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Predicting distant metastasis and chemotherapy
benefit in locally advanced rectal cancer
Zhenyu Liu 1,2,3,11, Xiaochun Meng4,11, Hongmei Zhang5,11, Zhenhui Li6,11, Jiangang Liu7, Kai Sun1,8,

Yankai Meng5, Weixing Dai9, Peiyi Xie4, Yingying Ding6, Meiyun Wang 10✉, Guoxiang Cai 9✉ &

Jie Tian 1,7,8✉

Distant metastasis (DM) is the main cause of treatment failure in locally advanced rectal

cancer. Adjuvant chemotherapy is usually used for distant control. However, not all patients

can benefit from adjuvant chemotherapy, and particularly, some patients may even get worse

outcomes after the treatment. We develop and validate an MRI-based radiomic signature

(RS) for prediction of DM within a multicenter dataset. The RS is proved to be an independent

prognostic factor as it not only demonstrates good accuracy for discriminating patients into

high and low risk of DM in all the four cohorts, but also outperforms clinical models. Within

the stratified analysis, good chemotherapy efficacy is observed for patients with pN2 disease

and low RS, whereas poor chemotherapy efficacy is detected in patients with pT1–2 or pN0

disease and high RS. The RS may help individualized treatment planning to select patients

who may benefit from adjuvant chemotherapy for distant control.

https://doi.org/10.1038/s41467-020-18162-9 OPEN

1 CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex
Systems, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China. 2 CAS Center for Excellence in Brain Science and Intelligence
Technology, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China. 3 School of Artificial Intelligence, University of Chinese Academy of
Sciences, 100080 Beijing, China. 4 Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China. 5 Department
of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and
Peking Union Medical College, 100021 Beijing, China. 6Department of Radiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer
Hospital), Kunming 650031, China. 7 Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang
University, 100191 Beijing, China. 8 Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and
Technology, Xidian University, Xi’an 710126, China. 9Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
10Department of Radiology, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou 450003, China. 11These authors
contributed equally: Zhenyu Liu, Xiaochun Meng, Hongmei Zhang, Zhenhui Li. ✉email: mywang@ha.edu.cn; gxcai@fudan.edu.cn; jie.tian@ia.ac.cn

NATURE COMMUNICATIONS |         (2020) 11:4308 | https://doi.org/10.1038/s41467-020-18162-9 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18162-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18162-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18162-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18162-9&domain=pdf
http://orcid.org/0000-0001-7559-8519
http://orcid.org/0000-0001-7559-8519
http://orcid.org/0000-0001-7559-8519
http://orcid.org/0000-0001-7559-8519
http://orcid.org/0000-0001-7559-8519
http://orcid.org/0000-0003-4454-5005
http://orcid.org/0000-0003-4454-5005
http://orcid.org/0000-0003-4454-5005
http://orcid.org/0000-0003-4454-5005
http://orcid.org/0000-0003-4454-5005
http://orcid.org/0000-0002-7772-7078
http://orcid.org/0000-0002-7772-7078
http://orcid.org/0000-0002-7772-7078
http://orcid.org/0000-0002-7772-7078
http://orcid.org/0000-0002-7772-7078
http://orcid.org/0000-0003-0498-0432
http://orcid.org/0000-0003-0498-0432
http://orcid.org/0000-0003-0498-0432
http://orcid.org/0000-0003-0498-0432
http://orcid.org/0000-0003-0498-0432
mailto:mywang@ha.edu.cn
mailto:gxcai@fudan.edu.cn
mailto:jie.tian@ia.ac.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Locally advanced rectal cancer (LARC) is the most common
form of rectal cancer. Although a combination of neoadju-
vant chemoradiotherapy and total mesorectal excision

(TME) decrease locoregional recurrence rate to <5–10%, it has
not noticeably increased survival1–3. Distant metastasis (DM) is
the main cause of treatment failure in patients with LARC, as the
incidence of DM remained 25–40%4,5. To reduce the incidence of
DM, the guidelines of rectal cancer recommended adjuvant
chemotherapy following TME for patients with LARC. However,
adjuvant chemotherapy may only reduce the risk of DM and
provide additional survival benefit in certain subsets of patients.
Therefore, it is crucial how to detect the LARC patients that could
benefit from adjuvant chemotherapy.

