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CORE GREML for estimating covariance between
random effects in linear mixed models for complex
trait analyses
Xuan Zhou1,2,3, Hae Kyung Im 4 & S. Hong Lee 1,2,3✉

As a key variance partitioning tool, linear mixed models (LMMs) using genome-based restricted

maximum likelihood (GREML) allow both fixed and random effects. Classic LMMs assume

independence between random effects, which can be violated, causing bias. Here we introduce a

generalized GREML, named CORE GREML, that explicitly estimates the covariance between

random effects. Using extensive simulations, we show that CORE GREML outperforms the

conventional GREML, providing variance and covariance estimates free from bias due to cor-

related random effects. Applying CORE GREML to UK Biobank data, we find, for example, that

the transcriptome, imputed using genotype data, explains a significant proportion of phenotypic

variance for height (0.15, p-value= 1.5e-283), and that these transcriptomic effects correlate

with the genomic effects (genome-transcriptome correlation=0.35, p-value= 1.2e-14). We

conclude that the covariance between random effects is a key parameter for estimation,

especially when partitioning phenotypic variance by multi-omics layers.
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Genome-wide association studies (GWASs) have been
incredibly successful in identifying genetic variants asso-
ciated with complex traits. However, the proportion of

phenotypic variance explained by genome-wide significant single
nucleotide polymorphisms (SNPs) is far lower than the narrow-
sense heritability estimate1. This is largely because GWASs
typically examine SNP trait associations one at a time, generating
a large number of tests across the genome for which the stringent
Bonferroni correction is applied. To overcome this problem, a
whole-genome approach that jointly considers all available SNPs
has been introduced2, allowing estimation of the proportion of
phenotypic variance explained by genome-wide SNPs, i.e., SNP-
based heritability. Central to this approach is the use of linear
mixed models3 (LMMs)—extensions of random-effects models or
variance-component models4—which treat SNP effects as
random.

Using genome-based restricted maximum likelihood (GREML)
for parameter estimation, LMMs are a key tool not only for SNP-
based heritability of complex traits but also for variance parti-
tioning in general. For example, when heritability is partitioned
by functional annotation of SNPs using a LMM with multiple
random effects, GREML estimation has provided important
insights into the latent genetic architecture of complex traits5. As
multi-omics data become increasingly available6, variance parti-
tioning using LMMs will become indispensable to uncover the
relative contributions of multiple ‘omes’ to phenotypic variation.
Alongside GREML, linkage disequilibrium score regression
(LDSC) provides an alternative way for SNP-based heritability
estimation and variance partitioning, using only GWAS summary
statistics without the need to access individual genotypes7,8.
LDSC or stratified LDSC also treats SNP effects as random8, and
for the same set of individual-level genotype data, this approach
generates similar estimates as GREML9–11.

Following classic LMMs3,4, GREML assumes independence
between random effects when estimating variance components.
However, it is questionable if this assumption is always valid,
especially for genomic analyses of complex traits. For example,
gene regulatory networks shared between functional categories
may generate non-negligible correlations between effects of these
categories on phenotypes12. In the context of phenotypic variance
partitioning by multi-omics layers, effects of genetic variants and
their expression levels on phenotypes are likely correlated13–15, as
exemplified by overlaps between GWAS loci and expression
quantitative trait loci16,17 (eQTL). Given these justifiable covar-
iance terms in genomic analyses of complex traits, the naive
assumption of independence between random effects held by
GREML can lead to a biased partition of phenotypic variance and
false inferences on the underlying architecture of complex traits.

Here we introduce an alternative GREML, named CORE
GREML (CORE for COvariance between Random Effects), which
fits the Cholesky decomposition of kernel matrices in an LMM, to
estimate the covariance between a given pair of random effects.
Using extensive simulations, we show that CORE GREML out-
performs GREML, providing estimates of variance and covar-
iance components that are free from bias due to correlated
random effects. We also apply CORE GREML to real data from
the UK Biobank, to demonstrate its use for genomic partitioning
analyses and for genome-transcriptome partitioning of pheno-
typic variance. We conclude that the covariance between random
effects is a key parameter that needs to be estimated, especially for
multi-omics analyses of phenotypic variance.

Results
Methods overview. The proposed method, CORE GREML, is an
extension of GREML, in that it uses the Cholesky theorem to

derive the covariance structure between relationship kernel
matrices of random effects for LMM-based partitioning of phe-
notypic variance (see Methods for details). To validate CORE
GREML, we simulated 500 replicates of phenotypic data (n=
10,000) under settings where the covariance between random
effects was zero, positive, and negative (see Supplementary
Table 1 for parameter settings). Comparing the model fit of
GREML with that of CORE GREML for simulation replicates
under the null setting (i.e., no covariance), we estimated the type I
error rate of detecting covariance between random effects. Under
all settings, we also determined the extent to which CORE
GREML recovered the true values of model parameters and
compared CORE GREML and GREML estimates to show the
impact of neglecting covariance terms. To facilitate interpretation
of results from real data analyses, phenotypic data under all
settings were simulated using available genomic and tran-
scriptomic data as for real data analyses.

For analysis of real data, we selected ten traits with the highest
heritability estimates (see Supplementary Fig. 1 for SNP
heritability estimates) from the UK Biobank data that are
available to us (reference number 14575). These traits are
standing height, sitting height, body mass index (BMI), heel
bone mineral density, fluid intelligence, weight, waist circumfer-
ence, hip circumference, diastolic blood pressure, and years of
education. For each trait, we conducted two separate sets of
variance partitioning analyses, which are genomic partitioning by
functional region and genome-transcriptome partitioning of
phenotypic variance. For each analysis, we applied GREML and
CORE GREML, and compared the model fit of the two methods
to test the significance of the covariance terms between random
effects. Where necessary, we performed a five-fold cross-
validation to compare the prediction accuracy of CORE GREML
against that of GREML. Of note, both GREML and CORE
GREML use relationship kernel matrices for variance-
components estimation (Methods). The kernel matrices for
genomic partitioning analyses were constructed using genotypes
of 75,396 SNPs from coding regions, untranslated regions, and
promotors (collectively referred to as “regulatory regions”
thereafter), 255,665 from the DNase I hypersensitivity sites
(DHSs), and 799,935 for all other regions (referred to as “other
regions” thereafter). For the genome-transcriptome partitioning
of phenotypic variance, the kernel matrix for genetic variance
estimation was constructed using genotypes of 1,133,273 genome-
wide SNPs and the kernel matrix for the estimation of phenotypic
variance explained by the transcriptome was based on imputed
expression levels of 227,664 genes from 43 tissues18 (see
Supplementary Table 2), respectively. Importantly, our primary
interest was not variance partitioning per se; rather our intention
was to demonstrate the use of CORE GREML to detect and
estimate covariance terms between random effects in mixed-
model-based variance-component analyses and to show the
impact of neglecting covariance terms on variance-components
estimation.

