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De novo design of an intercellular signaling toolbox
for multi-channel cell–cell communication and
biological computation
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Xunxun Luo1,2, Min Wang1, Yanhui Xiang5, Long Qian 4, Yihua Chen 1,2, Yong Tao 1,2✉ & Chunbo Lou2,5✉

Intercellular signaling is indispensable for single cells to form complex biological structures,

such as biofilms, tissues and organs. The genetic tools available for engineering intercellular

signaling, however, are quite limited. Here we exploit the chemical diversity of biological

small molecules to de novo design a genetic toolbox for high-performance, multi-channel

cell–cell communications and biological computations. By biosynthetic pathway design for

signal molecules, rational engineering of sensing promoters and directed evolution of sensing

transcription factors, we obtain six cell–cell signaling channels in bacteria with orthogonality

far exceeding the conventional quorum sensing systems and successfully transfer some of

them into yeast and human cells. For demonstration, they are applied in cell consortia to

generate bacterial colony-patterns using up to four signaling channels simultaneously and to

implement distributed bio-computation containing seven different strains as basic units. This

intercellular signaling toolbox paves the way for engineering complex multicellularity

including artificial ecosystems and smart tissues.
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Intercellular signaling is essential for single cells to acquire
multicellular behaviors by facilitating division of labor, coor-
dinating population physiological activities, and organizing

tissue development and differentiation1. The natural gene pool
contains a plethora of intercellular communication systems2,3.
One well-studied case is the bacterial quorum sensing (QS) sys-
tems that govern the physiological transition of bacterial popu-
lations to form biofilms4, as well as to express bioluminescence
and virulence factors5. In multicellular organisms, short- (auto-
crine), medium- (paracrine), and long- (endocrine) range inter-
cellular signaling is key for the control of spatial and temporal
development, generation of immune responses, and maintenance
of physiological homeostasis6. In analogy to electronic wires that
coordinate the large number of computational units in a com-
puter, intercellular signaling systems are chemical wires for a
multicellular body to achieve organism-level performance.

Current efforts of engineering complex biological computa-
tions in living cells have met with much frustration. This is largely
due to our very limited ability to program large-scale genetic
circuits that are often resource-taxing and error-prone in a single
cell. Taking a divide-and-conquer strategy by packaging com-
putation modules into different cells and wiring them together
may break the bottleneck by achieving stability, programmability,
and ultimately computational complexity at the cell consortium
level7. Proof-of-principle studies have included engineered bio-
logical spatial patterns8,9, synthetic microbial ecosystems10, syn-
chronized genetic oscillators11, mammalian bio-computers with
complexity up to full adder logics12, therapeutic circuits for
antibiotic-free pathogen control13,14, and autonomous induction
systems for metabolic production15–19. In most of these studies,
communications between different computing units were chan-
neled by the abovementioned QS systems10,20, in which the signal
molecules, acyl-homoserine lactones (AHLs), are synthesized
from S-adenosyl-methionine and acyl-Acyl Carrier Proteins
(ACPs), and secreted by sender cells, before they are sensed by the
corresponding allosteric transcription factors (aTFs) in receiver
cells21. Beyond AHLs, yeast peptide-pheromones, human
histamine and dopamine hormones, and other endogenous
signal molecules were also used for synthetic cell–cell
communications19,22–24.

Although natural intercellular signaling systems constitute a
huge repertoire of genetic materials for the engineering of mul-
ticellular bio-computation, two aspects limit their applicability.
Universality: ideal cell–cell communications should work in a
modular manner applicable to a wide range of cell types, espe-
cially for scenarios requiring cross-kingdom communications
such as microbiome therapy. However, intercellular signaling
systems used in previous studies either required the addition of
exogenous precursors to synthesize signal molecules or were
mechanistically incapable of being transferred from one species to
another12,23,25,26. Orthogonality: ideal cell–cell communications
rely on an array of well-insulated channels for correct signaling.
In electronics, insulation of different channels is usually achieved
by spatial segregation, whereas in biological systems the most
feasible way to achieve insulation is through chemical ortho-
gonality. Recent studies have quantitatively revealed the extensive
cross-talk among the conventionally used QS systems20,27–29,
which can be largely attributed to the structural similarity among
AHLs and among the corresponding aTFs. To eliminate cross-
talk, a number of strategies have been attempted, including
rational engineering of the signal-sensing promoters20, directed
evolution of signal-sensing aTFs30, and large-scale screening of
kinase–substrate pairs31.

We aim to design a truly modular intercellular signaling
toolbox for multi-channel cell–cell communications and biolo-
gical computations by targeting precisely these two key

properties. Specifically, universality is achieved by choosing uni-
versal cellular metabolites as precursors for synthesizing the
selected small molecules as the signal molecules and designing
minimal biosynthetic pathways from the common precursors,
and orthogonality is achieved by taking advantage of the chemical
diversity of biologically synthesized small molecules and the
abundant resource of small molecule-sensing aTFs. Taking a de
novo approach combining biosynthetic pathway design, genetic
circuit engineering, and directed evolution, we have designed ten
novel intercellular signaling systems as cell–cell communication
channels, of which six are successfully obtained and quantitatively
characterized in Escherichia coli. Subsequently, two of them are
transferred to yeast Saccharomyces cerevisiae and one to human
HEK-293T cells for cross-kingdom communication. To demon-
strate the advantage of the intercellular signaling toolbox, genetic
circuits operating multi-channel (two-, three-, and four-channel)
communications are constructed to form biological spatial pat-
terns and to implement an AND–XOR function by coordinating
seven NOR/Buffer gate cells. We believe this intercellular sig-
naling toolbox would significantly expand the capability of syn-
thetic biology in multicellular organism engineering and present
one of the cornerstones for large-scale biological computations in
living cells.

