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Single-cell TCR sequencing reveals phenotypically
diverse clonally expanded cells harboring inducible
HIV proviruses during ART
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Clonal expansions occur in the persistent HIV reservoir as shown by the duplication of

proviral integration sites. However, the source of the proliferation of HIV-infected cells

remains unclear. Here, we analyze the TCR repertoire of single HIV-infected cells harboring

translation-competent proviruses in longitudinal samples from eight individuals on anti-

retroviral therapy (ART). When compared to uninfected cells, the TCR repertoire of reservoir

cells is heavily biased: expanded clonotypes are present in all individuals, account for the

majority of reservoir cells and are often maintained over time on ART. Infected T cell clones

are detected at low frequencies in the long-lived central memory compartment and over-

represented in the most differentiated memory subsets. Our results indicate that clonal

expansions highly contribute to the persistence of the HIV reservoir and suggest that

reservoir cells displaying a differentiated phenotype are the progeny of infected central

memory cells undergoing antigen-driven clonal expansion during ART.
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The persistence of replication competent proviruses in
memory CD4+ T cells is the main barrier to viral eradi-
cation in people living with HIV1–3. Latently infected cells

are maintained during effective ART through both cell survival
and cell division signals, promoting clonal expansions of HIV-
infected cells4,5, as demonstrated by the duplication of integration
sites6–9 and/or HIV genomes10–18. During ART, clonally
expanded HIV-infected cells have the ability to expand and
contract over time10,15,19–21. Several mechanisms are thought to
contribute to the dynamics of the HIV reservoir22, including (1)
antigen driven proliferation23, (2) homeostatic proliferation4,24,25,
and (3) viral genome integration into specific cellular genes that
may promote cell proliferation6,8,9. Altogether, these studies
indicate that the reservoir is highly dynamic during ART but the
relative contributions of these mechanisms remain unclear.

CD4+ T cells harboring replication-competent genomes are
phenotypically diverse with multiple memory and functional
CD4+ T cells subsets contributing to HIV persistence4,14,26,27.
Combining flow cytometry cell sorting and near full length HIV
DNA sequencing revealed that intact (and potentially replication
competent) viral genomes are enriched in specific CD4+ T cell
subsets, such as Th1 cells and effector memory cells14,28. How-
ever, none of these approaches allowed to simultaneously inves-
tigate the inducibility, location and dynamics of individual
proviruses over time in virally suppressed individuals.

Here, we take advantage of the uniqueness of the T-cell receptor
(TCR) within a given T-cell clone29–31 to unravel the phenotype
and dynamics of the inducible HIV reservoir during ART. We
hypothesize that duplication of TCR clonotypes within the pool of
HIV-infected cells will reflect the dynamics of clonal expansion as
well as the persistence of individual HIV-infected clones32.

Results
TCRβ sequencing and phenotyping of single HIV-infected
cells. We developed a novel approach, using the unique VDJ
rearranged sequence of TCRβ as a cellular tag, to track individual
HIV-infected cells (Fig. 1a). CD4+ T cells isolated from the blood
of virally suppressed individuals were stimulated for 24 h with
PMA/ionomycin to induce p24 expression, thus unraveling the
translation-competent HIV reservoir. Clonotypic characterization
of individual HIV-infected cells was performed by combining
single-cell sorting of HIV-infected (p24+) cells by HIV-Flow33

with multiplex PCR of the V–J junction of the TCRβ chain
(including CDR3 region) followed by sequencing (Supplementary
Fig. 1a). TCR sequences retrieved from distinct single sorted cells
were compared. Clonotypes were defined either as expanded (i.e.
detected in at least two cells) or unique (i.e. detected in no more
than one cell). The memory phenotype of individual cells was also
recorded during index cell sorting and analyzed post hoc (Sup-
plementary Fig. 1b). Of note, we previously showed that the
expression levels of CD45RA, CCR7, and CD27 were minimally
affected by PMA/ionomycin stimulation in the presence of Bre-
feldin A33.