In fact, it is controversial which patients could benefit from
adjuvant chemotherapy. The European Society for Medical
Oncology clinical practice guidelines6 suggest that adjuvant therapy
is unnecessary in pN0 cases if the patients does not receive
neoadjuvant therapy. A pooled analysis has also indicated that
pathological complete response (pCR, T0N0M0) patients would not
benefit from adjuvant chemotherapy7. However, a recent study
revealed conflicting evidence regarding whether adjuvant che-
motherapy could improve overall survival in patients with pCR8.
While it is difficult to stratify patients based on the traditional TNM
staging system, Valentini’s nomogram (VN) has been developed
based on clinical prognostic factors to identify patients who may
benefit from adjuvant chemotherapy9. Although this model fulfilled
the predefined criteria for American Joint Committee on Cancer
endorsement10, it ignores the potentially pathological risk factors
like lymphovascular invasion (LVI) and perineural invasion (PNI)
as well as more comprehensive information that can be obtained
from multiparametric MRI. Incorporating these factors, the pre-
diction model might achieve better performance for detecting
patients at high risk of DM.

Nowadays, MRI is widely used for diagnosing and staging of
rectal cancer, and can detect several prognostic factors11,12. Fur-
thermore, radiomic analysis of these images may provide prog-
nostic information, as medical images can provide not only
structural information but also information regarding the under-
lying pathophysiology, which may be associated with the patient’s
prognosis13–15. Thus, radiomics has been successfully used to
improve diagnostic accuracy16, evaluate response to neoadjuvant
therapy17,18, and predict prognosis19. Moreover, radiomics may, in
theory, help relate the patient’s prognosis to quantitative imaging
features that objectively describe the tumor’s nature20. Specifically,
MRI-based radiomics has been proved to be an effective tool for
the prediction of preoperative synchronous DM in patients with
rectal cancer21. However, there were still few studies focusing on
the prediction of postoperative DM after surgery and adjuvant
chemotherapy benefit.

In the present study, we investigate the imaging features
associated with the prognosis of LARC patients, and then develop
and validate a model to predict DM after surgery. With this
model, we further identify patients who can benefit from adjuvant
chemotherapy.

Results
Patient characteristics. The characteristics of the 629 enrolled
patients are shown in Table 1. The median follow-up time for
distant metastasis-free survival (DMFS) were 49.6 months in the
primary cohort (interquartile range [IQR]: 47.3–52.6 months),
52.6 months in validation cohort 1 (IQR: 50.3–58.9 months),
43.1 months in validation cohort 2 (IQR: 42.3–45.7 months), and
46.3 months in validation cohort 3 (IQR: 45.2–48.2 months).

Satisfactory inter- and intra-observer reproducibility were
observed for the tumor masking and radiomic feature extraction

(ICC > 0.6)22 when we compared results for five radiologists
and results from the same radiologist at baseline and at least
1 month later.

Radiomic signature construction and validation. The coarse-to-
fine feature selection strategy identified four relevant features
(Supplementary Table 1). The selected features were incorporated
into a least absolute shrinkage and selection operator (LASSO)-
Cox regression model to define the radiomic signature. For each
of the primary cohort and the three validation cohorts, patients
were classified into high- and low-radiomic signature groups for
further analyses based on the median radiomic signature value of
the primary cohort. The Kaplan–Meier survival curves confirmed
a significant difference in DMFS between the high- and low-
radiomic signature groups (p < 0.001), with relatively high hazard
ratios (HRs, >3.9) in all four cohorts (Fig. 1a–d, upper). The areas
under the curve (AUCs) at different follow-up times (1, 2, and 3
years) also confirmed that the radiomic signature had good
prognostic accuracy in the primary and validation cohorts
(Fig. 1a–d, lower). Subgroup analyses further confirmed that the
radiomic signature could predict prognosis according to clinical
stage (Fig. 2) as well as in the pT and pN subgroups from each
cohort (Supplementary Figs. 1 and 2). These results confirmed the
high prognostic accuracy of the radiomic signature.

Incremental value of the radiomic signature. Multivariate Cox
analysis revealed that DM was independently predicted by the
radiomic signature, surgery location, and pN stage. Therefore, a
radiomic nomogram (Fig. 3a) and clinical models (Supplementary
Fig. 3) were constructed using the primary cohort. The calibration
curves for the radiomic nomogram at 1 year, 2 years, and 3 years
showed good agreement between the estimations and the clinical
outcomes in the primary and validation cohorts. The C-index
values for the different models, namely radiomic signature, radio-
mic nomogram, clinical nomogram, and VN, are listed in Table 2.
Relative to the clinical nomogram and the VN, the radiomic sig-
nature provided better performance in the primary cohort (C-index:
0.847, 95% confidence interval [CI]: 0.803–0.891) and the validation
cohorts (validation cohort 1: C-index: 0.809, 95% CI: 0.718–0.901;
validation cohort 2: C-index: 0.848, 95% CI: 0.761–0.934; validation
cohort 3: C-index: 0.803, 95% CI: 0.705–0.901) (Table 2). Fur-
thermore, the radiomic nomogram based on the radiomic signature
and clinicopathologic factors (Supplementary Table 2) also achieved
better performance and significantly improved the classification
accuracy for DMFS outcomes, based on the net reclassification
improvement (NRI) and integrated discrimination improvement
(IDI) values (Supplementary Fig. 4).