Method validation by simulation. For phenotypic data simulated
under the genomic partitioning model (see Methods) with zero
covariance between effects of genomic regions on phenotypes
(i.e., the null setting), the CORE GREML vs. GREML comparison
yielded significant results (at a significance threshold of 0.05) for
19 replicates out of 500, giving an estimated type I error rate of
0.038 for detecting covariance terms. Similarly, for data simulated
using the genome-transcriptome model under the null setting
(see Methods for the simulation model), the estimated type I
error rate was 0.042. Thus, for both simulation scenarios, type I
error rate was not inflated.
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In terms of parameter estimation, regardless of the simulation
model and the parameter setting, CORE GREML consistently
yielded unbiased estimates of all model parameters (Supplemen-
tary Figs. 2 and 3). In contrast, GREML only produced unbiased
variance estimates of random effects under the null setting where
random effects are not correlated (cov= 0 in Supplementary
Figs. 2 and 3). As expected, GREML overestimated and under-
estimated the variance of random effects in the presence of
positive and negative correlations between random effects,
respectively, and the biased estimation was evident for both
genomic partitioning and genome-transcriptome partitioning of
phenotypic variance (Supplementary Figs. 2 and 3). Thus, our
simulation results validate that CORE GREML properly parti-
tions phenotypic variance whether or not the random effects in a
LMM are correlated with each other. These results also indicate
that GREML would produce biased variance-components esti-
mates when random effects are correlated.

Assumption on genetic architecture. Incorrect assumptions in
the estimation model about the genetic architecture of the trait
can also bias variance-components estimation in the context of
GREML19. Therefore, we tested the extent to which CORE
GREML estimation is sensitive to a wrong assumption of the
genetic architecture in the estimation model. This was achieved
by simulating phenotypes under different genetic architectures
(see Methods) and comparing CORE GREML estimation from
fitting an estimation model that has the correct assumption about
the genetic architecture, referred to as the “true model,” with that
from fitting a “wrong model” that has an incorrect assumption
about the genetic architecture.

We found that misspecification of genetic architecture in the
estimation model in general biased CORE GREML estimation of
variance components but not the covariance term for genome-
transcriptome partitioning of phenotypic variance (see Supple-
mentary Fig. 4). Nonetheless, under any given genetic architec-
ture, misspecification can be feasibly diagnosed by comparing the
likelihood of estimation models that assume a wide range of
possible genetic architectures. As shown in Supplementary Fig. 5,
differences in the likelihood of estimation models are highly
indicative of deviations from the true underlying genetic
architecture. In fact, a grid search approach has been practiced,
choosing the model closest to the true underlying genetic
architecture in the GREML context19.

In light of the above results, to reduce the chance of
misspecification of genetic architecture for real data analyses,
we fitted two estimation models, the Genome-wide Complex
Trait Analysis (GCTA) model2 and the Linkage Disequilibrium
Adjusted Kinships (LDAK) model (with parameter α, which
controls the extent to which minor allele frequency (MAF) affects
the variance of SNP-specific effects on phenotypes, set at the
recommended default −0.2519). We found that for all traits,
the GCTA model had a better fit than the LDAK model,
irrespective of estimation method (i.e., GREML or CORE
GREML; see Supplementary Tables 3 and 4), indicating that the
GCTA model is closer to the true genetic architecture than
the LDAK model for our selected traits. Nonetheless, heritability
estimates by the two models do not differ substantially
(Supplementary Table 3) and significant covariance terms
detected by the GCTA model remain significant when using the
LDAK model (Supplementary Table 4; although the GCTA model
seems more conservative than the LDAK model for detecting
covariance terms). This is consistent with the previous observa-
tion that heritability estimates based on high-quality common
SNPs are robust to variations in the assumed genetic architecture
(more specifically, parameter α-values of the LDAK model; see

Speed et al.19). Given the above, unless specified otherwise, results
presented in the main text below are GCTA-based; LDAK-based
results are included in Supplementary Tables 3 and 4.

Real data analyses. Intuitively, the covariance between any pair of
random effects would not exist if the variance of any of the
random effects is negligible. Therefore, prior to covariance esti-
mation, we tested whether the variance components of interest
differ from zero for the ten selected traits. For genomic parti-
tioning, we estimated genetic variance by functional region using
GREML and found that for all traits all variance components
were different from zero by Wald’s tests (Supplementary Table 5).
For genome-transcriptome partitioning of phenotypic variance,
given that all selected traits are high in heritability (i.e., large
genetic variances), we tested whether the imputed transcriptome
could explain a significant proportion of phenotypic variance. To
do so, we fitted two models using GREML, a “G model” that
breaks phenotypic effects into the random effects of the genome
and residuals, i.e., y= g+ ε, and a “G-T model” that decomposes
phenotypic effects into the random effects of the genome and the
imputed transcriptome and residuals, i.e., y= g+ t+ ε. We
declared the presence of significant effects of the imputed tran-
scriptome when the G-T model had a better fit than the G model
using the likelihood ratio test with one degree of freedom. We
found significant effects of the imputed transcriptome for all
traits, except fluid intelligence (Fig. 1). Interestingly, although the
G-T model had a much better fit than the G model for the nine
traits, the two models explained a similar amount of phenotypic
variance (Fig. 1), which was verified by additional simulations
(see Supplementary Note 1 and Supplementary Fig. 6). This
suggests that the partition of phenotypic variance represented by
the G-T model is closer to the true underlying model than that
represented by the G model.