Results
Design rationale for novel intercellular signaling channels. To
design novel intercellular signaling channels in E. coli, we took
advantage of the enormous pool of secondary metabolites and
bacterial aTFs that are responsible for secondary metabolite
regulation32,33. An initial screening of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database and literature was con-
ducted following these criteria: (i) the signal molecules should be
biologically synthesized small molecules that are presumably able
to freely diffuse across cell membranes; (ii) the signal molecules
should be sensed by aTFs with high specificities; (iii) the pre-
cursors of the signal molecules must be universal intracellular
metabolites in both prokaryotic and eukaryotic cells; and (iv) the
total number of enzymes for synthesizing a signaling molecule is
minimal.

The screen yielded ten candidates for intercellular signaling
channels. For each candidate, the receiver module consisted of an
aTF and the corresponding operator (namely, the promoter
segment to which the aTF binds), and the sender module
contained genes required for the biosynthesis of the signaling
molecule, which were gleaned from diverse species including
Pseudomonas, Rhodobacter, Streptomyces, Photorhabdus, Bradyr-
hizobium, Yersinia, and higher plants. All the candidate signal
molecules were supposed to be synthesized from universal cellular
metabolites, such as amino acids and central-carbon metabolism
molecules, via minimal biosynthetic pathways. For example,
salicylate (Sal) as a candidate signaling molecule can be sensed by
NahR from Pseudomonas putida that utilizes Sal as a carbon
source34. From the KEGG database, we found two potential Sal
biosynthesis pathways using a universal precursor, chorismate in
the shikimate pathway: (i) a dual-gene operon pchBA from
Pseudomonas aeruginosa35 and (ii) a single gene irp9 from
Yersinia enterocolitica36. Another example is the candidate
molecule isovaleryl-HSL (IV) synthesized from a branched-
chain amino acid, isoleucine, via a pathway consisting of
bdkFGH, IpdA1, and bjaI genes. The first four biosynthetic genes
lies in the IpdA1-bdkFGH operon from Streptomyces avermitilis37,
whereas the last one and the corresponding IV-sensing aTF, bjaR,
are from Bradyrhizobium japonicum. Similarly, for the candidate
molecule p-coumaroyl-HSL (pC), an incomplete biosynthetic
pathway exists in the plant-symbiont bacterium Rhodobacter
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palustris38. We completed the pathway with the gene tal from
Rhodobacter sphaeroides, which uses a universal amino acid,
tyrosine, as the precursor. It is worthy to note that pC as a
synthetic signaling molecule has been reported in previous
studies27,39 but its complete biosynthesis, to our knowledge, has
not been reported before. To obtain workable promoters for the
receiver modules, the operators of aTFs were combined with
several variants of the core promoter, from which the optimal
combination was selected for each candidate channels (Supple-
mentary Figs. 1 and 2). Based on the same strategy, we
implemented the design of the rest candidate channels, using
2,4-diacetylphloroglucinol (DAPG), methylenomycin furan
(MMF), naringenin (NG), uric acid, SCB1, A-factor, and pyrone
as the signal molecules, respectively (Fig. 1)40–49. The design
details of all ten candidate channels are listed in Supplementary
Table 1. Besides, several well-known natural QS systems were also
systematically optimized and added to our intercellular signaling
toolbox. These included C4-HSL (C4), 3-oxo-C6-HSL (3OC6),
C8-HSL (C8), and 3-oxo-C12-HSL (3OC12) systems using RhlR,
LuxR, CepR, and LasR as the sensing aTFs, respectively.

Characterization of the intercellular signaling candidates. We
next set out to quantitatively characterize the candidate channels
by evaluating the dynamic range of the signal-sensing promoters.
We constructed the E. coli sender cell lines with the biosynthesis

gene cassettes of the signal molecules and a constitutively
expressed red fluorescent protein (RFP). The receiver E. coli cells
expressed a green fluorescent protein (GFP) under the control of
the responsive promoter as an indication of channel output. The
dynamic range of each responsive promoter in the receiver cells
was measured by GFP intensity in response to varied con-
centrations of signal molecules from the sender cells. Two dif-
ferent strategies were adopted to vary the ratio of the sender and
the receiver cells28: simultaneously adding sender and receiver
cells in a co-cultured system with different initial ratios, or adding
receiver cells into a fresh medium supplemented with the
supernatant of the overnight-cultured sender cells (Supplemen-
tary Fig. 5). We found that the two strategies generated similar
results (Supplementary Fig. 6). In six of the ten candidate chan-
nels, the responsive promoters were significantly activated by the
cognate signal molecules generated by the sender cells, reaching
dynamic ranges of 1380-fold, 47-fold, 170-fold, 350-fold, 16-fold,
and 26-fold for DAPG-, Sal-, pC-, IV-, NG-, and MMF-channels,
respectively (Fig. 2a). In particular, the Sal signal were success-
fully produced by two designed biosynthetic pathways (irp9 and
pchBA). Unfortunately, other four channels (uric acid, SCB1, A-
factor, and pyrone) failed to achieve cell–cell communication
between the sender and receiver cells (Supplementary Table 1).