The decision curve analysis revealed that the radiomic nomogram
had relatively good clinical performance, with advantages across
almost the entire range of reasonable threshold probabilities in the
primary and validation cohorts.

These results suggested that the radiomic signature provided
additional value for personalized DM prediction.

Risk stratification using the radiomic signature. In order to
detect patients that can benefit from adjuvant chemotherapy,
interaction tests among radiomic signature, pathological stage,
and adjuvant chemotherapy efficacy were performed (Table 3).

The interaction test for radiomic signature and adjuvant
chemotherapy efficacy revealed that the adjuvant chemotherapy
benefit was worse among patients with a high-radiomic signature
(HR: 1.706, 95% CI: 1.131–2.572, p < 0.05; p < 0.001 for interac-
tion), relative to among patients with a low-radiomic signature.
The corresponding Kaplan–Meier DMFS curves are shown for
the high- and low-radiomic signature groups in Fig. 4a. Adjuvant
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chemotherapy was significantly associated with decreased DMFS
in the high-radiomic signature group (p= 0.01), did not have a
significant association in the low-radiomic signature group, and
had only a marginally significant association among all patients
(p= 0.087) (Fig. 4a). These results suggest that LARC patients
with a high-radiomic signature may experience even worse
outcomes after receiving adjuvant chemotherapy.

The interaction tests for radiomic signature and pathological
stage revealed that both pT stage and pN stage were associated with
DMFS among all patients (Fig. 4b, c). Advanced stages suggested
high risk of DM, meaning that patients with higher stage usually
showed decreased DMFS. Specifically, pT stage was significantly
associated with DMFS in the high-radiomic signature group
(HR: 1.620, 95% CI: 1.140–2.303, p < 0.05) not in the low-
radiomic signature group, and pN stage was significantly associated
with DMFS in both the high- and low-radiomic signature groups
(HR: 1.904, 95% CI: 1.526–2.375, p < 0.05 in high-radiomic
signature group, and HR: 2.108, 95% CI: 1.141–3.895, p < 0.05 in
low-radiomic signature group).

The interaction tests for pathological stage and adjuvant
chemotherapy efficacy in the high- and low-radiomic signature
groups were also performed. The results for pT stage subgroup

analysis indicated that, in the high-radiomic signature group, pT1–2
patients did not benefit from the adjuvant chemotherapy (HR:
11.661, 95% CI: 1.531–88.825, p= 0.003; p < 0.001 for interaction),
while no significant interactions were observed in the low-radiomic
signature group (Fig. 5). The results for pN stage subgroup analysis
indicated that, pN0 patients with high-radiomic signature and
adjuvant chemotherapy, had even worse survival than those with
high-radiomic signature but without adjuvant chemotherapy (HR:
2.666, 95% CI: 1.269–5.601, p= 0.007; p < 0.001 for interaction),
while in the low-radiomic signature group, only pN2 patients had
survival benefit from the adjuvant chemotherapy (HR: 0.177, 95%
CI: 0.029–1.064, p= 0.033; p < 0.001 for interaction) (Fig. 6).

These results of interaction tests suggest that not all LARC
patients will benefit from adjuvant chemotherapy, and the
treatment strategy should be carefully selected based on the
pathological stage and radiomic signature as well.

Discussion
This study not only developed and validated a radiomic signature
with a series of comprehensive MRI features associated with prog-
nosis of LARC patients, but also investigated the association between
the radiomic signature and chemotherapy efficacy. The proposed

Table 1 Demographic and clinicopathological characteristics.

Primary cohort
(n= 176)

Validation cohort 1
(n= 154)

Validation cohort 2
(n= 150)

Validation
cohort 3
(n= 149)

Age (years, mean ± SD) 57.3 ± 12.7 55.7 ± 12.4 56.3 ± 10.1 56.6 ± 11.7
Sex (%) Male 108 (61.4%) 101 (65.6%) 96 (64.0%) 101 (67.8%)

Female 68 (38.6%) 53 (34.4%) 54 (36.0%) 48 (32.2%)
Clinical stage (%) II 87 (49.4%) 23 (14.9%) 42 (28.0%) 53 (35.6%)

III 89 (50.6%) 131 (85.1%) 108 (72.0%) 96 (64.4%)
Clinical T stage (%) 2 9 (5.1%) 2 (1.3%) 0 0

3 91 (51.7%) 108 (70.1%) 116 (77.3%) 119 (79.9%)
4 76 (43.2%) 44 (28.6%) 34 (22.7%) 30 (20.1%)

Lymph node status (%) LN negative 84 (47.7%) 25 (16.2%) 42 (28.0%) 37 (24.8%)
LN positive 92 (52.3%) 129 (83.8%) 108 (72.0%) 112 (75.2%)