Importantly, the effects of the imputed transcriptome on
phenotypes are orthogonal to the effects of the SNPs that were
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Fig. 1 Imputed transcriptome contributes to phenotypic variance. Shown
are estimated variance components as a proportion of total phenotypic
variance from a linear mixed model that includes the random effects of
the imputed transcriptome and another model that does not, denoted as
y= g+ t+ ε and y= g+ ε, respectively. N= sample size; p= p-values
from likelihood ratio tests (df= 1) that compare the two models to
detect significant effects of the imputed transcriptome. g= the random
effects of the genome; t= the random effects of the imputed
transcriptome; ε= residuals; σ2t = phenotypic variance explained by the
imputed transcriptome; σ2g = phenotypic variance explained by the genome;
σ2y = total phenotypic variance. The imputed transcriptome consists of
expression levels of 227,664 genes from 43 non-sex-specific tissues.
Source data are provided as a Source Data file.
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used to impute the transcriptome. To show this, we performed
two analyses. First, we constructed a GRM with the 1,316,391
SNPs that were used for the transcriptome imputation and
denoted their effects as g1 in a model that expresses the
phenotypes of a trait, y, as y= g1+ t+ ε, where t is the random
effects of the imputed transcriptome and ε is residuals. If the
imputed transcriptome has any effects on phenotypes that are
orthogonal to g1 alone, this model would have a better fit than a
reduced model with g1 only, i.e., y= g1+ ε. Based on the
likelihood ratio test with one degree of freedom, y= g1+ t+ ε
had a better fit than y= g1+ ε for all traits, except years of
education and fluid intelligence (see Supplementary Table 6),
indicating that t is orthogonal to g1 for most traits.

Second, we compared two models, y= g0+ g1+ ε and y=
g0+ t+ ε, where g0 denotes the random effects of 1,131,002
SNPs in our genome-transcriptome partitioning analyses of a
complex trait (i.e., the G-T model mentioned above). It is noted
that the set of SNPs for estimating g0 were ones that remained
after applying our quality control criteria, whereas the 1,316,391
SNPs for the transcriptome imputation (hence for estimating g1)
were based on the transcriptome imputation protocol18. The
two sets of SNPs overlap by 716,636. If the two-GRM model (y=
g0+ g1+ ε) is no different from the genome-imputed transcrip-
tome model (y= g0+ t+ ε), their likelihoods would be very
similar. Contrary to this, we found that y= g0+ t+ ε had a much
better fit than y= g0+ g1+ ε for all traits, except heel bone mineral
density, years of education, and fluid intelligence (see Supplemen-
tary Table 6), confirming that g1 and t are distinct for most traits. In
addition, the results also indicate that y= g0+ t+ ε is closer to the
true underlying model than y= g0+ g1+ ε for most traits.

To validate the transcriptomic effects on phenotypes revealed
by the G-T model, we performed a five-fold cross-validation, in
which the phenotypic prediction accuracy of the G-T model was
compared against that of the G model. For each trait, we
randomly split the sample into a training set (~80%) and a
validation set (~20%), and iterated this process five times in a
manner such that validation sets did not overlap across iterations.
To derive the prediction accuracy for the two models, we
computed the Pearson’s correlation coefficient between the
observed and predicted phenotypes of each trait in each iteration
and averaged correlation estimates across five iterations. Figure 2a
shows that the gain in the phenotypic prediction accuracy by the
G-T model relative to that by the G model grew as the estimated
transcriptomic contribution to phenotypic variance increased
(p= 1.86e− 06), suggesting that the transcriptomic effects on
phenotypes of the selected traits are genuine. Taken together, our
results thus far indicate that the variance components of interest
differ from zero for all traits with fluid intelligence being the
exception for the genome-transcriptome partitioning of pheno-
typic variance. Importantly, these results established the basis for
our subsequent covariance estimation.

By comparing model fit by GREML and CORE GREML, we
detected significant covariance between the random effects of
the regulatory regions and DHS for height and sitting height
(Fig. 3). Of note, the genomic partitioning model included three
covariance terms, but two of these terms were not significant for
height and sitting height, based on the Wald’s test with one
degree of freedom. We therefore reduced the model for these two
traits by dropping nonsignificant covariance terms, noting that
the fit of the reduced model did not differ from the full model
(p= 0.85 and 0.37 for height and sitting height, respectively). We
subsequently used estimates from the reduced model for these
two traits. In genome-transcriptome analyses, we found sig-
nificant covariance between the random effects of the genome
and those of the imputed transcriptome for height, sitting height,
heel bone mineral density, and diastolic blood pressure (Fig. 4).

We standardized all estimated covariance terms using respective
variance estimates to derive correlation estimates (Figs. 3 and 4
far right), noting that all significant estimates were positive and
small to moderate in size, ranging from 0.14 (standing height in
Fig. 3) to 0.58 (heel bone mineral density in Fig. 4).

In a subsequent sensitivity analysis, all significant covariance
terms emerging from the genomic partitioning and genome-
transcriptome analyses remained after applying a rank-based
inverse normal transformation to phenotypic observations (see p-
values in Supplementary Figs. 7 and 8). Thus, the estimated
covariance terms were robust against the violation of the
normality assumption held by GREML and CORE GREML. In
another sensitivity analysis, we checked if the estimated genome-
transcriptome covariance found for height, sitting height, heel
bone mineral density, and diastolic blood pressure is robust to
SNP selection, by comparing our CORE GREML results, where
the genetic effects are based on ~1.1 million HapMap phase III
SNPs, with results where the genetic effects are based on ~1.3
million HapMap phase II SNPs (Supplementary Table 7). The
significant genome-transcriptome covariance remains for height,
sitting height, and diastolic blood pressure.

To show that covariance terms estimated by CORE GREML
are genuine biological parameters, we validated the covariance
between the random effects of the genome and the imputed
transcriptome using the same five-fold cross-validation procedure
as before (i.e., for the validation of transcriptomic effects on
phenotypes). In this instance, the phenotypic prediction accuracy
of CORE GREML was compared against that of GREML. We
chose genome-transcriptome analyses for validation since
significant covariance emerged from four traits in contrast to
two traits in genomic partitioning analyses. Figure 2b shows that
the gain in the phenotypic prediction accuracy of CORE GREML
relative to that of GREML grew as the magnitude of covariance
estimates increased (p= 1.61e− 05).