We analyzed the TCRβ repertoire of single HIV-infected cells
in longitudinal blood samples from eight individuals with
suppressed plasma viremia on ART for at least two years at the
time of the first collection (Supplementary Table 1). There was a
median time of 2.2 years (range 1.0–6.5) between the first and the
last sample collected. The frequency of p24+ cells measured by
HIV-Flow ranged from 0.7 to 1208 cells/106 CD4+ T cells
(Supplementary Fig. 2a), and tended to decrease over time on
ART. As previously described33, p24+ cells preferentially
displayed a memory phenotype (Supplementary Fig. 2b) with
the central (CD45RA−CD27+CCR7+, TCM), transitional
(CD45RA-CD27+ CCR7−, TTM) and effector (CD45RA−CD27

−CCR7-, TEM) memory subsets contributing the most to the pool
of infected cells (mean contributions of 12%, 31%, and 46% to the
pool of p24+ cells, Supplementary Fig. 2c), whereas p24+ cells
were not detected in the naïve subset. Prior to TCRβ sequencing,
we also assessed the relative expression of α/β and γ/δ TCR by
p24+ cells (Supplementary Fig. 2d) in 5 individuals from our
study. None of the p24+ cells expressed a γ/δ TCR, suggesting
that our PCR assay optimized for α/β receptors was well-suited to
amplify the TCRs from all p24+ cells.

TCRβ sequencing reveals clonal expansions in the HIV reser-
voir. A total of 636 individual TCRβ sequences from single-sorted
p24+ cells were retrieved from the 18 samples studied (median of
16 p24+ cells per sample; range 9–194). These individual
sequences clustered into 98 different clonotypes, revealing a mix
of unique (n= 69) and expanded (n= 29) TCRβ clonotypes.
Duplicated clonotypes were detected in all participants and
accounted for the majority of reservoir cells (mean, 74%; range
30–99) (Fig. 1b and Supplementary Fig. 3), confirming the major
contribution of clonal expansions to the pool of HIV-infected
cells in virally suppressed individuals. In each sample, we
observed a median of 2 (range 1–5) independent clonal expan-
sions corresponding to a median of 5 p24+ cells sharing the same
TCR (range 2–187). There was no correlation between the con-
tribution of clonal expansions to the pool of p24+ cells and any
clinical parameter showed in Supplementary Table 1.

Since infected T cells sharing the same TCR may be the result
of clonal expansion or may have been infected by different HIV
variants during expansion, we co-amplified the TCR together
with the HIV Env sequence (C3-V5) in single p24+ cells to
distinguish between these two scenarios (Supplementary Fig 4a).
TCR and C3-V5 sequences were co-amplified in 10 p24+ cells
from one participant. Cells containing duplicated TCRs harbored
the exact same viral sequence, which were different than those
retrieved in cells harboring distinct TCRs (Supplementary Fig. 4b,
c). These results indicated that clonal expansion of an HIV-
infected cell is the most likely explanation for the duplication of
TCR sequences within the pool of p24+ cells.

Diversity of the TCRβ repertoire of HIV-infected cells. To
compare the TCR repertoires of HIV-infected and non-infected
cells, we applied the same approach to single-sorted p24- cells. As
expected, the vast majority (353/357 clonotypes, 99%) of the
TCRβ clonotypes retrieved from p24- cells were unique (Fig. 1b
and Supplementary Fig. 5). The distribution of V and J segment
usage in p24- cells was similar to the human TCR repertoire
described in previous studies34–36, supporting a non-biased TCR
amplification (Fig. 2a, b). Interestingly, when excluding the
expansion effect by considering each clonotype as unique, the V
and J segment usages of distinct TCR clonotypes were similar in
p24+ and p24− cells (Fig. 2a, b, respectively), suggesting that the
pool of HIV-infected cells was initially established in a large
number of T cells with multiple antigen specificity. However,
when including duplicated TCRs in the analysis, the V/J combi-
nation usage was heavily skewed in the pool of infected cells
(Fig. 2c) when compared to p24− control cells (Fig. 2d), sug-
gesting that the bias in the repertoire of the reservoir was
attributed to clonal expansions. Altogether, our observations
suggest that the restricted TCR diversity observed in the pool of
reservoir cells results from antigen-driven clonal expansions.