Location (%) >10 cm 31 (17.6%) 103 (66.9%) 11 (7.3%) 12 (8.1%)
5–10 cm 65 (36.9%) 50 (32.5%) 81 (54.0%) 93 (62.4%)
<5 cm 80 (45.5%) 1 (0.6%) 58 (38.7%) 44 (29.5%)

Preoperative serum CEA (%) <5 109 (61.9%) 81 (52.6%) 114 (76.0%) 98 (65.8%)
≥5 67 (38.1%) 73 (47.4%) 36 (24.0%) 51 (34.2%)

Neoadjuvant therapy (%) Yes 63 (35.8%) 154 (100%) 81 (54.0%) 86 (57.7%)
No 113 (64.2%) 0 69 (46.0%) 63 (42.3%)

Adjuvant chemotherapy (%) Yes 117 (66.5%) 51 (33.1%) 123 (82.0%) 115 (77.2%)
No 59 (33.5%) 103 (66.9%) 27 (18.0%) 34 (22.8%)

Adjuvant radiotherapy (%) Yes 10 (5.7%) 1 (0.6%) 26 (17.3%) 3 (2.0%)
No 166 (94.3%) 153 (99.4%) 124 (82.7%) 146 (98.0%)

Surgery procedure (%) Dixon+ preventive
ileostomy

27 (15.3%) 26 (16.9%) 24 (16.0%) 38 (25.5%)

Dixon 83 (47.2%) 45 (29.2%) 63 (42.0%) 97 (65.1%)
Miles 53 (30.1%) 77 (50.0%) 53 (35.3%) 13 (8.7%)
Hartmann 13 (7.4%) 6 (3.9%) 10 (6.7%) 1 (0.7%)

Surgery approach (%) Open resection 119 (67.6%) 52 (33.8%) 129 (86.0%) 9 (6.0%)
Laparoscopic resection 57 (32.4%) 102 (66.2%) 21 (14.0%) 140 (94.0%)

pN stage (%) 0 80 (45.5%) 92 (59.7%) 86 (57.3%) 101 (67.8%)
1 66 (37.5%) 43 (27.9%) 41 (27.3%) 24 (16.1%)
2 30 (17.0%) 19 (12.3%) 23 (15.3%) 24 (16.1%)

pT stage (%) 0 4 (2.3%) 35 (22.7%) 27 (18.0%) 0
1/2 24 (13.6%) 30 (19.5%) 26 (17.3%) 26 (17.4%)
3/4 148 (84.1%) 89 (57.8%) 97 (64.7%) 123 (82.6%)

LVI (%) Positive 51 (29.0%) 6 (3.9%) 25 (16.7%) 12 (8.1%)
Negative 125 (71.0%) 148 (96.1%) 125 (83.3%) 137 (91.9%)

PNI (%) Positive 18 (10.2%) 15 (9.7%) 27 (18%) 11 (7.4%)
Negative 158 (89.8%) 139 (90.3%) 123 (82%) 138 (92.6%)

CEA carcinoembryonic antigen, pN pathological nodal stage, pT pathological tumor stage, LVI lymphovascular invasion, PNI perineural invasion.
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Source data are provided as a Source Data file.
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radiomic signature was able to predict DM better than traditional
clinicopathological characteristics. More importantly, stratified with
the radiomic signature and pathological stage, patients that can
benefit from adjuvant chemotherapy could be identified.

There is broad variability in the outcomes among LARC
patients, even patients with the same disease stage, which makes
accurate prognostication essential for treatment planning23.

Previous studies have revealed the prognostic value of radiomic
features in rectal cancer24–26, and we provide further evidence
from a multicenter study that a radiomic signature could inde-
pendently predict DMFS. Furthermore, combining the radiomic
signature with clinicopathological information in a radiomic
nomogram had significantly better ability to predict DM than a
clinical nomogram and the previously proposed VN, based on
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Fig. 3 Nomogram, calibration curves, and decision curves to estimate DMFS. a The radiomic nomogram for estimating DMFS. b The calibration curves
for the radiomic nomogram in the primary and validation cohorts (left to right: the primary cohort with n= 176, validation cohort 1 with n= 154, validation
cohort 2 with n= 150, and validation cohort 3 with n= 149). The error bars were defined as s.e.m., which represent the 95% CI. c The decision curves for
the nomogram in the primary and validation cohorts (left to right: the primary cohort with n= 176, validation cohort 1 with n= 154, validation cohort 2 with
n= 150, and validation cohort 3 with n= 149). DMFS distant metastasis-free survival.

Table 2 The performances of the different models in the primary and validation cohorts.