To show the impact of neglecting significant covariance terms,
we compared variance-component estimates from GREML with
those from CORE GREML. In both genomic partitioning and
genome-transcriptome analyses, variance estimates by GREML
for correlated random effects were larger than those by CORE
GREML (Figs. 5 and 6a for significant results; see Supplementary
Figs. 7 and 8 for full results), noting that the differences in
estimates between the two methods were proportional to the
magnitude of covariance estimates. This is in line with our
simulation results under positive covariance settings (cov > 0 in
Supplementary Figs. 2 and 3). As expected, neglecting covariance
did not affect variance estimates for uncorrelated random effects.
For example, variance estimates of the random effects of other
genomic regions by CORE GREML for standing and sitting
height agreed with those by GREML (Fig. 6a). Similarly, for traits
without any significant covariance term, there were minimal
differences between GREML and CORE GREML estimates
(Supplementary Figs. 7 and 8), which aligned with simulation
results under settings of zero covariance (cov= 0 in Supplemen-
tary Figs. 2 and 3). Based on these observations, the larger
variance estimates by GREML for correlated random effects
compared to CORE GREML estimates are most likely due to bias
from neglecting the correlations between these random effects.

We also considered the impact of neglecting covariance
between random effects on functions of variance-component
estimates, including the following: (1) proportions of phenotypic
variance explained by the genome (i.e., narrow-sense heritability)
and by the imputed transcriptome (Supplementary Fig. 9); (2)
heritability partitioned by functional genomic region (Supple-
mentary Fig. 10); and (3) proportions of genetic variance by
functional genomic region (Fig. 6b for significant results;
Supplementary Fig. 11 for full results). These functions are useful
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for inferring the omic architecture of complex traits. For example,
the relative phenotypic contributions of the genome and the
imputed transcriptome can be inferred from the proportions of
phenotypic variance explained by the two omes (note: these

estimates are essentially identical to variance-component esti-
mates, because the phenotypes of traits have been standardized
prior to analyses). The functional significance of SNPs from a
given genomic region can be tested by assessing if the proportion
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Source Data file.
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Fig. 4 Covariance estimates from genome-transcriptome partitioning analyses. Shown are estimated covariances (σgt) and correlations (rgt) between the
random effects of the genome and those of the imputed transcriptome. Error bars are 95% confidence intervals (based on s.e.m.). N= sample size; p1= p-
values from likelihood ratio tests that compare GREML with CORE GREML to detect σgt; p2= p-values based on the Wald’s test statistic under the null
hypothesis that rgt= 0 (i.e., a two-sided test). Highlighted in orange are significant σgt and rgt after a Bonferroni adjustment for multiple comparisons. Fluid
intelligence is excluded because the effects of the imputed transcriptome on this trait was not significant after Bonferroni correction. Source data are
provided as a Source Data file.
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Fig. 5 Variance estimates from genome-transcriptome partitioning analyses. N= sample size; σ2g and σ2t denote the phenotypic variances explained by
the genome and by the imputed transcriptome, respectively. Model parameters were estimated using the traditional method, i.e., GREML, and the proposed
method, i.e., CORE GREML. Error bars are 95% confidence intervals (based on s.e.m.). Residual variance estimates are omitted for simplicity. Source data
are provided as a Source Data file.
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2
DHS, and σ2other regions denote phenotypic variances explained by the three functional regions.

Model parameters were estimated using the traditional method, i.e., GREML, and the proposed method, i.e., CORE GREML. a Variance-component
estimates. b Estimated proportions of total genetic variance attributable to three functional regions of the genome. Error bars are 95% confidence intervals
(based on s.e.m.). Vertical lines in b are percentages of SNPs from the three functional regions; conceptually, they are expected proportions of total genetic
variance explained by the three functional regions of the genome assuming all genome-wide SNPs have an equal contribution to phenotypic variation.
Residual variance estimates are omitted for simplicity. Source data are provided as a Source Data file.
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of genetic variance attributable to the region is substantially
higher than the proportion of SNPs from the region5. Notably,
GREML estimates of these functions were larger than CORE
GREML estimates whenever there was a significant covariance
term (Supplementary Figs. 9–11), but the two methods agreed
with each other otherwise. For example, the relative phenotypic
contributions by the genome and the imputed transcriptome
inferred from GREML were larger than those inferred from
CORE GREML for heel bone mineral density, diastolic blood
pressure, sitting height and standing height (Fig. 5). Similarly, the
functional significance of SNPs from regulatory regions inferred
by GREML was larger than that by CORE GREML for sitting
height and standing height (Fig. 6b). Taken together, our results
indicate that GREML can lead to incorrect inferences on the
underlying architecture of complex traits unless correlations
between random effects are properly modeled.

It is important to note that kernel matrices used for variance-
components estimation in an LMM can be similar, for instance,
due to linkage disequilibrium (LD) in a genomic partitioning
analysis. In fact, the correlations between off-diagonal entries of
kernel matrices used in our analyses are moderate to high
(0.35–0.98; see Supplementary Table 8). This similarity might
give rise to the covariance between random effects. However, this
possibility is unlikely for at least two reasons. First, if covariance
is driven by the similarity between kernel matrices, then we would
expect that in the null setting of our simulations, type I error rate
is inflated, given the high similarities between kernel matrices in
our analyses. Contrary to this, we found that type I error rate is
controlled. Second, the kernel matrix constructed using genotypes
from DHS is more similar to the kernel matrix constructed using
genotypes from other regions than to the one for regulatory
regions; but significant covariance was only detected between
effects of regulatory regions and those of DHS on standing height
and sitting height. Therefore, covariance between random effects
is unlikely driven by the similarity between kernel matrices for
variance-components estimation.

