electro-
decarboxylative synthesis of nitrate esters by Fichter is presented
as a viable C–O bond formation strategy for non-stabilised car-
boxylates43. However, this method gives reasonable yields only in
the conversion of succinate to ethylene glycol dinitrate (58%)62.
For simple alkylcarboxylates, the yields were not reported or drop
to below 5%63.

Baran et al. have recently disclosed a thoroughly optimised
Hofer–Moest reaction variant64. Their elaborate protocol with
stoichiometric silver salts as sacrificial oxidant has enabled the
coupling of numerous alcohols in stoichiometric amounts.
However, it stays within the intrinsic boundaries of the
Hofer–Moest mechanism in that it extends only to tertiary,
benzylic/allylic and α-O/N substituted carboxylates (Fig. 1a), but
not to primary or secondary carboxylic acids.

A conceptually different approach is clearly required to extend
electrochemical decarboxylative C–O bond formation to the full
range of carboxylic acids (Fig. 1b). Our mechanistic blueprint
involves the following steps: (1) Both the carboxylic acid and the
oxygen nucleophile (X–OH) are deprotonated under the reaction
conditions and attracted to the anode. (2) The oxygen nucleo-
philes are oxidised preferentially, yielding XO• radicals. (3) At
high current densities, some carbon radicals will also form via
Kolbe decarboxylation, surrounded by the XO• species. (4) C–O
bond formation would then proceed via the combination of an
alkyl and a XO• radical. This radical coupling strategy promises to
lift inherent substrate limitations regarding the carboxylate, since
no stabilisation of carbocationic intermediates would be required.
However, it calls for a particular oxygen reagent that would have
to fulfil several prerequisites. (1) It needs to be sufficiently acidic
to allow smooth deprotonation. (2) Its oxidation potential must
be lower than that of carboxylates. (3) The XO• radicals need to
be long-lived and stable towards dimerisation. (4) Their reactivity
must be sufficiently high towards alkyl radicals to intercept them
before Kolbe-type recombination occurs. (5) Ideally, the reaction
would lead to ether products of synthetic value and/or synthetic
hubs for further derivatisation. Herein, we present the coupling of
carboxylic acids with the oxygen source 1-hydroxybenzotriazole
as a prototypical electrodecarboxylative C–O bond-forming
reaction that implements the envisioned radical pathway. Its
scope extents to non-activated primary and secondary carboxylic
acids, and thus goes well beyond intrinsic limitations of
Hofer–Moest-type reactions.

Results
Reaction optimisation. The unsolved challenges of electro-
decarboxylative C–O bond formation were explored using phe-
nylpropionic acid (1a, Supplementary Table 1). The distant
phenyl group of 1a is useful for product analysis and isolation,
but does not significantly stabilise intermediates, e.g via an
anchimeric effect. This was confirmed by comparative reactions
with 3-cyclohexanepropionic acid (1j, 31 vs 37% yield under
optimised conditions, respectively).

Attempted Hofer–Moest etherifications gave styrene and 1,4-
diphenylbutane as the major products. Even when employing the
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Fig. 1 Strategies for electrochemical decarboxylative C–O bond
formation. a Hofer–Moest electrodecarboxylative C–O bond formation. b
Electrodecarboxylative radical C–O coupling.
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oxygen coupling partner as the solvent, the selectivity for C–O
bond formation did not exceed 10% (MeOH or H2O, NaOH, 500
mA, 30 min). We next probed Fichter’s conditions, in which
potassium nitrate serves as the oxygen source61, but did not
detect any nitrate ester product. These experiments confirmed
that aliphatic carboxylates like 1a are well outside the scope of
known electrochemical C–O bond-forming strategies.

We next tested numerous potential sources of oxygen radicals
in stoichiometric quantities, including pyridine N-oxide, TEMPO,
N-hydroxyphthalimide and di-tert-butyl peroxide. None of these
gave more than trace quantities of the C–O coupling product
(Supplementary Table 1). To our delight, the desired reactivity
was finally observed for 1-hydroxybenzotriazole (HOBt, 2a), a
reagent commonly used in peptide chemistry. However, besides
the targeted benzotriazole ether 3aa, several other products were
formed. These arise, e.g. from esterification (4a), decarboxylative
couplings with solvents, substrates, byproducts or added bases
(5ai), Kolbe dimerisation (6a), disproportionation of radical
intermediates (7a, 8a) or electroreduction of 3aa to aldehyde 9a
and benzotriazole (Bt, 10, Fig. 2 and Supplementary Table 1).