Cohort C-index (95% CI)

Radiomic signature Clinical nomogram Radiomic nomogram Valentini’s nomogram

Primary Cohort 0.847 (0.803–0.891) 0.682 (0.618–0.745) 0.855 (0.812–0.899) 0.686 (0.620–0.751)
Validation Cohort 1 0.809 (0.718–0.901) 0.595 (0.483–0.706) 0.848 (0.773–0.923) 0.707 (0.628–0.786)
Validation Cohort 2 0.848 (0.761–0.934) 0.508 (0.405–0.612) 0.831 (0.742–0.920) 0.495 (0.391–0.598)
Validation Cohort 3 0.803 (0.705–0.901) 0.631 (0.532−0.730) 0.825 (0.728−0.921) 0.644 (0.537−0.751)

C-index concordance index, CI confidence interval.
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larger C-index values in all four cohorts. In addition, the gen-
eralizability of the radiomic nomogram was better than that
of the clinical model and the VN. This may be because clin-
icopathological factors only reflect specific tumor character-
istics, while radiomics based on multiparametric MRI can
comprehensively and quantifiably characterize the tumor phe-
notype20. It is also possible that high-dimensional imaging
features provide additional information, allowing radiomics to
be less affected by patient distributions in the different cohorts,
which might explain its better generalizability.

The radiomic signature’s good ability to predict DM confirms
its prognostic value, which could be used to stratify patients into
groups with high and low risks of DM. This approach might allow
clinicians to select more personalized and hopefully more effec-
tive treatment strategies. Furthermore, when we considered
clinical stage with the radiomic signature, we were also able to
identify patient groups with different risks of DM in all four
cohorts. This result suggests that the radiomic signature could
also help guide personalized treatment of patients with the same
clinical stage. Thus, the radiomic nomogram that combines
the radiomic signature with traditional clinicopathological
information might be a useful prognostic tool for clinicians. This
nomogram contained improved the prognostic ability of the
clinical staging system, and could be developed as an easy-to-use
tool. In addition, the clinical utility of radiomic nomogram was
assessed using decision curve analysis, which is commonly used
method in radiomic studies27,28, and the results suggest that the
radiomic nomogram could benefit patients.

The most important finding of this study was that stratified
with radiomic signature and pathological stage, patients with pN2
disease in the low-radiomic signature group experienced a sub-
stantial benefit from chemotherapy, and in contrast, for patients
with pT1–2 or pN0 disease in the high-radiomic signature,
receiving adjuvant chemotherapy may indicate worse prognosis
compared with not receiving adjuvant chemotherapy. Although
the current guidelines recommend adjuvant chemotherapy for

most LARC patients, some studies have plausibly found that not
all patients will benefit from chemotherapy7,29. Therefore, it can
be useful to be able to personalize the chemotherapy or treatment
strategy to improve patient outcomes. Previous studies have
developed valuable radiomic models to identify patients with
various cancers who will benefit from different therapies, based
on findings from CT, MRI, and PET-CT30–32. Our findings are
consistent with previous reports that chemotherapy was unne-
cessary for patients with pN0 disease6 or patients who achieve
pCR7,29, and suggest that more aggressive systemic therapy
should be considered in these cases. Thus, the radiomic signature
may be useful for identifying patients who should and should not
undergo chemotherapy in this setting.

The clinical advantages of evaluating the radiomic signature are
that it is non-invasive and can be repeated at different disease
states. Moreover, the extraction of quantitative MRI features
provides high-dimensional description of the intra-tumor het-
erogeneity. Interestingly, the MRI sequence appears to be
important, as the features of the radiomic signature were all from
apparent diffusion coefficient (ADC) maps (calculated with
DWI). This finding is consistent with our previous findings,
which indicated that ADC maps were valuable for evaluating the
effects of neoadjuvant therapy in rectal cancer17 and breast
cancer18, which would suggest that the radiomic signature is a
fairly reliable marker.

The present study has some limitations that merit considera-
tion. The first is the limited sample size and retrospective data
collection, which suggest that the model should be validated in
larger well-designed prospective studies. The accumulation of
additional patients will also allow for the collection of more
patient- and tumor-specific information, which can be used
to construct a more stable and accurate model. Second, while
imaging features focus on the macro tumor information, it would
be interesting to examine whether digital biopsy, pathological
imaging, and genomic sequencing may provide more micro
information. Third, we only examined the performance of the

Table 3 Treatment interaction with radiomic signature and pathological stage for DMFS in patients with LARC.