Discussion
When applying the classic LMMs for standard heritability esti-
mation, where phenotypic variance is only partitioned into
genetic and residual variances, the model assumption of negligible
covariance between random effects (i.e., genetic and residual
effects) may be met in many cases. However, when phenotypic
variance is further partitioned, e.g., by functional genomic region
or omic layer, using a model with multiple random effects, the
covariance terms between these random effects can be substantial,
as we demonstrated using the genomic partitioning analyses and
the genome-transcriptome partitioning analyses for complex
traits. Unless these non-negligible covariance terms are properly
accounted for, variance-components estimation would be biased,
resulting in misleading inferences on the latent omic architecture
of complex traits, as shown by simulation results. Therefore, we
recommend that covariance terms between random effects need
to be carefully checked and properly modeled for genomic ana-
lyses of complex traits.

CORE GREML can serve as a useful tool for detecting and
estimating covariance terms between random effects, as demon-
strated using analyses of both simulated and real data. Prior to the
proposal of CORE GREML, there have been several attempts to
relax the assumption of independence between random
effects20,21, but they are specific to experimental studies and are
not readily applicable to genome-wide analyses for human
complex traits. To our knowledge, CORE GREML is the first of its
kind in variance partitioning analyses, which correctly models the
covariance between random effects.

We demonstrated the use of CORE GREML in genomic par-
titioning analyses and genome-transcriptome partitioning of
phenotypic variance, and found that significant covariance terms
mostly emerged from the latter (for four traits out of ten).
Although genome-transcriptome associations have been reported
by numerous studies12–15, they were based on a limited number
of SNPs and genes. In contrast, the association estimates by
CORE GREML were based on aggregated effects of genome-wide
SNPs and those of all available gene expression levels jointly on
phenotypes, thereby providing an overall picture of the propor-
tion of phenotypic variance shared by the whole genome and the
transcriptome.

Of note, our study used imputed, as opposed to measured, gene
expression. As demonstrated by our cross-validation results, the
imputed transcriptome already improves phenotypic prediction
accuracy, hence it allows phenotype forecasting, e.g., for new-
borns, solely on the basis of genotype information. It is noted
though, the gene expression imputation models used in our study
on average explains 13.7% of gene expression variation18. As a
result, the imputed transcriptome would only have captured part
of transcriptomic effects on phenotypes; hence, the phenotypic
variance explained by the transcriptome would have been
underestimated. However, our intention of using the imputed
transcriptome is not to accurately estimate variance explained by
the transcriptome; but as a proxy of the transcriptome to
demonstrate the use of CORE GREML for genome-transcriptome
partitioning analyses. When actual gene expression levels become
available for future analyses, we expect an additional gain in
explained phenotypic variance.

Although the model with the random effects of the imputed
transcriptome fit the phenotypic data much better than the
reduced model without the imputed transcriptomic effects, the
two models explained the same amount of total phenotypic
variance (Fig. 1). Notably, this result aligns with a recent notion
of total genetic effects on complex traits, which is partitioned into
genetic effects mediated by gene expression and ones not22.
Although the former is essentially the effects of imputed gene
expression on phenotypes, the latter is the effects of common
SNPs (see Eq. (3) in Yao et al.22). Despite the conceptual simi-
larity, our study is different from Yao et al.22 in two key aspects.
First, implied from the model in Yao et al.22, gene expression
levels were based on SNPs at cis-eQTLs only; however, in our
study gene expression levels were computed using genome-wide
SNPs. This may explain that the estimated phenotypic variance
due to imputed gene expression in their study tends to be smaller
than that in ours for BMI, standing height, heel bone mineral
density and years of education. Second, unlike CORE GREML
used in our study, the model used by Yao et al.22 does not account
for covariance between effects of the genome and the imputed
transcriptome on phenotypes.

Importantly, the proposed CORE GREML can be used to
analyze and dissect the shared effects among omic layers, beyond
the genome and the transcriptome, including proteome, meta-
bolome and exposome, when multi-omics data become available.
We anticipate, based on our genome-transcriptome analyses of
complex traits, that covariance between the random effects of
omic layers is a key parameter, such that CORE GREML will be
an important tool for multi-omics partitioning analyses. Other
potential applications of CORE GREML include phenotypic
variance partitioning by chromosome23 or MAF bin24,25, where
correlations between the random effects in the model are intui-
tive. Even for the simplest partitioning of phenotypic variance
that separates genetic variance apart from residual variance,
CORE GREML can be useful, if genetic effects and residuals are
correlated due to confounding, associations or interactions
between genetic and environmental effects26. One may also be
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interested to partition genome-wide SNPs into subsets by LD
structure and MAF bin and specify a separate random-effect term
for each subset in CORE GREML. However, this would inevitably
result in many random-effect terms in the model. Given that
CORE GREML is computationally intensive, estimation would
eventually become infeasible for models with a large number of
random effects (e.g., the baseline model in Finucane et al.8 with
>100 random-effects terms). Further studies are required to
develop computationally efficient algorithms for CORE GREML,
e.g., using summary statistics. In addition, we only validated
CORE GREML for quantitative traits in this study. Validation of
our method for binary traits is required in future studies.

Finally, we showed, using simulations, that misspecification of
LD and MAF dependent genetic architecture can cause sub-
stantial bias in variance-components estimation by CORE
GREML, although covariance estimation seems robust. However,
the likelihood of the true estimation model in general is much
greater than a wrong model, suggesting that likelihood-based
comparisons of models that assume different genetic architectures
is a useful way to reduce the chance of mis-specifying genetic
architecture. For demonstration, we fitted the GCTA model and
the LDAK model with the recommended default setting19 and
found the GCTA model in general had a better fit than the LDAK
model for our traits. In the absence of the knowledge of the true
genetic architecture, it is recommended to vary parameter settings
of the LDAK model more systematically (as in Speed et al.19) and
choose the best fitting model via likelihood comparison before
applying CORE GREML.

In this study, we introduce a generalized GREML, referred to as
CORE GREML, which relaxes the assumption of independence
between random effects held by classic mixed-effects models for
variance-component analyses. Using both simulations and real
data, we showed that in the presence of non-negligible covariance
terms, CORE GREML improved genomic partitioning and multi-
omics partitioning analyses by the conventional GREML. We
conclude that the covariance between random effects for analysis
of complex traits is a key parameter for estimation and, hence,
recommend that covariance terms should be carefully checked
and properly modeled.