For a systematic optimisation of all reaction parameters, 3,3,3-
trifluoropropionic acid (1b) was chosen as the test substrate to
enable rapid analysis of the complex product mixtures by 19F
NMR. 1b is a particularly challenging substrate since its anodic
decarboxylation yields primary radicals (or cations) destabilised
by an electron-withdrawing CF3 group. Under classical
Hofer–Moest conditions with hydroxide bases and methanol as
nucleophile, the Kolbe dimer 6b was the major product (42%),
and products from C–O bond formation (5b2 and 5b4) were
formed in low yields (Table 1, entry 1). With water as the
nucleophile, the yield of C–O bond formation was even lower
(entry 2).

Fichter-type nitration did not give any alcohol derivatives
(Supplementary methods). In the presence of HOBt·H2O,
encouraging quantities of 3ba were formed along with small
quantities of Hofer–Moest adducts (5b2 and 5b4), 6b and
trifluoroacetaldehyde 9b (entry 3). Its formation is in line with
reports on electroreductive N–O cleavage reactions yielding
aldehydes65. Methanol was found to be the ideal solvent for the
pursued C–O coupling, while solvents such as MeCN, DMF,
DCM or H2O were ineffective (entry 4 and Supplementary
Table 2). In combination with methanol, a pyridine co-solvent
markedly improved the selectivity for 3ba (entries 5–6). This may
be rationalised by its coordination to the anode, separating the
radicals.

The choice and amount of base are critical to ensure
deprotonation of both HOBt 2a (pKa= 4.6)66 and 1b (pKa=

3.0)67. Lithium bases gave the best results, in particular a 1.8-fold
excess of Li2CO3 (entries 6–11). Pt was optimal as the anode
material (entries 12–14). A slight excess of HOBt was beneficial,
whereas a larger excess of HOBt decreased the reaction rate and
led to an insoluble coating of the anode as well as to benzotriazole
formation (entries 15–16). A reaction time of 30 min at room
temperature and a constant current of 500 mA using Pt electrodes
(2.0 × 1.0 cm) were found to be optimal (entries 17–20).
Structural variations of HOBt had little effect on the reaction
outcome (Supplementary Table 3).

The benzotriazole ester can be cleaved in situ by hydrogenating
the reaction mixture over Pd/C, furnishing alcohol 5b4 in 70%
yield along with minor quantities of 9b (entry 22).

Structural scope. The examples in Table 2 demonstrate that the
electrodecarboxylative radical C–O coupling is broadly applicable.
Many primary and secondary carboxylates, most of which are
well outside of the scope of Hofer–Moest protocols, were suc-
cessfully converted to the corresponding HOBt ethers. Slight
adjustments of the conditions (LiOH vs Li2CO3 as the base, dif-
ferent stoichiometry) were sometimes necessary to obtain optimal
yields (Supplementary Table 4). Common functionalities such as
halides, olefins, amides, esters, ketones, alcohols, or ethers were
tolerated, and even complex structures gave reasonable yields.
The reaction was easily scaled up both in batch and flow-
conditions with no loss of yield (Supplementary methods). As for
many other electrochemical reactions, some yields are only
moderate at this prototype stage of development, but the inex-
pensive starting materials and straightforward protocol make up
for this. Both the carboxylic acid and HOBt are usually fully
converted, and the products are obtained along with only traces
of easy-to-separate byproducts. The yields can be improved by
specifically adapting the conditions for a given substrate, e.g. for
3b’a, NaOH is more effective than LiOH. Starting from readily
available difluoroacetic acid, the reaction gives convenient and
sustainable access to Ngai difluoromethoxylating reagents (3f′b–
3f′d)68, which effectively promote the direct C–H difluor-
omethoxylation of (hetero)arenes. Tertiary carboxylic acids or
those with a strong stabilising effect for the corresponding CCR
(e.g. α-amino acids) are generally not compatible.

Derivatisation. As demonstrated for the hydrocinnamate deri-
vative 3aa, the benzotriazole moiety can be removed by reductive
N–O cleavage to give the corresponding alcohol. By quaternisa-
tion with methyl triflate, the BtO-moiety can be turned into a
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leaving group for nucleophilic substitutions, giving access to
esters, ethers, azides, thiocyanates and xanthates (Fig. 3).

Mechanistic studies. To shed some light on the mechanism of the
electrochemical bond-forming step, a series of control experi-
ments were performed (Supplementary methods). Addition of
TEMPO slowed down the electrolysis of 1a considerably, and
besides 3aa, the TEMPO-coupled product 3a-OTEMP was
detected (Supplementary methods).

Electrolysis of cyclopropylacetic acid 1g′ led to the formation of
the homoallyl ether 3na via ring opening (Fig. 4a). These findings
both support a pathway via carbon-centred radical intermediates.
Oxidation to carbocations is unlikely since this would inevitably
have led to larger quantities of methyl ether products in MeOH as
the solvent.