The four classic QS channels which were added to our toolbox
had dynamic ranges from 20- to 40-fold. We created promoter
libraries and selectively enhanced their dynamic ranges. For
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example, for the C8-CepR channel, we re-designed it by
combining the CepO operator sequence and a core lux promoter
in five different versions50 (Supplementary Fig. 3a). The results
showed that the dynamic range of the best responsive promoter
increased about twofold in comparison with the wild-type
promoter (Supplementary Fig. 3b). The same design strategy

was adopted to optimize other three QS channels (Supplementary
Table 2). The dynamic ranges of the optimized QS channels
increased to 82-, 124-, 150-, and 185-fold for the C4-, 3OC6-,
C8-, and 3OC12-channels, respectively (Supplementary Fig. 4).
Thus, we successfully acquired six designed and four optimized
intercellular signaling channels with wide dynamic ranges.
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Quantifying and improving the signaling sensitivity. The sen-
sitivities of the responsive promoters and aTFs in the receiver
cells were defined by the half-maximal effective concentration
(EC50) that could be obtained from the dose–response curves of
the promoter activities as functions of chemically pure signal
molecules (Supplementary Figs. 7 and 8). By fitting the
dose–response curve to a simple activation model, the EC50
values of the tested receiver modules were extracted as 4 × 10−10,
2 × 10−8, 3 × 10−8, 1.4 × 10−6, 6 × 10−6, 6.3 × 10−6, 6.7 × 10−6,
1.7 × 10−5, and 5.1 × 10−5 mol/L for the pC-RpaR, 3OC6-LuxR,
IV-BjaR, 3OC12-LasR, Sal-NahR, C8-CepR, C4-RhlR, DAPG-
PhlF, and NG-FdeR channels, respectively (Fig. 2c). Unfortu-
nately, we failed to chemically synthesize sufficient MMF mole-
cules for this assay. Among the nine channels tested, the pC-
RpaR, 3OC6-LuxR, IV-BjaR, and 3OC12-LasR channels were the
best candidates for intercellular communication, since their
higher sensitivities require small amounts of signals to be syn-
thesized by the sender cells and thus impose lower metabolic
burdens. We also quantified the signal molecules synthesized by
the sender cells by high-performance liquid chromatography-
mass spectrometry (HPLC-MS) and determined the EC50 values
from the dose–response curves in co-culture experiments (Sup-
plementary Fig. 9). We found they were consistent with those
obtained by chemically pure signal molecules, indicating the
communications were not activated by spurious substances (e.g.,
metabolites or cellular discharges) in the cell culture and thus
were highly specific (Fig. 2c).

Subsequently, we tried to improve the sensitivity of signaling
channels DAPG-PhlF and Sal-NahR, of which the EC50 values
were on the order of micro-molar and above through directed
evolution. The signal-sensing aTFs, phlF and nahR for the
DAPG-PhlF and Sal-NahR channels, respectively, were randomly
mutated and subject to a dual selection regime with or without
the signal molecules, based on the fluorescence of the responsive
promoter-reporter (PphlF–sfgfp and Psal–sfgfp) cassettes by flow
cytometer (Supplementary Fig. 14). After three to six rounds of
selection, several PhlF and NahR mutants were picked up and
measured for their EC50 values for the cognate signal molecules
(Supplementary Fig. 14). We found that a D128G mutation
consistently existed in 5 improved phlF mutants, which decreased
the EC50 value by more than 10-fold (Fig. 2d), whereas a Q168R
mutation was essential for all improved NahR mutants with their
EC50 values decreased by about 15-fold (Fig. 2d). These results
suggested that the D128G and Q168R mutations might be key to
improving the sensitivity of PhlF and NahR to the DAPG and Sal
molecules, respectively, highlighting the role of single amino acid
mutations in the improvement of sensitivities up to tenfold for
signaling system design (Supplementary Fig. 15).

On the other hand, by optimizing the biosynthetic cassettes in
the sender cells, we increased signaling molecule production by
10- to 1000-fold for the best combinations of promoters and

ribosome-binding sites (Supplementary Fig. 10). Overall, these
optimizations enhanced the robustness of channel activation.

Orthogonality of the ten intercellular signaling channels. When
multiple communication channels are integrated in the same
genetic circuit, interference might occur at the signal-sensing and
the promoter-responding levels. Conventionally, they have been
defined as signal cross-talk and promoter cross-talk, respec-
tively27. We experimentally characterized the signal and the
promoter cross-talks for all the above ten signaling systems
(Fig. 3a).