Methods
Ethics statement. We used data from the UK Biobank (https://www.ukbiobank.ac.
uk) for our analyses.

The UK Biobank’s scientific protocol has been reviewed and approved by the
North West Multi-center Research Ethics Committee, National Information
Governance Board for Health & Social Care, and Community Health Index
Advisory Group. UK Biobank has obtained informed consent from all participants.
Our access to the UK Biobank data was under the reference number 14575. The
research ethics approval of the current study was obtained from the University of
South Australia Human Research Ethics Committee.

Generalizing GREML. A LMM can be written as

y ¼ Xbþ Zgþ ε ð1Þ
where y is a vector of trait phenotypes, b is a vector of fixed effects, g is a vector of
additive genetic effects, and ε is a vector of residual effects. X and Z are incidence
matrices. The random effects, g and ε, are assumed to be normally distributed with
mean zeros and variances Aσ2g and Iσ2ε , respectively, where A and I are the genetic
relationship kernel matrix2,27,28 and an identity matrix, respectively. The
variance–covariance matrix of all observations, var(y), can be written as

var yð Þ ¼ Aσ2g þ Iσ2ε ð2Þ
This is the standard definition of variance–covariance matrix used in LMM,

which assumes no correlation between g and ε, i.e., cor(g, ε)= 0. When relaxing
this classic assumption, Eq. (2) can be expressed as

var yð Þ ¼ Aσ2g þ Iσ2ε þ
ffiffiffiffi
A

p
�
ffiffiffiffi
I0

p
þ

ffiffiffiffi
A

p
�
ffiffiffiffi
I0

p� �0h i
σg;ε ð3Þ

where
ffiffiffiffi
A

p
is the Cholesky decomposition of the genetic relationship kernel matrix

with A=
ffiffiffiffi
A

p �
ffiffiffiffiffi
A0p
,
ffiffi
I

p ¼ I, and σg,ε is the covariance between g and ε, i.e.,

σg;ε ¼ corðg; εÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2g � σ2ε

q
.

When considering multiple random effects in the LMM (e.g., genomic
partitioning approach), the model can be written as

y ¼ Xbþ
Xk
i¼1

Zgi þ ε ð4Þ

where gi is the random genetic effects of the ith pre-defined functional category,
e.g., regulatory regions.

Such LMMs with multiple random effects typically assume no correlation
between gi and gj. However, this assumption can be violated if the effects of two
categories on phenotypes are associated, e.g., through the same gene pathway. We
relax this assumption and write the variance–covariance matrix of all observations,
var(y), as

var yð Þ ¼

V ¼
Xk
i¼1

Aiσ
2
gi
þ
Xk
i¼1

Xi�1

j¼1

ffiffiffiffiffi
Ai

p �
ffiffiffiffiffi
A0
j

q
þ ffiffiffiffiffi

Ai

p �
ffiffiffiffiffi
A0
j

q� �0� �
� σgigj þ Iσ2ε

ð5Þ

where Ai is the genetic relationship kernel matrix constructed using SNPs from the
ith functional category,

ffiffiffiffiffi
Ai

p
is the Cholesky decomposition of Ai, and σgigj is the

genetic covariance between gi and gj. It is noted that the correlation term between
genetic effects (gi) and residuals (ε) is not included and hence assumed to be zero
in Eq. (4), which is usually valid, although it is possible to parameterize this term.

The log likelihood of the proposed model, which can be generally applied to
Eqs. (1) and (4), is

log L ¼ � 1
2

ln Vj j þ ln X0V�1X
�� ��þ y0Py

� 	 ð6Þ

where ln is the natural log and | | the determinant of the associated matrices. The
projection matrix is defined as P ¼ V�1 � V�1XðX0V�1XÞ�1X0V�1. By
maximizing the log likelihood, the direct average information algorithm29,30 can be
used to obtain CORE GREML estimates of parameters including the covariance
terms between random effects.

This CORE GREML approach can be easily extended to phenotypic variance
partitioning using multi-omics data, e.g. genome-transcriptome analyses (see
Genome-Transcriptome Partitioning Model section below).

Heritability. For Eq. (1), the standard definition of heritability is

h2 ¼ σ2g
σ2y

ð7Þ

where the phenotypic variance is σ2y ¼ σ2g þ σ2ε in the absence of cor(g, e). When
there is non-negligible cor(g, ε), the phenotypic variance should be written as
σ2y ¼ σ2g þ σ2ε þ 2 � covðg; εÞ.

For Eq. (4), a general expression of heritability for the ith genetic component is

h2 ¼ σ2gi
σ2y

ð8Þ

where σ2y ¼
Pk

i¼1σ
2
gi
þPk

i¼1

Pi�1
j¼12 � σgigj þ σ2ε .

Using the Delta method31, the sampling variance of heritability for this example
can be obtained as

varðh2Þ ¼ σ2gi
σ2y

 !2
varðσ2gi Þ

σ4gi
� 2 � covðσ2gi ; σ2yÞ

σ2gi � σ2y
þ varðσ2yÞ

σ4y

 !
ð9Þ

where var σ2gi

� �
; var σ2y

� �
, and covðσ2gi ; σ2yÞ can be obtained from the average

information matrix29,32 of CORE GREML.

Correlation between two random effects. The correlation between two random
(genetic) effects (rgigj ) can be defined as the genetic covariance scaled by the square

root of the product of the genetic variances of the two random effects, i.e.,

rgigj ¼
σgigjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2gi � σ2gj

q ð10Þ

Using the Delta method31, the sampling variance of genetic correlation can be
obtained as

var rgigj

� �
¼ r2gigj

varðσ2gi Þ
4 � σ4gi

þ
varðσ2gj Þ
4 � σ4gj

þ
varðσgigj Þ

σ2gigj
þ

2 � covðσ2gi ; σ2gj Þ
4 � σ2gi � σ2gj

 

�
2 � cov σ2gi ; σgigj

� �

2 � σ2gi � σgigj
�

2 � cov σ2gj ; σgigj

� �

2 � σ2gj � σgigj

1
A

ð11Þ
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where the variance and covariance terms used are from the information matrix of
CORE GREML.