CT No CT Distant metastases-free survival

CT vs NO CT, HR (95%CI) p p value for interaction

All (n= 629)
High RS 176 103 1.71 (1.13–2.57) 0.01 2.54 × 10−37

Low RS 230 120 0.75 (0.27–2.12) 0.59
pT= 0 (n= 66)
High RS 13 10 4.22 (0.49–36.16) 0.15 0.102
Low RS 24 19 1.55 (0.14–17.09) 0.72
pT= 1/2 (n= 106)
High RS 29 20 11.66 (1.53–88.83) 0.003 4.13 × 10−13

Low RS 33 24 NA 0.23
pT= 3/4 (n= 457)
High RS 134 73 1.25 (0.81–1.93) 0.32 5.09 × 10−29

Low RS 173 77 0.76 (0.22–2.59) 0.66
pN= 0 (n= 359)
High RS 83 58 2.67 (1.27–5.60) 0.007 1.43 × 10−11

Low RS 130 88 1.33 (0.24–7.26) 0.74
pN= 1 (n= 174)
High RS 58 27 1.15 (0.57–2.30) 0.70 2.76 × 10−17

Low RS 68 21 0.91 (0.09–8.70) 0.93
pN= 2 (n= 96)
High RS 35 18 1.16 (0.57–2.35) 0.68 1.67 × 10−31

Low RS 32 11 0.18 (0.03–1.06) 0.03

RS radiomic signature, CT chemotherapy, HR hazard ratio, CI confidence interval.
p values were calculated using two-sided log-rank test.
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Kaplan–Meier survival in patients with and without adjuvant chemotherapy

0.00

0.25

0.50

0.75

1.00 ++
+ +

+++ ++++ +
+++ + +++

++
+

+ + ++ + + +++

p = 0.087
HR: 1.392 (0.952–2.035)

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

223 197 181 168

406 367 326 300

No chemo-

Chemotherapy

+

+
++++ +

+ +
++

+

+

+ ++

p = 0.010
HR: 1.706 (1.131–2.572)

0.00

0.25

0.50

0.75

1.00

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

103 85 70 62

176 140 106 86

Number at risk

Chemotherapy

No chemo-

All patients Patients with high RS

0.00

0.25

0.50

0.75

1.00 + + + ++ ++ ++
+ + ++ ++ ++

p = 0.590
HR: 0.754 (0.268–2.118)

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

120 112 111 106

230 227 220 214

Patients with low RS

6 18 30 6 18 30 6 18 30

93 74 66

160 120 95

115 111 108

228 224 216

208 185 174

388 344 311

+ +
+++ + +

+ + + + + ++++

+

+
+ + +

+ ++ +

+
+

+

+
+

++

p = 2.972E–12
HR: 2.071 (1.684–2.546)

0.00

0.25

0.50

0.75

1.00

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

359 339 321 298

174 147 127 122

96 78 59 48

pN = 0
pN = 1
pN = 2

Number at risk
pN = 0

pN = 1

pN = 2

Kaplan–Meier survival in patients with different pN stage

All patients

+

+
+ +

+ ++++
+

+
+

+

+

+

++

p = 2.412E–8
HR: 1.904 (1.526–2.375)

0.00

0.25

0.50

0.75

1.00

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

141 126 110 95

85 61 44 41

53 38 22 12

Patients with high RS

S
ur

vi
va

l p
ro

ba
bi

lit
y

218 213 211 203

89 86 83 81

43

+ ++ + ++ + +++
+ + ++ ++

p = 0.026
HR: 2.108 (1.141–3.895)

0.00

0.25

0.50

0.75

1.00

0 12 24 36

t (months)

+ +

40 37 36

Patients with low RS

6 18 30 6 18 30 6 18 30

137 116 104

72 51 43

44 27 14

216 212 206

87 84 82

40 39 36

353 328 310

159 135 125

84 66 50

Kaplan–Meier survival in patients with different pT stage

Number at risk
pT = 0

pT = 1/2

pT = 3/4

All patients

+

+ ++ + ++ + ++++ ++

p = 0.460
HR: 0.892 (0.449–1.772)

0.00

0.25

0.50

0.75

1.00

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

43 42 41 40

57 54 54 51

250 243 236 229

0.00

0.25

0.50

0.75

1.00

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

23 21 19 17

36 33

207 160 121 98

49 44

0.00

0.25

0.50

0.75

1.00

0 12 24 36

t (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

66 63 60 57

106 98 90 84

457 403 357 327

Patients with high RS Patients with low RS

+

+

+

+

++
+++++

+
+

+ +++

p = 0.018
HR: 1.620 (1.140–2.303)

pT = 0

pT = 1/2

pT = 3/4

+

+
+

+
+ + ++

++
+

++++
+++++

+ ++++++ + ++++

p = 0.038
HR: 1.457 (1.074–1.977)