To examine the cross-talk at the signal level,
100 sender–receiver pairs were measured for their fold change
in co-culture systems. The fold change of each sender–receiver
pair was defined as the ratio of the induced and non-induced
expression of the responsive promoters (see the “Methods”
section for more details). As shown in Fig. 3b, the four well-
studied QS channels (C4, 3OC6, C8, and 3OC12, highlighted in
the yellow box) exhibited extensive cross-talks (as high as 49.7-
fold with an average of 18.5-fold mis-induction), but the six de
novo designed channels (highlighted in the red box) had
significantly lower cross-talks (as high as 5.4-fold with an average
of 1.67-fold mis-induction). The remarkable orthogonality is
presumably due to the highly diverse chemical structures of these
signal molecules. It was worthy to note that the 3OC12 channel
was orthogonal with the C4 and 3OC6 channels, but not
orthogonal with the C8 channel (Fig. 3b and Supplementary
Table 6). After removing the C4 and C8 channels from the
toolbox, the remaining eight channels became orthogonal with
each other at the signal level (Fig. 3c). To visualize orthogonality,
we placed each sender colony on an agar plate surrounded by all
ten receiver colonies (Fig. 3d). By imaging with fluorescent
stereoscopy, we observed that all ten sender colonies could
activate the reporter gene expression in their cognate receiver
cells, with only occasionally weak activation observed in non-
cognate receiver cells. The colony activation patterns were
consistent with the results in liquid medium (Fig. 3b, d).

To characterize the cross-talk at the promoter level, we co-
transformed pairs of aTFs and their responsive promoter-reporter
cassettes into E. coli, resulting in 100 hybrid receiver strains
(Fig. 3e). For each hybrid strain, an aTF was induced by the
cognate signaling molecule in an exo-supplemented manner.
Similar to the signal cross-talk results, the de novo-designed
channels exhibited minimal promoter cross-talks (as high as 2-
fold with an average of 1.07-fold mis-induction, as highlighted in
red box in Fig. 3f), whereas aTFs for the traditional straight-chain
AHL channels interfered extensively with each other (as high as
377-fold with an average of 67.3-fold mis-induction, as high-
lighted in yellow box in Fig. 3f) (Supplementary Table 7). After
removing the C4 and C8 channels, we found that the aTFs

Fig. 2 Characterization and optimization of cell–cell communication channels. a Quantitative characterization of the six de novo designed cell–cell
communication channels. The sender cells expressed biosynthesis genes of signal molecules whose HPLC-MS spectra are shown in the upper insets with
those of reference chemically pure signal molecules in the lower insets. The receiver cells expressed receptor aTFs and the reporter GFP under the cognate
promoters. The last column shows the dose–response curves of the receiver cells in co-culture systems with sender cells introduced at different ratios. The
numbers in each sub-figure are maximal fold changes for each dose–response curve. b Characterization of cross-species communication via the de novo
designed channels. The pC, DAPG, and Sal channels were transferred to yeast and human cells for cross-species communications. For human HEK-293T
receiver cells, YFP fluorescence was normalized by the red fluorescence of a constitutively expressed RFP gene on the same plasmid (293T, human HEK-
293T cells; S. cere, S. cerevisiae). c The sensitivity of each channel as measured by EC50 on the E. coli dose–response curves with chemically synthesized
signal molecules (black circles) or those quantified in the sender-cell culture media by HPLC (blue circles). d The improvement of sensitivities for the
DAPG and Sal signaling systems by directed evolution. Red circles indicate the EC50 of the optimized PhlF and NahR mutants for the DAPG and Sal
systems, respectively. Both black and red circles were measured with chemically synthesized pure molecules. Data represent the mean fluorescence of
three replicates, and error bars show the SD of each measurement. Source data are provided as a Source Data file.
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sensing RpaR and LuxR could mutually activate each other’s
promoter (Fig. 3g). Thus, the RpaR-Prpa* and LuxR-Plux* systems
should not coexist in the same cell for engineering purposes.

Cross-kingdom capability of the designed channels. To achieve
cross-species and cross-kingdom communication, both sender
and receiver modules should readily function in various cell
models. As proofs of concept, we transferred some of the de novo
designed communication channels from E. coli to other prokar-
yotic and eukaryotic cells, especially to human cell lines for
applications such as artificial tissues and smart therapeutic cells.
As the most sensitive signaling channel in our toolbox, the pC-

RpaR channel was chosen to be transferred into HEK-293T cells,
a robust cell line derived from human embryonic kidney cells.
The receiver module in HEK-293T cells was constructed by
fusing a VTR3 activation domain51 to RpaR and creating an
RpaO-CMV promoter with two RpaR-binding sites placed
upstream of the minimal CMV promoter. We found that the pC
signal synthesized from sender HEK-293T cells activated the
modified RpaO-CMV promoter in the receiver HEK-293T cells
by about tenfold (Fig. 2b and Supplementary Figs. 11 and 12). By
replacing the E. coli promoter with species-specific ones, we
established cross-kingdom communications including (i) the
DAPG-PhlF channel from E. coli to S. cerevisiae, (ii) the Sal-NahR
channel from S. cerevisiae to E. coli, and (iii) the pC-RpaR
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channel from HEK-293T to E. coli. All communication channels
were successfully activated between the heterotypic sender and
receiver cells (Fig. 2b and Supplementary Fig. 13). Together, we
have demonstrated the universality of these channels and their
potential for cross-kingdom communication.