Dynamics of clonally expanded HIV-infected cells during ART.
To determine if these clonal expansions of infected cells persisted
over time, we performed a longitudinal analysis of the TCR
repertoire of p24+ cells in the eight participants. Major clonal
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expansions within the reservoir persisted over time in 7/8 parti-
cipants and for up to 6.5 years (Fig. 3). In addition, transient
clonal expansions were observed in several participants (partici-
pants #3, #4, #5, #6, and #7) suggesting that clonal expansions
followed by contractions were common. Of note, this is likely an
underestimate, since the small numbers of cells analyzed may
have limited our ability to detect persistent clonal expansions of
small magnitude. In some cases, the relative contribution of a
given clonotype to the pool of infected cells was maintained over
time (participant #1, stability of clonotype 1 over 2.5 years),
whereas it varied in others (participant #2, change in the con-
tribution of clonotype 1 versus clonotype 2 over 1.4 years, p <
0.05). We conclude that while their proportions may vary over
time, infected cellular clonotypes harboring inducible proviruses
usually persist during prolonged ART.

Memory phenotype of clonally expanded HIV-infected cells.
We next sought to determine if the persistence of expanded
infected clonotypes was restricted to specific memory CD4+ T
cell subsets. Since the memory phenotype of individual p24+ cells
was recorded during cell sorting, we were able to analyze the
distribution of HIV-infected expanded clonotypes in CD4+
T cells subsets. Expanded p24+ clonotypes were often detected in
all three memory subsets (TCM, TTM, and TEM, Fig. 4). All
expanded clonotypes systematically displayed at least two differ-
ent memory phenotypes, which were often maintained over time.
As previously reported28, expanded infected clonotypes were
overrepresented in the most differentiated subsets (i.e. TTM and
TEM). Nonetheless, expanded clonotypes were detected at least in
one single-sorted p24+ TCM cell in 7/8 participants (Fig. 4 and
Supplementary Fig. 6a–c). Since the developmental differentiation
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Fig. 1 Experimental strategy for phenotyping and TCRβ sequencing of single HIV-infected cells. a Isolated CD4+ T cells were stimulated for 24 h with
PMA/ionomycin and single-sorted according to their p24 expression by HIV-Flow. Single sorted p24+ cells underwent a two-round multiplex PCR for
amplification of the V–J junction of the TCRβ chain (including CDR3 region) on genomic DNA. CDR3 sequences and V/J-region usage were obtained. b The
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right represent the mean proportion of clonal expansion from all participants. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17898-8 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4089 | https://doi.org/10.1038/s41467-020-17898-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


process of memory CD4+T cells was shown to be linear in the order
TCM > TTM > TEM37, this suggested that clonally expanded HIV-
infected cells are the progeny of infected TCM cells which proliferated
and differentiated into TTM and TEM cells (Supplementary Fig. 6d).
In addition, our results indicate that HIV-infected cells have the
ability to proliferate and differentiate without being eliminated,
suggesting that this process can occur in the absence of HIV pro-
duction as previously reported38,39 or that these cells can escape
immune-mediated killing, as recently suggested by Ren et al.40.

Antigenic specificity of HIV-infected cells. We next sought to
predict the antigenic specificity of the infected cells by comparing

the TCR sequence of p24+ clonotypes with public CDR3 se-
quences. We applied the criteria of Meysman et al.41 to compare
our sequences with those inferred in the McPAS-TCR database42.
Overall, the frequency of cells with predicted specificity was
relatively low both for p24+ (n= 9/98 clonotypes) and p24− (14/
353 clonotypes) cells (Fig. 5a, b). Among the p24+ cells, some
expressed TCR predicted to be reactive to CMV, influenza, M.
tuberculosis and EBV (Fig. 5c). Interestingly, two of the p24+
clonotypes were expanded. A first expanded clonotype from
participant #1 was predicted to be CMV-specific and persisted
over time (Fig. 5d), suggesting that persistent antigenic stimula-
tion by CMV may favor the maintenance of HIV-infected cells.
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A second clonotype that was predicted to be influenza-specific
was largely expanded in the last sample from participant #7
(Fig. 5e), indicating that new and transient antigenic stimulations
such as influenza infection or immunization may favor the
expansion of influenza-specific HIV-infected cells. Altogether,
these results indicate that T cell pools against specific antigens can
comprise both infected and uninfected cells and suggest that

reservoir cells from different individuals might be reactive to
common antigens. This is in line with the results of recent studies
demonstrating that at least a fraction of the HIV reservoir is
carried by CMV/EBV and HIV-specific CD4+ T cells23,43–45.