6 18 30 6 18 30 6 18 30

23 21 17

49 39 35

181 134 109

42 41 41

56 54 52

245 240 231

65 62

93

58

105 87

426 374 340

b

a

c

Fig. 4 K–M DMFS curves for patients with LARC according to the RS. The results are shown for all patients (n= 629, left), patients with a high RS (n=
279, middle), and patients with a low RS (n= 350, right). The results are also stratified according to adjuvant chemotherapy use (a), pT stage (b), and pN
stage (c). p values were calculated using two-sided log-rank test. RS radiomic signature; HR hazard ratio; DMFS distant metastasis-free survival; LARC
locally advanced rectal cancer. Source data are provided as a Source Data file.
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Fig. 5 Adjuvant chemotherapy benefits based on DMFS according to pT stage and RS. a–c K–M DMFS curves are shown for patients according to their
use of adjuvant chemotherapy. In addition, patients with a high RS (left) were stratified according to pT0 (n= 23, upper), pT1–2 (n= 49, middle), and
pT3–4 (n= 207, bottom). Patients with a low RS (right) were also stratified according to pT0 (n= 43, upper), pT1–2 (n= 57, middle), and pT3–4 (n= 250,
bottom). p values were calculated using two-sided log-rank test. RS radiomic signature; HR hazard ratio; DMFS distant metastasis-free survival; LARC
locally advanced rectal cancer. Source data are provided as a Source Data file.
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Fig. 6 Adjuvant chemotherapy benefits based on DMFS according to pN stage and RS. a–c K–M DMFS curves are shown for patients according to their
use of adjuvant chemotherapy. In addition, patients with a high RS (left) were stratified according to pN0 (n= 141, upper), pN1 (n= 85, middle), and pN2
(n= 53, bottom). Patients with a low RS (right) were also stratified according to pN0 (n= 218, upper), pN1 (n= 89, middle), and pN2 (n= 43, bottom).
p values were calculated using two-sided log-rank test. RS radiomic signature; HR hazard ratio; DMFS distant metastasis-free survival; LARC locally
advanced rectal cancer. Source data are provided as a Source Data file.
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radiomic signature in Chinese patients, and it remains unclear
whether it will perform to the same level in different ethnic
populations, which could be worthy for future studies.

In conclusion, we identified a multiparametric MRI-based
radiomic signature that effectively predicted DMFS in LARC
patients and improved the performance of the traditional clin-
icopathological prediction model. Combining the radiomic sig-
nature with pathological stage might help identify which patients
are expected to benefit from adjuvant chemotherapy.

Methods
Patients. This retrospective multicenter study was conducted in accordance with
the Declaration of Helsinki. The study’s protocol was approved by the ethics
committee of each participating hospital. All procedures followed the approved
protocol and the requirement for informed consent was waived.

A total of 629 consecutive LARC patients were included at 5 hospitals selected
from different regions of China. The detailed inclusion and exclusion criteria are
shown in Supplementary Methods and Supplementary Fig. 5, and the patients’
baseline characteristics were collected from their medical records (Table 1). The
primary outcome was DMFS, which was defined as the time from surgery to the
first confirmed instance of DM or death caused by disease or treatment. The
minimum follow-up period was 36 months after surgery. Patients who were alive
and free from disease (or died because of an unrelated cause and without evidence
of rectal cancer) were censored at the last follow-up. All patients were
postoperatively followed every 3–6 months during the first 2 years, every 6 months
during the next 3 years, and then annually thereafter. The clinical evaluations
included physical examination, measurement of serum carcinoembryonic antigen
(CEA) level, imaging, and colonoscopy. CEA levels were tested at 3–6-month
intervals for the first 2 years and at 6-month intervals for >2–5 years. Imaging,
including contrast-enhanced computed tomography (CT) of the abdomen and
pelvis, and unenhanced CT of the chest, was performed at a minimum of every
12 months and for at least three years. Colonoscopy was performed one year after
surgery and then repeated every 2–5 years unless advanced adenomas were
identified. All instances of DM were confirmed via histology or imaging.

The patients were divided into four cohorts (Supplementary Fig. 5): the primary
cohort (n= 176 from centers 1 and 2) and three external validation cohorts
(validation cohort 1: n= 154 from center 3, validation cohort 2: n= 150 from
center 4, and validation cohort 3: n= 149 from center 5). The sample size
evaluation is shown in Supplementary Methods.

MRI data acquisition and imaging feature detection. All patients underwent MRI
examination within 1 week before colonoscopy. To reduce colonic motility, 20mg of
scopolamine butyl bromide was injected intramuscularly 30min before the MRI scan,
although patients were not required to undergo bowel preparation before the exam-
ination. All patients underwent a conventional rectal MRI protocol that included DWI
and T2WI. The DWI images were obtained using single-shot echo-planar imaging
with two b values (0 and 1000 s/mm2). ADC maps were generated automatically and
included both b values in a monoexponential decay model. The detailed MRI para-
meters at the five hospitals are shown in the Supplementary Table 3.

Each patient’s MRI data were collated for tumor masking and feature
extraction. The regions of interest (ROIs) were delineated manually using the itk-
SNAP software (www.itksnap.org) on each slice obtained via T2WI and DWI
(delineated with b value of 1000 s/mm2 and then copied to the corresponding ADC
maps). The procedures for tumor masking and evaluating inter-/intra-observer
reproducibility are shown in Supplementary Methods.