Spatial pattern of multi-channel intercellular communication.
With the cell–cell communication toolbox, we managed to build
simple genetic circuits that involved two-, three-, and four-
channel communications to demonstrate their modularity. First,
we designed two-channel communication circuits in pairs of
different strains, each containing the sender module of one signal
and the receiver module of the other (Fig. 4a). Thus, paired
strains could be mutually activated along the gradient of signals
synthesized from the other end (Fig. 4b). Experimentally, we
inoculated each pair of strains in spatially separated 1.5cm-dia-
meter spots on an agar plate. Seven two-channel circuits suc-
cessfully formed face-to-face gradient fluorescence patterns
(Fig. 4b). We further designed three- and four- channel circuits,
in which the inter-communicating strains were arranged in
sender–receiver loops in triangular and square-shaped patterns
(Fig. 4c, d and Supplementary Figs. 16 and 17). In these

experiments, each colony received the strongest signals from both
of its nearest neighbors, but responded to only one signal, pro-
ducing a biased/asymmetric fluorescence pattern. Among all
tested designs, two three-channel circuits (pC-Sal-DAPG and
3OC6-Sal-DAPG) and one four-channel circuit exhibited the
expected triangle-looped and square-looped activation patterns,
respectively (Fig. 4c, d).

Complex logic gate circuits built with multiplexed signals. To
demonstrate more complex multicellular biocomputing func-
tions, we took a sophisticated three-input XOR-AND logic-gate
circuit as an example. As shown in Fig. 5a, the XOR-AND logic-
gate circuit was deployed in seven different E. coli strains coor-
dinated by four communication channels. Each strain contained a
NOR gate (cell-1 to cell-6) or a Buffer gate (cell-7) in a spatially
distributed manner52. The first three NOR gates (cell-1, cell-2,
and cell-3) combined into an AND-gate circuit (Supplementary
Fig. 18a) and the next three NOR gates (cell-4, cell-5, and cell-6)
and the last Buffer gate (cell-7) made up the XOR-gate circuit52

(Supplementary Figure 18d). Each NOR gate was configured with
two input promoters that responded the upstream signals and
one output biosynthesis gene cassette to generate the signal
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molecules. In addition, all strains had a built-in core regulatory
component–the lambda repressor gene and its cognate responsive
promoter which drove a gfp gene to report for intermediate
computation results52. We first independently constructed all the
strains, and then spotted them on agar plates with the spatial
arrangements required to perform the sequential XOR- and
AND-gate functions, respectively. Both circuits successfully per-
formed their logical operations for all possible combinations of
the two inputs (Supplementary Figs. 18c and 17f). The XOR gate
and AND gate were directly connected on agar plate to form a
three-input AND–XOR logic gate circuit. We found that not only
the final outputs of the AND–XOR gate agreed with expectation
in the truth table (Fig. 5b, c), such spatial layout allowed for the
visualization of intermediate computation results, which also
turned out to be correct (inserted schematics of each sub-figure in
Fig. 5c and Supplementary Figs. 19 and 20). To our knowledge,
this is the first engineered biocomputing circuit that simulta-
neously utilizes four communication channels.

Discussion
Cell–cell communications are ubiquitous in nature2,53,54. From
an engineering perspective, these widespread communication
systems provide a vast reserve of potential synthetic commu-
nication parts including signal molecules, highly specific receptors
and aTFs55. However, naturally evolved parts are not perfect for
synthetic gene circuit construction. In this study, we proposed a
de novo design route for synthetic intercellular communication
channels. By rational design and directed evolution approaches,
we established a toolbox of biochemical channels that can be used
for multi-channel communications in applications involving
pattern formation and distributed cellular bio-computation.

Most natural intercellular communication systems are species-
or kingdom-specific23. For example, previous efforts were made to
transfer the bacterial AHL systems into mammalian cells in order
to acquire orthogonal intercellular signaling systems for artificial
tissue and organ engineering. Unfortunately, the essential

precursors (acyl-ACP) in mammalian cells are locked in by the
Type II fatty acid synthesis multi-domain enzymes and not avail-
able for the biosynthesis of the AHL molecules56. In our toolbox,
however, the pC and IV molecules were synthesized from canonical
amino acid (i.e., L-tyrosine and L-leucine) sources despite being
structurally similar to AHLs. The successful transfer of the pC
channel to human HEK-293T cells highlights the design rationale
of diverting common cellular metabolic pathways for synthetic
circuits, and we expect the de novo designed channels, including
IV, DAPG, MMF, and NG, to apply to mammalian systems as well.

We also optimized the receiver modules by directed evolution
for better dynamic ranges and sensitivities, to reduce the meta-
bolic burden to the sender cells (Supplementary Figs. 22 and 23),
as well as to improve channel compatibility for eukaryotic
receiver cells. These dedicated channels with microbial and plant
origins would be especially suited for mammalian systems,
because they would not interfere with endogenous signaling
systems as those based on dopamine and histamine12 would. On
the other hand, although recent work indicates that natural QS
signaling in bacterial pathogens is tap-wired by the host AhR
signaling pathway in various vertebrates for immunomodula-
tion57, our designer signal molecules may not cause unwanted
host responses because they are structurally different from natural
QS molecules and may thus evade host surveillance.

Inspired by electric circuits and telecommunications, where
channels are spatially insulated or functions in different wave-
bands, we took advantage of the enormous chemical space of
biologically derived molecules for channel insulation, which was
further enhanced by optimizing the specificity of the receiver
modules5,23. The success of our construction underscores a
general principle that naturally occurring biochemical machi-
neries have merely exploited all possible solutions, leaving almost
boundless design space for synthetic biological construction. A
recent study on engineered kinases has also supported the view31.