In summary, our results indicate that antigen-driven clonal
expansions highly contribute to the persistence of the translation-
competent HIV reservoir in individuals on ART. The phenotypic
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analysis suggests that infected T cell clonotypes displaying a
differentiated phenotype are the progeny of infected central
memory cells undergoing clonal expansion during ART. These
findings provide a rationale for the development of therapeutic
strategies aimed at limiting antigen-driven proliferation during
ART to reduce the pool of infected cells, which may be achieved
by decreasing the antigen load of treatable pathogens such
as CMV.

Methods
Participants and sample collection. Eight individuals on successful ART were
enrolled in this study. All participants underwent longitudinal leukapheresis to
collect large numbers of PBMCs. PBMCs were isolated by Ficoll density gradient
centrifugation and were cryopreserved in liquid nitrogen.

Ethics statement. All participants were adults and signed informed consent forms
approved by the McGill University Health Centre, the Centre Hospitalier de
l’Université de Montréal and the Martin Memorial Health Systems review boards.

Antibodies. p24 KC57-PE was purchased from Beckman Coulter (Cat#6604667,
Dilution 1/1000) and p24 28B7-APC was purchased from MediMabs (Cat#MM-
0289-APC, Dilution 1/1000). CD3-AF700 (Clone: UCHT-1, Cat#557943, Dilution
1/100), CD45RA-BV786 (Clone: HI100, Cat#563870, Dilution 1/25) and CCR7-
BB700 (Clone: 3D12, Cat#566437, Dilution 1/25) were purchased from BD
Bioscience. CD8-FITC (Clone: BW135/80, Cat#130-113-719, Dilution 1/100) was
purchased from Miltenyi/MACS. CD27-BV421 (Clone: O323, Cat#302823, Dilu-
tion 1/50), TCRαβ-FITC (Clone: IP26, Cat#306705, Dilution 1/50) and TCRγδ-PE-
Cy7 (Clone: B1 Cat#331221, Dilution 1/50) were purchased from BioLegend. Live/
Dead Aqua Cell Stain (405 nm) was purchased from ThermoFisher Scientific
(Cat#L34957).

HIV-Flow procedure. The HIV-Flow assay was used to quantify and analyze the
phenotype of cells expressing p24 protein upon stimulation33. Briefly, CD4+
T cells were isolated by negative magnetic selection using the EasySep Human
CD4+ T Cell Enrichment Kit (StemCell Technology, Cat#19052). Purity was
typically >98%. In all, 5–15 × 106 CD4+ T cells were resuspended at 2 × 106 cells/
mL in RPMI+ 10% Fetal Bovine Serum and antiretroviral drugs were added to the
culture medium (200 nM raltegravir, 200 nM lamivudine). Samples were pre-
incubated for 1 h with 5 μg/mL Brefeldin A (BFA, Sigma, Cat#B2651) before sti-
mulation in order to prevent the upregulation of cell surface markers, and BFA was
maintained in the culture until the end of the stimulation. Cells were then sti-
mulated with 1 μg/mL ionomycin (Sigma, Cat#I9657) and 162 nM PMA (24 h)
(Sigma, Cat#P8139). After stimulation, cells were collected, resuspended in PBS
and stained with the Aqua Live/Dead staining kit for 30 min at 4 °C. Cells were
then stained with antibodies against extracellular molecules in PBS+ 4% human
serum (Atlanta Biologicals, Cat#540110) for 30 min at 4 °C. After a 45 min fixation/
permeabilization step was performed with the FoxP3 Transcription Factor Staining
Buffer Set (eBioscience, Cat#00-5523-00) following the manufacturer’s instructions,
cells were then stained with anti-p24 KC57 and anti-p24 28B7 antibodies for an
additional 45 min at RT in the FoxP3 Buffer. Cells were then washed and resus-
pended in PBS for subsequent cell sorting.