Cyclic voltammetry confirmed that the oxidation of HOBt
takes place already at 0.71 V, whereas that of hydrocinnamic acid
1a requires 1.39 V (vs Fc/Fc+ with Ag/Ag+ as reference electrode,
Fig. 4b). Electrochemically generated acyloxy radicals undergo
swift decarboxylation, rendering this oxidation step irreversible69.

The voltammogram of HOBt features a small reduction peak at
high scan rates (5000 instead of 100mV/s), which indicates a
certain persistence of the BtO• radical70,71. This radical has been

characterised by UV/vis and EPR spectroscopy, and a half-life of
110 s in MeCN has been reported72,73. It is known to decay into a
non-reducible compound, presumably benzotriazole69,74. Although
BtO•-decomposition is strongly accelerated by the presence of H-
donors69, its lifetime is still in the range of hundreds of milliseconds
in a mixture of MeOH/pyridine (Supplementary methods). In
addition, when using excess HOBt, benzotriazole becomes the main
product, and benzotriazole-derived products coat the anode. These
data seem to point to the intermediacy of surface-bound BtO•

radicals.

Discussion
In conclusion, this work provides the proof of concept for an
electrodecarboxylative radical combination approach to C–O
bond formation. The prototype protocol allows the electro-
chemical conversion of carboxylic acids into alkyl benzotriazole
ethers, which were shown to act as versatile synthons or useful
fluoroalkoxylation reagents. The reaction scope extents to non-
activated primary and secondary carboxylic acids, many of which
are well outside the intrinsic boundaries of Hofer–Moest-type
reactions. It paves the way for the development of high-yielding
and generally applicable electrodecarboxylative C–O or C–N

Table 1 Optimisation of the electrodecarboxylative C–O couplinga.

Entry 2a Base (eq.) Solvent (ratio) 3ba 5b2 5b4 6b 9b

1 – NaOH (1.0) MeOH <1 10 <1 42 <1
2b – ” H2O <1 <1 6 <1 11
3 1.0 LiOH (1.8) MeOH 17 5 13 3 2
4b ” ” MeCN, DMF, DCM

or H2O
<1 <1 <1 <1 <1

5 ” ” MeOH/Py (1:1) 25 <1 10 7 5
6 ” ” MeOH/Py (4:1) 36 <1 12 <1 6
7 ” Bu4NOH (1.8) ” 18 <1 17 <1 11
8 ” KOH (1.8) ” 13 <1 8 <1 27
9 ” LiOAc (1.8) ” 18 3 3 3 4
10 ” Li2CO3 (1.8) ” 54 <1 8 <1 9
11 ” Li2CO3 (0.8) ” 47 <1 7 <1 8
12 ” Li2CO3 (3.0) ” 48 <1 2 <1 4
13c ” Li2CO3 (1.8) ” 43 <1 8 <1 8
14d ” ” ” <1 <1 <1 <1 <1
15e ” ” ” 40 <1 6 11 6
16 1.5 ” ” 68 <1 7 <1 9
17 5.0 ” ” 23 <1 3 <1 2
18f 1.5 ” ” 50 <1 5 <1 10
19g ” ” ” 59 <1 9 <1 8
20h ” ” ” 66 <1 6 <1 9
21i ” ” ” 57 <1 8 <1 5
22j ” ” ” <1 <1 70 <1 12

Bold font indicates optimal conditions.
aReaction conditions: 1.0 mol of TFPA 1b, HOBt·H2O 2a, base, Pt(+)/Pt(–) (2.0 cm2), undivided cell, 500mA for 30min (9.33 F mol–1), 12 ml solvent, r.t., 30min. Yields determined by 19F NMR using
(trifluoromethoxy) benzene as the internal standard.
b>70% of 1b.
cCarbon anode.
dAg anode.
eNi anode.
f300mA.
g700mA.
h60min.
i0 °C.
jIn situ hydrogenolysis over Pd/C.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18275-1

4 NATURE COMMUNICATIONS |         (2020) 11:4407 | https://doi.org/10.1038/s41467-020-18275-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Table 2 Scope of the electrodecarboxylative radical C–O couplinga.

aConditions: Pt/Pt (2 cm2), undivided cell, 500mA for 30min (9.33 F mol–1), 12 ml of MeOH/Py (4:1), r.t. Method A: 1 (1.0 mmol), 2 (1.5 eq.), Li2CO3 (1.8 eq.); Method B: 1 (0.5 mmol), 2 (1.0 eq.), LiOH
(1.8 eq.), 500mA for 15 min (4.66 F mol–1); Method C: 1 (0.5 mmol), 2 (2.5 eq.), LiOH (1.8 eq.); Method D: 2 (0.5 mmol), 1 (2.5 eq.), LiOH (2.5 eq.), MeOH/Py (2:1).
bNaOH (5.0 eq.). Isolated yields based on the stoichiometry-limiting substrate.
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bond formations based on new generations of efficient heteroa-
tom radical sources.