Universality and orthogonality together constitute the essence
of modular design for complex synthetic biological functions. In
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two examples, we showed the use of these modular channels to
spatially and logically organize different computing units. We
successfully implemented up to four channels in an engineered
cell consortium, which to our knowledge is the largest in multi-
cellular computing studies28,52. Notably, in the second example,
channels were serially connected to form computing cascades.
Currently, there are maximally two-channel modules implanted
in a single cell. The fact that our individual modules imposed
minimal metabolic burden to the host cell could enable engi-
neered communication hubs with possibly more than two
channels intersecting in a single cell. The exact limit of this
number remains an open question, but it ultimately defines the
information processing complexity of cell consortium computa-
tion and its real-world application potential.

Intercellular communication plays a pivotal role in expanding
the engineered functions from single cellular behaviors to mul-
ticellular artificial tissues, microbiome therapy such as in the
human gastrointestinal tract or in tumors58 and general bio-
computing systems22,25,59,60. Our study has demonstrated the
possibility of engineering natural secondary metabolites and sig-
naling modules into dedicated intercellular communication
channels. With an expanded toolbox of modular channels, more
sophisticated circuits could be designed in mammalian cell lines
to implement stable multi-input, multi-output, and structurally
organized computing systems for in vivo therapeutic applications.

Methods
Microbial genes, strains, and culture conditions. All the heterologously
expressed genes in E. coli and S. cerevisiae were synthesized or amplified from the
genome of target species using the primers listed in Supplementary Table 4 and 5.
All the sender and receiver cassettes (Promoter-Gene-Terminator) used in E. coli
and S. cerevisiae are listed in Supplementary Data 1. E. coli strain DH5α (fhuA2 lac
(del)U169 phoA glnV44 Φ80′ lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17)
was cultured in LB Broth or M9 minimal medium (6.8 g/L Na2HPO4, 3 g/L
KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl, 2 mM MgSO4, 100 μM CaCl2, 0.4% glucose,
0.2% casamino acids, and 340mg/L vitamin B1) in 96-well shaking incubators (1000
r.p.m) at 37 °C. S. cerevisiae strain WP125 (W303 MATa rtTA far1Δ his3 trp1 leu2
ura3) was cultured in YPD medium (1% yeast extract, 2% peptone, 2% glucose) in
500ml flasks (shaking at 225 r.p.m.) at 30 °C. All media and agar plates contained
100 μg/ml Ampicillin, 50 μg/ml kanamycin and/or 25 μg/ml chloramphenicol unless
stated otherwise. Isopropyl β-D-1-thiogalactopyranoside (IPTG) (0.1 mM or 1mM)
was supplemented to culture media (Supplementary Fig. 7). For strains containing
Ptet promoter, 200 ng/ml anhydrotetracycline (aTc) was added to culture media.

Mammalian genes, cell culture, and transfection. The tal, 4cl, and rpaI genes
were directly cloned from the plasmid used in E. coli. The VTR3 gene was a kind gift
from Professor Zhen Xie’s Lab in Tsinghua University, Beijing, China. The lentiviral
vectors (pspAX2, pCMV-dR8.91 and ML280) and reporter genes (iRFP, mTur-
quoise2, Citrine, mCherry) were gifts from Professor Yihan Lin’s Lab in Peking
University, Beijing, China. All the sender and receiver cassettes used in HEK-293T
cells are listed in Supplementary Data 1, constructed with the primers listed in
Supplementary Tables 4 and 5. Human embryonic kidney cells (HEK-293T, ATCC:
CRL-11268) used for mammalian cell–cell communication were cultured in high-
glucose Dulbecco’s modified Eagle’s medium (DMEM, Gibco) complete media
containing 4.5 g/L glucose, 10% FBS (Life Technologies), 0.045 unit/ml penicillin,
and 0.045 unit/ml streptomycin at 37 °C, 100% humidity and 5% CO2.

For transient transfection, cells were transfected using optimized
polyethyleneimine (PEI “Max”, 1 mg/ml in water; Polysciences, Eppelheim,
Germany). One day before transfection, ~1.5 × 105 HEK-293T cells were seeded
into 12-well plates. The transfection mixture was prepared by adding 1.6 µg
plasmid and 4.8 µl PEI reagent into 200 µl serum-free DMEM for each well. The
transfection mixture was added dropwise after incubation for 10 min. Three hours
after transfection, the culture medium in each well was replaced with fresh DMEM
complete media. Cells were then cultured for an additional 48 h before harvesting.

To generate stable sender cell lines, HEK-293T cells were first transfected with
one of the two lentiviral plasmids containing synthesis genes and reporter genes using
the transient transfection protocol described above. After 48 h, 1 ml culture medium
was harvested from each well. For lentivirus infection, both lentiviruses (each in 1ml
culture media) were added together into ~8.5 × 105 cells (2ml culture media) seeded
in a 6-well plate one day before infection. After 48 h, cells were harvested for flow
cytometric sorting. Flow cytometric sorting was performed using a BD FACSAria IIIu
(BD Biosciences, Franklin Lakes, NJ). The iRFP and mTourquoise2 reporter
fluorescence were detected with the Alexa Fluor 700 and BV421 channels,
respectively. The double-positive population was sorted as stable sender cell lines.