Computational requirements. CORE GREML analyses were performed using
open-access software, MTG2 (version 2.14 or later versions; https://sites.google.
com/site/honglee0707/mtg2). The computational requirements for fitting a model
with two random effects using CORE GREML are outlined in Supplementary
Table 9.

Genotype data. The UK Biobank (project approval number 14575) contains
health-related data from ~500,000 participants aged between 40 and 69 years, who
were recruited throughout the UK between 2006 and 201033. Prior to data analysis,
we applied stringent quality control to exclude unreliable genotypic data. We fil-
tered SNPs with an INFO score (used to indicate the quality of genotype impu-
tation) < 0.6, an MAF < 0.01, a Hardy–Weinberg equilibrium p-value < 1e− 4, or a
call rate < 0.95. We then selected HapMap phase III SNPs, which are known to
yield reliable and robust estimates of SNP-based heritability25,34,35, for downstream
analyses. We filtered individuals who had a genotype-missing rate > 0.05, were
non-white British ancestry, or had the first or second ancestry principal compo-
nents outside 6 SDs of the population mean. We also applied relatedness cut-off
quality control to exclude one of any pair of individuals with a genomic rela-
tionship > 0.025. From the remaining individuals, we selected those who were
included in both the first and second release of UK Biobank genotype data. We
calculated the discordance rate of imputed genotypes between the two versions and
excluded individuals with a discordance rate > 0.05. Eventually, genotypes of
1,131,002 SNPs from 91,472 individuals remained for data analysis.

Phenotype data. To preclude negligible heritability as a possibility for negative
findings (i.e., no covariance between random effects), we deliberately chose ten UK
Biobank traits available to us with the largest heritability estimates by an inde-
pendent open source (https://nealelab.github.io/UKBB_ldsc/), which included
standing height, sitting height, BMI, heel bone mineral density, fluid intelligence,
weight, waist circumference, hip circumference, diastolic blood pressure, and years
of education36. Heritability estimates for all selected traits were at least 20 times
greater than their SEs, to ensure that they were significantly different from zero.
We further verified SNP-based heritability of these traits using GREML and esti-
mates are shown in Supplementary Fig. 1.

Prior to model fitting, phenotypic data were prepared using R (v3.4.3) in three
sequential steps as follows: (1) adjustment for age, sex, birth year, social economic
status (by Townsend Deprivation Index), population structure (by the first ten
principal components of the genomic relationship matrix estimated using PLINK
v1.9), assessment center, and genotype batch using linear regression; (2)
standardization; and (3) removal of data points outside ±3 SDs from the mean. The
distributions of phenotypes of the ten traits are shown in Supplementary Fig. 12.
We noted mild to strong deviations from normality for traits such as BMI and
years of education. This motivated a subsequent sensitivity analysis to test the
robustness of our findings against the violation of the normality assumption held
by GREML and CORE GREML. Specifically, we applied a rank-based inverse
normal transformation to phenotypes of all traits and repeated our analyses on the
transformed phenotypes.

Functional annotation of the genome. The genome was annotated using three
pre-defined functional categories (http://gusevlab.org/software/) as follows: (1)
regulatory regions that consist of coding regions, untranslated regions and pro-
motors; (2) DHSs; and (3) all other regions. We assigned each SNP into 1 of the 3
categories, resulting in 75,396 SNPs in the regulatory regions, 255,665 in the DHS,
and 799,935 in all other regions. Prior to the assignment, genotype data were
quality-controlled (see above for details).

Gene expression imputation. Using PrediXcan18 (https://github.com/hakyimlab/
PrediXcan), we imputed expression levels of 2028 to 9630 genes for 43 non-sex-
specific tissues (Supplementary Table 2) by projecting estimated SNP effects of
expression onto genotypes of 1,316,391 SNPs for 91,472 individuals from the UK
Biobank. Selected SNPs had an INFO score > 0.6, an MAF > 0.01, a p-value for the
Hardy–Weinberg test > 0.0001, and missingness < 0.05. SNP effect estimates were
sourced from GTEx v7 models (2018-01-08 release; http://predictdb.org), which
were trained using 2,496,846 SNPs of European individuals from the Genotype-
Tissue Expression project37.

Variance partitioning models. The phenotypic variance of each selected trait was
partitioned using two separate random-effects models (see below for model
description). The “genome-transcriptome” model partitions phenotypic variance
into variation from the genome, the transcriptome and unknown sources (i.e.,
residual variance), whereas the “genomic partitioning” model assumes phenotypic
variation comes from the genome and residuals, and further partitions genetic
variance by functional category of the genome. Three functional categories were
under consideration, namely, regulatory regions (encompassing coding regions,
untranslated regions, and promotors), DHSs, and all other regions.

Each partitioning model was fitted using the conventional method, i.e., GREML,
and the proposed alternative, i.e., CORE GREML. Essentially, GREML sets all
covariance terms between random effects to zero, whereas CORE GREML treats
these terms as free parameters for estimation. To detect significant covariance
terms, we performed likelihood ratio tests to determine whether the model fit by
CORE GREML was better than that by GREML.

Assuming that the phenotypes are pre-adjusted for fixed effects, the genome-
transcriptome partitioning model can be expressed as

y ¼ μþ gþ tþ ε ð12Þ

where y is a n × 1 vector of phenotype data, μ is the grand mean, g, t, and ε are the
main genetic, transcriptomic, and residual effects, following g ~N(0, Anxnσ

2
g), t ~N

(0, Tnxnσ
2
t ), and ε ~N (0, Inxnσ

2
ε ), respectively. The terms, σ2g, σ

2
t , and σ2ε denote

phenotypic variances attributable to the genome, the transcriptome, and residuals,
respectively. Anxn and Tnxn are relationship kernel matrices and Inxn is an identity
matrix. Anxn is derived by WnxmW

0
nxm=m and Tnxn by QnxpQ

0
nxp=p, where Wnxm

contains standardized genotype information of m (=1,131,002) SNPs for n
(=91,472) individuals, and Qnxp contains standardized imputed expression of p
(=227,664) genes collapsed across 43 tissues for the n individuals. Essentially,
entries of Anxn and Tnxn describe pairwise similarities between individuals based on
their genotypes and imputed gene expression, respectively.