Methods
General procedure for the electrodecarboxylative C–O cross-coupling. A 20 ml
vessel equipped with two Pt electrodes (2.0 × 1.0 cm) was charged with a solution of
the corresponding acid (1), 1-hydroxybenzotriazole (2) and the base in 12 ml of a
mixture of MeOH/Py. The reaction mixture was electrolysed at a current of 500
mA for 15–30 min at room temperature. Then, the volatiles were removed in vacuo
and the residue purified by chromatography (n-hexane/EtOAc, 4:1), yielding the
corresponding C–O coupling product 3. Note: due to its explosive nature, HOBt
was used exclusively in the form of its stable hydrate.

Synthesis of 1-(2,2,2-trifluoroethoxy)-1H-benzo[d][1,2,3]triazole (3ba),
exemplifies use of Method A. Compound 3ba was prepared following the general
procedure using a solution of 3,3,3-trifluoropropionic acid (1b, 91 µl, 1.0 mmol), 1-
hydroxybenzotriazole monohydrate (2a, 230 mg, 1.50 mmol) and Li2CO3 (134 mg,
1.80 mmol) in 12 ml of a 4:1-mixture of MeOH/Py. A current of 500 mA was
applied for 30 min (9.33 F mol–1). 3ba was isolated as a colourless solid (135 mg,
62%, m.p. 59–61 °C).

Synthesis of 1-(2-chloroethoxy)-1H-benzo[d][1,2,3]triazole (3ka), exemplifies
use of Method B. Compound 3ka was prepared following the general procedure
using a solution of 3-chloropropionic acid (1k, 55 mg, 0.50 mmol), 1-
hydroxybenzotriazole monohydrate (2a, 78 mg, 0.50 mmol) and LiOH (22mg,
0.90 mmol) in 12 ml of a 4:1-mixture of MeOH/Py. A current of 500 mA was
applied for 15 min at room temperature (9.33 F mol–1). 3ka was isolated as an
orange oil (56 mg, 57%).

Synthesis of 1-ethoxy-1H-benzo[d][1,2,3]triazole (3da), exemplifies use of
Method C. Compound 3da was prepared following the general procedure using a
solution of propionic acid (1d 94 μl, 1.3 mmol), 1-hydroxybenzotriazole mono-
hydrate (2a, 78 mg, 0.50 mmol) and LiOH (22 mg, 0.90 mmol) in 12 ml of a 4:1-
mixture of MeOH/Py. A current of 500 mA was applied for 15 min at room
temperature. 3da was isolated as a brown oil (47 mg, 58%).

Synthesis of 1-(pentan-3-yloxy)-1H-benzo[d][1,2,3]triazole (3ya), exemplifies
use of Method D. Compound 3ya was prepared using a solution of 2-ethylbutyric
acid (1y, 158 μl, 1.25 mmol), 1-hydroxybenzotriazole monohydrate (2a, 78 mg,
0.50 mmol) and LiOH (31 mg, 1.3 mmol) in a 2:1-mixture of MeOH/Py. A current
of 500 mA was applied for 15 min at room temperature. 3ya was isolated as an
orange oil (47 mg, 46%).

Procedure for the in situ hydrogenation of 3,3,3-trifluoropropionic acid (1b). A
20 ml vessel equipped with two Pt electrodes (2.0 × 1.0 cm) was charged with a
solution of 3,3,3-trifluoropropionic acid (1b, 91 µl, 1.0 mmol), 1-
hydroxybenzotriazole monohydrate (2a, 230 mg, 1.50 mmol) and Li2CO3 (134 mg,
1.80 mmol) in a 4:1-mixture of MeOH/Py (12 ml). The reaction mixture was
electrolysed at a current of 500 mA for 30 min at room temperature. The crude
reaction mixture was diluted with MeOH to 20 ml, to give a 0.034 M solution of
3ba assuming a conversion similar to that of previous experiments (i.e. 68%). An
aliquot of 4.0 ml (0.14 mmol of 3ba) was introduced into a 10 ml vial together with
palladium on carbon (10% Pd) (7.0 mg, 5 mol%). The vial was placed in an
autoclave, the mixture was pressurised with hydrogen (30 bar), and stirred at room
temperature for 12 h. The crude mixture was analysed by 19F NMR using tri-
fluoromethoxybenzene (20 µl, 0.15 mmol, 1.1 eq.) as internal standard, showing the
formation of 5b4 and 11b in 70% and 12% yield, respectively.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary information files.
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