Synthetic signaling molecule induction. For microbial cells, receiver cells were
first diluted 200-fold from overnight cultures in LB medium (E. coli; 16 h) or YPD
media (S. cerevisiae; 24 h), and then cultured for an additional 3 h. After 3 h,
receiver cells were diluted 200-fold into M9 (E. coli) or YPD medium (S. cerevisiae)
supplemented with appropriate concentrations of corresponding synthetic signal-
ing molecule, and then cultured for an additional 12 h (E. coli) or 24 h (S. cerevi-
siae) before being measured by flow cytometry. For human HEK-293T cells, cells
were first transfected with receiver plasmids as described above, and then appro-
priate concentrations of the inducer was added into wells as supplement of the
fresh complete medium 3 h after transfection. Cells were then cultured for an
additional 48 h before being harvested for flow cytometric analysis. IV-HSL was
chemically synthesized (Supplementary Fig. 21). All other synthetic signaling
molecules used were purchased from Sigma-Aldrich (St. Louis, Missouri, USA).

Sender media induction and co-culture. Supernatant of the sender culture media
was prepared using the following methods. E. coli senders were cultured overnight
for 12 h in M9 medium supplemented with 200 ng/ml aTc where applicable. S.
cerevisiae senders were cultured for 96 h in 500 ml flasks containing 50 ml YPD
supplemented with 1 mg/ml aTc. 5 ml 20% glucose was supplemented to each flask
at 24, 48, and 72 h. Human HEK-293T sender cells were cultured in 10 cm dish for
48 h in complete DMEM media supplemented with 0.5 g/L tyrosine. By the end of
each culture, cell-free culture media was obtained, by centrifuging if necessary.
Supernatant of all species was filtered with 0.2 µm sterile filter. Each culture
medium was diluted by equal volume of fresh M9 medium (E. coli), YPD medium
(S. cerevisiae), or complete DMEM (human HEK-293T). The diluted supernatant
was further subject to twofold or tenfold serial dilution using the same medium
before mixing with the corresponding receiver cells. For HEK-293T cells, the
diluted supernatant was added into wells 3 h after transfection, replacing the cul-
ture media with transfection reagent. For all other species, receiver cells were
diluted 200-fold into the corresponding supernatant. After mixing with the sender
supernatant, the receiver cells were cultured for an additional 12 h (E. coli), 24 h (S.
cerevisiae), or 48 h (human HEK-293T) before being measured by flow cytometry.

In co-culture systems, E. coli sender and receiver cells were first diluted 200-fold
separately into M9 medium from overnight culture in LB medium, and then
cultured for 3 h. Subsequently, sender cells were diluted by control cells (With RFP
reporter, without sender genes) with a twofold or tenfold serial dilution, before
mixing with an equal volume of receiver cells. The sender–receiver mix was diluted
200-fold into fresh M9 medium with appropriate concentrations of inducers
(IPTG, aTc) and antibiotics. Cells were collected for flow cytometry after being
cultured for an additional 12 h.

Flow cytometric measurement and data analysis. The fluorescence of all sam-
ples was measured by BD LSRII flow cytometer (BD Biosciences, Franklin Lakes,
NJ) equipped with high-throughput screening instrument. Data of E. coli and S.
cerevisiae samples were analyzed using FlowJo (TreeStar, Inc., Ashland, OR).
Sender (RFP+) and receiver (RFP−) cells were distinguished based on their
intensity of red fluorescence. The output value of each sample was defined as the
mean fluorescein isothiocyanate value of the RFP− population. Alternatively, flow
cytometry data of HEK-293T cells were analyzed using Matlab 2018b (The
MathWorks, Inc., Natick, MA). With RFP being the baseline, the output value of
each sample was defined as the ratio between its yellow fluorescence (Citrine) and
red fluorescence. The mean autofluorescence of a non-fluorescent cell control was
also subtracted from the mean value of each sample. All data represent the mean
fluorescence of at least three replicates and error bars correspond to the SD of each
measurement.

HPLC-MS quantification. To prepare the supernatant of the sender culture media,
E. coli sender cells were first cultured overnight in 5 ml M9 medium and then
centrifuged (3000 r.p.m., 2 min), filtered with a 0.2 µm sterile filter, freeze-dried
with a Biocool FD-1D-80 vacuum freeze dryer (Biocool, Beijing, China) until
completely dried, and finally reconstituted with 500 µl methanol. HPLC-MS ana-
lysis was performed with an Agilent Eclipse plus C18 reverse-phase column (2.1 ×
100 mM, 3.5 μm) instrument (Agilent Technologies, Santa Clara, CA) for Sal or a
Phenomenex Synerg Hydro-RP 80 A LC column (2 × 150mM, 4 μm) (Phenom-
enex, Torrance, CA) for the rest signal molecules. Each column was connected to
an Agilent 1200 HPLC instrument (Agilent Technologies, Santa Clara, CA). HPLC
separation of all molecules was performed from a 5 µl sample under the gradient
elution mode with a flow rate of 0.4 ml/min at 25 °C. The mobile phase A and B
were 8/92 acetic acid/water and acetonitrile, respectively. Gradient elution was
conducted under the following conditions: 25% B for 5 min, 25–100% B with a
linear gradient for 5 min, 100% B for 3 min, 100–25% B with a linear gradient for 1
min, then 25% B for 2 min. The outflow was routed to an AB SCIEX Qtrap 4500
mass spectrometer (AB Sciex LLC, Ontario, Canada) equipped with an electrospray
ionization (ESI) source and multiple reaction monitoring (MRM). The ESI source
operated at negative or positive mode for different molecules (Supplementary
Fig. 9). The common mass spectrometric parameters for HPLC-MS/MRM are
shown in Supplementary Table 3. Standard curves for each signaling molecule were
created with HPLC-MS/MRM by measuring the responses to synthetic signal
molecules diluted to a series of known concentrations. The yield of each signaling
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molecule from its sender (cmax) was calculated by fitting with the corresponding
standard curve.