Flow cytometry cell sorting. The frequency of p24 double positive cells (KC57+,
28B7+) was determined by flow cytometry in gated viable CD8-CD45RA- T cells.
An example of the gating strategy is represented in Supplementary Fig. 7a, b. In all
experiments, CD4+ T cells from an HIV-uninfected control were included to set
the threshold of positivity. Single p24 double positive (p24+ cells) and double
negative cells (p24- cells) were indexed-sorted on a BD FACS ARIA III. Cells were
sorted in 96-wells PCR plates containing 7.6 μL of DirectPCR Lysis Reagent
(Viagen Biotech) and 0.4 μL of 10 mg/mL proteinase K (from Wisent, 25530–015).
The PCR plates were subsequently incubated at 55 °C for 1 h for cell lysis followed
by 15 min at 85 °C to inactivate proteinase K. Index-sorting data of p24+ cells were
analyzed using FlowJo version 10.5.3.

TCR amplification on genomic DNA. We developed a two-step PCR method to
amplify a portion of approximately 260 bp of the TCRβ encompassing: (1) the end
of the V segment, (2) the CDR3, and (3) the J segment, on genomic DNA from
lysed single-cells. We used a set of 22 forward primers complementary to the 23
functional V segments families, and 13 reverse primers complementary to the 13
functional J segments, adapted from Dziubianau et al., to amplify the target portion
of the TCRβ in a first multiplex PCR reaction46. M13 forward and reverse tags were
added to the 5′ end of these primers, to allow a second PCR amplification, which
was followed by Sanger sequencing. Sequences of all primers are listed in Sup-
plementary Table 2. The first PCR reaction was performed using the Qiagen
Multiplex PCR kit (Qiagen), in a total volume of 50 μL: 25 μL of Qiagen Multiplex
PCR master mix, 10 μL of a mix of all primers (each primer at a concentration of
1.25 μM in the mix, providing a final concentration of 250 nM per primer), 5 μL of
Q-Solution, and 10 μL of the single-cell lysate. First PCR conditions were as fol-
lows: 15 min at 95 °C followed by 40 cycles of; 30 s at 95 °C, 90 s at 68 °C and 20 s at
72 °C; with a final elongation for 5 min at 72 °C. A second round of PCR reaction
was performed using the M13F and M13R primers (see Supplementary Table 2)
and the Taq DNA Polymerase kit (Invitrogen), in a total volume of 50 μL: 5 μL of
10x PCR buffer, 3 μL of MgCl2 (50 mM), 1.5 μL of dNTPs (10 mM), 2 μL of M13F
primer and 2 μL of M13R primer (each at 10 μM, providing a final concentration of
400 nM per primer), 0.5 µl Taq DNA Polymerase (5 U/μL), 26 μL H2O and 10 μL of
the first PCR products. The amplification conditions for the second PCR reaction
were as follows: 15 min at 95 °C followed by 40 cycles of; 30 s at 95 °C, 90 s at 57 °C
and 30 s at 72 °C; with a final elongation of 5 min at 72 °C. When co-amplifying
TCR and Env C3-V5 sequences, Env primers were added to the first PCR reaction,
under the same amplification conditions. The second PCRs were performed
separately for TCR and Env, using the same amplification conditions (see Env
primers in Supplementary Table 2).

TCR sequencing and analysis. Successful amplification of the TCRβ region was
verified by electrophoresis on a 2% agarose gel and followed by gel purification of
the TCRβ bands using the Buffer QG and the QIAquick 96 PCR Purification kit
(Qiagen), according to the manufacturer’s instructions. Sanger sequencing was
performed by Eurofins Genomics, with M13F and M13R as sequencing primers.
TCRβ sequences were re-constructed using both forward and reverse sequences,
and were analyzed using the V-QUEST tool of the IMGT® database (IMGT®, the
international ImMunoGeneTics information system®, http://www.imgt.org47) to
retrieve TCRβ information, including V and J segments usage and junction/CDR3
analysis (example in Supplementary Fig. 1a). TCR sequences were analyzed using
an algorithm to predict antigen specificity: CDR3 sequences were compared to the
McPAS-TCR database of TCRs of known antigenic specificity (http://friedmanlab.
weizmann.ac.il/McPAS-TCR/42) and sequence similarities were identified. We
predicted TCR specificity using the three criteria described by Meysman et al.41:
(1) CDR3 sequences should have identical length, (2) CDR3 sequences should be
long enough and (3) CDR3 sequences should not differ by more than one amino
acid. Among all CDR3 sequences, those fulfilling these three criteria with matched
CDR3 sequences from the database were considered at high probability of sharing
the same specificity.