Radiomic feature extraction was performed for each MRI scan with manually
segmented ROIs, using an in-house toolbox developed with MATLAB 2016b
(Mathworks, Natick, MA, USA). All images of each MRI scan for each patient was
normalized separately using Z-scores to obtain a standard normal distribution of
image intensities. Four groups of imaging features were then extracted: Group 1
had eight shape- and size-based features, Group 2 had 15 first-order statistical
features, Group 3 had 53 textural features, and Group 4 had 544 wavelet features.
The final feature set included 620 features for each MR sequence (T2WI and ADC),
which corresponded to a total of 1240 radiomic features for each patient. Detailed
information regarding the feature-extracting algorithms is provided in
Supplementary Methods.

Radiomic signature construction and validation. The radiomic signature was
created with multiparametric MRI (T2WI and ADC) based on the primary
cohort. The imaging features were first normalized (details are shown in Sup-
plementary Methods), and then a coarse-to-fine feature selection strategy was
used to reduce the risk of bias and potential overfitting. Univariate Cox analysis
was initially used to detect the associations between each feature and the
patients’ DMFS. All features were then ranked in ascending order according to
the Cox p values, and the top 20% of the features with p < 0.1 were used for
further analysis. Among these features, the Pearson correlation coefficients for
each feature pair were then calculated (denoted as “r” hereafter). Feature pairs

with |r| > 0.6 were selected, and then in each of these pairs, the feature with
larger mean absolute correlation was removed. Finally, the LASSO algorithm
with Cox analysis19,31 was used to identify the most useful prognostic features
for constructing the radiomic signature.

The potential association between the radiomic signature and DMFS was
initially assessed in the primary cohort and then validated in the validation cohorts
based on Kaplan–Meier survival analysis. The median value for the radiomic
signature in the primary cohort was used as the cutoff for dividing patients into
groups with high or low-radiomic signatures. The same cutoff value was applied to
all the validation cohorts. The prognostic accuracy of the radiomic signature for
patient stratification was assessed in the primary and validation cohorts using time-
dependent receiver operating characteristic (ROC) curve analysis. The ROC curves
for 1-year, 2-year and 3-year DMFS were plotted for all cohorts, and the AUCs
were quantified. Kaplan–Meier survival analysis was also performed to explore
whether the radiomic signature was associated with DMFS within clinical and
pathological stage subgroups for each cohort.

Assessing the incremental value of radiomic signature. We also evaluated a
clinicopathologic model based on 15 risk factors and a radiomic nomogram to
determine whether the radiomic signature added incremental value for predicting DM
in LARC patients. These models were tested in the primary and validation cohorts. We
also evaluated the performance of VN9. Detailed information regarding these models is
provided in Supplementary Methods. The radiomic nomogram’s performance was
evaluated based on Harrell’s concordance index (C-index), calibration curves and
decision curve analysis. The NRI33 and IDI34 values were evaluated to quantify the
radiomic signature’s incremental prognostic improvement.

Radiomic signature and chemotherapy. Radiomic features are associated with
the effects of anti-tumor therapy in different cancers27,30,32. Therefore, we explored
the potential association between the radiomic signature and chemotherapy effi-
cacy among all patients (based on DMFS). Furthermore, we examined the potential
interaction between the radiomic signature and chemotherapy according to the
high- and low-signature grouping. Stratified analyses were also performed
according to the clinical factors and radiomic signature level associated with
chemotherapy efficacy, in order to identify patient subgroups that could benefit
from adjuvant chemotherapy. Interaction tests for the radiomic signature, clinical
factors, and chemotherapy were also performed.

Statistics and reproducibility. Intergroup comparisons were performed using the
t test or Mann–Whitney U test for continuous variables, and using the Χ2 test or
Fisher’s test for categorical variables, as appropriate. All tests were two-sided and
results were considered significant at p < 0.05. R software was used for model
building (version 3.5.2; https://www.r-project.org/). The packages used in the
current study included glmnet, timeROC, rms, survival, Hmisc, nricens, and
PredictABEL. All statistical analyses were performed using IBM SPSS software
(version 21; IBM Corp, Armonk, NY, USA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1, 2, 4, 6, Supplementary Figs. S2, S3, S5, and Table 2 is
provided as a Source Data file. The MRI imaging data and clinical information, analyzed
during the current study are not publicly available for patient privacy purposes, but are
available from the corresponding author J.T. upon reasonable request. All the other data
supporting the findings of this study are available within the article and its
supplementary information files.

Code availability
Source code of proposed method can be found in the following Github repository,
https://github.com/SK94-ai/Radiomics-Predicting-Distant-Metastasi.
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