Directed evolution of regulator protein. First, a mutant library was created by
error-prone PCR of the target regulator proteins61. The DNA fragments encoding
mutated genes were then inserted into a plasmid to be expressed with a J23111
promoter. The plasmid also contained a sfGFP reporter controlled by the promoter
that binds to the cognate aTF. The mutant library constructs were transformed into
E. coli and spread on LB plate. For negative selection, the entire library was col-
lected from plate, inoculated into LB medium and cultured for 16 h, and then
diluted into M9 medium and cultured for 4~6 h. Low-fluorescent clones were
sorted from M9 cultured cells with flow cytometer and spread on LB plate again.
For positive selection, the sorted low-fluorescent library was collected from plate
and cultured in LB medium for 16 h, and then diluted into M9 medium supple-
mented with the inducer. Compared to the wild-type clone (with the wild-type
regulator), mutant clones which showed stronger fluorescence were sorted by flow
cytometry and spread on LB plate. This process of collecting clones from plate,
culturing and flow cytometric sorting was repeated for 3 or more rounds. In each
round, the inducer concentration for the mutant library decreased by 50% com-
pared to the previous round but remained constant for the wild-type clone. Thus,
the inducer concentration for the mutant library was gradually reduced to 50%,
25%, and 12.5% of the initial concentration. In each round of sorting, the mutant
clones which had similar or stronger fluorescence compared to the wild-type clone
were sorted and spread on plate before entering the next round. To determine the
sensitivity of mutant clones, individual clones were picked from each library after
positive selections, followed by flow cytometric measurements of induction curves
with the method described above.

On-plate visualization of the colonies. Agar plates were made with hybrid
medium by supplementing LB medium with all the compounds of M9 medium
described above. Each strain was cultured overnight in LB medium for 16 h
and then diluted 500-fold (orthogonality test) or 10-fold (simple circuits)
using LB medium. The dilution factors for some strains were adjusted
according to their diverse rates in growth and signaling molecule synthesis.
Subsequently, 1 µl (orthogonality test) or 30 µl (simple circuits) of each strain
was spotted on agar plate supplemented with appropriate concentrations of
IPTG and aTc (Supplementary Fig. 7), forming spots of approximately 0.5 cm
(orthogonality test) or 1.5 cm (simple circuits) in diameter. All plates were
cultured at 37 °C for 24 h before the fluorescent and bright-field images of each
agar plate were captured by homemade multi-color fluorescent imager. All
related images were bight-field images merged with the green fluorescent or
red fluorescent images.

On-plate demonstration of AND–XOR logic gates. Agar plates were prepared
using the same hybrid medium (LB+M9) described above. The three inducers (10
mM Ara, 100 ng/ml aTc, 0.1 M cumate) were supplemented into agar plate
according to the input signal of each circuit (Supplementary Figure 19). Each strain
was cultured overnight in LB medium for 16 h, diluted 100-fold and cultured for an
additional 6~8 h until the O.D.600 reached 0.6~0.8. The dilution factors for some
strains were adjusted according to their diverse rates in growth and signaling
molecule synthesis. Then, 3 µl of each strain was spotted on agar plate, forming a
spot of ~0.5 cm in diameter. Spots were positioned in the shapes of regular triangles
or squares with the distance between each two spots set to 10 mm. Spotting was
done in a step-by-step manner. After the last strain was spotted, all plates were
cultured in 37 °C for an additional 12 h before the fluorescent and bright-field
images of each agar plate were captured by homemade multi-color fluorescent
imager. All related images were bight-field images merged with the green fluor-
escent ones. Finally, all strains were collected from plate using pipette tips and
diluted into 1 ml phosphate-buffered saline (with 2 mg/ml kanamycin) solution for
flow cytometric analysis.

Cell burden analysis. Cells were first diluted 200-fold into M9 medium from
overnight cultures in LB medium (16 h), and then cultured for an additional 3 h.
After 3 h, each strain was diluted 200-fold into M9 medium supplemented with the
inducer (IPTG or aTc) and then cultured for an additional 24 h. OD600 values
were measured every 10 min by a BMG CLARIOstar® Plusmicroplate reader (BMG
Labtech, Ortenberg, Germany) during the final 24 h culture. The IPTG con-
centrations for receivers were chosen according to the protocol for Synthetic sig-
naling molecule induction (Supplementary Fig. 7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the findings of this study are available within the article and
its Supplementary Information files or from the corresponding authors upon
request. Source data are provided with this paper.

Code availability
Matlab code for analyzing mammalian flow cytometry data is available at git@github.
com:xjpatriot87/Mammalian-data-analysis-with-matlab.git
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