Data representations and statistical analyzes. A chord diagram displaying
inter-relationships between TCR clonotypes and the memory phenotype was
plotted for each sample using the program of Circular Visualization within the
circlize package (version 0.4.8)48 in R version 3.1.1 (R Foundation, Vienna, Aus-
tria). Sankey diagrams representing the V/J associations per participant for p24+
and p24− cells were generated using the alluvial (version 0.1-2) package in R.

All other data were analyzed and represented using Graphpad Prism v6.0 h.
Results were represented as median or mean values, with interquartile range or
minimum and maximum values, as indicated in the figure legends. Correlations
were determined using nonparametric Spearman’s test. For group comparisons,
non-parametric Wilcoxon matched-pairs signed rank tests were used. P values of
less or equal to 0.05 were considered statistically significant.

Statistics and reproducibility. To ensure the reproducibility of our approach, one
sample (participant ID#1, visit 3) was repeated three times. A similar distribution
of the T cell clonotypes within the reservoir, was detected in each independent

Fig. 3 Dynamics of TCRβ clonotypes in the pool of p24+ cells. The frequencies of the TCRβ clonotypes in p24+ cells are represented for participants #1
to #8 at each study visit. CD4+ T cell counts (left axis, green lines) and plasma viral loads (right axis, blue lines) are shown. Open blue circles represent
undetectable plasma viral load measures and are plotted at the limit of detection of the assay. ART regimens are indicated in the gray boxes. Arrows point
the leukapheresis dates. For each sample, the proportion of each clonotype in the pool of p24+ cells is represented in a pie chart. The number of p24+
cells analyzed is indicated in the center of the pie. Expanded clonotypes persisting over time are depicted in shades of green; Expanded clonotypes
only detected at a single visit are depicted in shades of blue; Unique clonotypes are depicted in shades of gray. ABC: abacavir; FPV: fosamprenavir;
DRV: darunavir; DTG: dolutegravir; EFV: efavirenz; ETR: etravirine; EVG: elvitegravir; FTC: emtricitabine; MVC: maraviroc; /r: ritonavir; RAL: raltegravir;
RPV: rilpivirine; TAF: tenofovir alafenamide; TDF: tenofovir disoproxil fumarate; 3TC: lamivudine. Source data are provided as a Source Data file.
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Fig. 4 TCRβ clonotypes from p24+ cells display multiple memory phenotypes. The distribution of TCRβ clonotypes of p24+ cells among memory
subsets is represented as a chord diagram for participants #1 to #8 at each study visit (V1, V2, and V3). The circular representation shows the link between
a specific clonotype (top half of the circle) and its memory phenotype (bottom half of the circle). The circular axis represents the number of p24+ cells in
each clonotype/subset. Expanded clonotypes persisting over time are depicted in shades of green; Expanded clonotypes detected at a single visit are
depicted in shades of blue; Unique clonotypes are depicted in shades of gray. The memory subset color code is as follows: central memory (TCM) in blue;
transitional memory (TTM) in orange; effector memory (TEM) in red; and undefined (others) in gray. Source data are provided as a Source Data file.
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experiment. The results from the three experiments were combined to generate
Fig. 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article and
its Supplementary Information files. The source data underlying both the main and
Supplementary Figs. are provided as a Source Data file.
External databases used in this study are available online: IMGT® database (IMGT®,

the international ImMunoGeneTics information system®, http://www.imgt.org); McPAS-
TCR database (http://friedmanlab.weizmann.ac.il/McPAS-TCR/).
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