The variance–covariance matrix of phenotypic observations is

var yð Þ ¼ Anxnσ
2
g þ Tnxnσ

2
t þ

ffiffiffiffiffiffiffiffiffi
Anxn

p � ffiffiffiffiffiffiffiffiffi
Tnxn

p 0 þ ffiffiffiffiffiffiffiffiffi
Anxn

p � ffiffiffiffiffiffiffiffiffi
Tnxn

p 0� �0h i

�σgt þ Inxnσ
2
ε

ð13Þ

where σgt is the covariance between the effects of the genome and the transcriptome
on phenotypes. Here we assume no correlation between residuals and genomic or
transcriptomic effects.

The genomic partitioning model can be expressed as

y ¼ μþ gregulatory þ gDHS þ gother þ ε ð14Þ

where y is a n × 1 vector of phenotype data that are decomposed into the grand
mean μ, the genetic effects due to regulatory, gregulatory ~N(0, Aregulatoryσ

2
regulatory),

DHS, gDHS ~N(0, ADHSσ
2
DHS) and other genomic regions gother ~N(0, Aotherσ

2
other),

and residuals, ε ~N(0, Inxnσ
2
ε ). The terms σ2regulatory, σ

2
DHS, σ

2
other, and σ2ε denote

phenotypic variances attributable to the three functional regions and residuals,
respectively. The kernel matrices Aregulatory, ADHS, and Aother were constructed
using 75,396 SNPs from regulatory regions, 255,665 from DHS, and 799,935 from
all other genomic regions. I is a n × n identity matrix.

The variance–covariance matrix of phenotypic observations is

var yð Þ ¼ Aregulatoryσ
2
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2
DHS þ Aotherσ

2
other
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ð15Þ

where σij is the covariance between genetic effects of functional regions i and j, for i
and j ϵ {regulatory regions, DHS, other regions} and i ǂ j. We assume no correlation
between residuals and any of the genetic effects.

Simulation. To validate CORE GREML, we simulated 500 replicates of phenotypic
data using the two variance partitioning models shown above under each of three
parameter settings: zero (i.e., null setting), positive and negative covariance
between random effects in the variance partitioning model. Simulations were based
on quality-controlled genotype data and imputed transcriptome data from a ran-
dom sample of 10,000 UK Biobank individuals. The genotype data contained a
total of 1,131,002 SNPs (see Genotype data above) and the imputed transcriptome
contained imputed expressions of 227,664 genes collapsed cross 43 non-sex-
specific tissues (see Gene expression imputation above).

For genome-transcriptome analysis, phenotypes were simulated using Eq. (12)
according to the following variance-covariance structure of random effects:

var

g

t

ε

0
B@

1
CA ¼

σ2g σgt 0

σgt σ2t 0

0 0 σ2ε

0
B@

1
CA ¼

0:4 σgt 0

σgt 0:4 0

0 0 0:2

0
B@

1
CA ð16Þ

where the value of σgt varied across parameter settings (Supplementary Table 1).
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For genomic partitioning analysis, phenotypes were simulated using Eq. (14)
according to the following variance–covariance structure of random effects:

var

gregulatory
gDHS

gother
ε

0
BBB@

1
CCCA ¼

σ2regulatory σregulatory DHS σregulatory other 0

σregulatory DHS σ2DHS σDHS other 0

σregulatory other σDHS other σ2other 0

0 0 0 σ2ε

0
BBBB@

1
CCCCA

¼

0:3 σregulatory DHS σregulatory other 0

σregulatory DHS 0:4 σDHS other 0

σregulatory other σDHS other 0:1 0

0 0 0 0:2

0
BBB@

1
CCCA

ð17Þ

where the values of covariance terms varied across parameter settings
(Supplementary Table 1).

For each replicate, we fitted the two variance partitioning models using both
GREML and CORE GREML as for analysis of real data. Under the null setting, we
assessed if CORE GREML can detect covariance term(s) at a controlled rate of type
I errors, by comparing the model fit of CORE GREML with that of GREML using
likelihood ratio tests. Under all settings, we assessed if CORE GREML can produce
unbiased estimates of variance and covariance components. To show the impact of
neglecting genuine covariance terms, we also provided parameter estimates
by GREML.

To test the sensitivity of CORE GREML estimation to a wrong assumption
about the genetic architecture in the estimation, we also simulated phenotypes
under genetic architecture. Following past studies19,38, we parameterized genetic
architecture by MAF and LD, assuming the variance of SNP-specific effects on
phenotypes, var(β), for any given SNP i, is proportional to its LD score, w, and
MAF, f, expressed as varðβiÞ / wγ

i ½fið1� fiÞ�1þα , where α and γ control the extents
to which w and f affect var(β). By altering values of α (either −1 or −0.25) and γ
(either 0 or 1), we simulated phenotypic data under three different genetic
architectures (α=−1, γ= 1; α=−0.25, γ= 1; α=−0.25, γ= 0), each including
three scenarios of the covariance between the random effects of the genome and
those of the transcriptome, namely, null (σgt= 0), positive (σgt= 0.2), and negative
(σgt=−0.2), as for the CORE GREML validation simulations (Supplementary
Table 1; note the genetic architecture for the CORE GREML validation simulations
is under the setting α=−1, γ= 0). Each scenario had 500 replicates of simulated
phenotypic data (each with n= 10,000). For a given genetic architecture, we fitted
two estimation models, both using CORE GREML, but one assuming values of α
and γ the same as those of the simulation model (i.e., “true model”) and the other
always assuming α=−1, γ= 0 (i.e., “wrong model”).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genotype and phenotype data of the UK Biobank can be accessed through
procedures described on its webpage (https://www.ukbiobank.ac.uk/using-the-resource).
Simulated data used in this paper can be obtained from the authors upon request. Source
data are provided with this paper.

Code availability
The source code for MTG2 and example code along with related files for fitting CORE
GREML using MTG2 can be accessed without any restrictions from https://sites.google.
com/site/honglee0707/mtg2 or from https://doi.org/10.5061/dryad.bk3j9kd8c.
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