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The non-thermal nature of self-propelling colloids offers new insights into non-equilibrium

physics. The central mathematical model to describe their trajectories is active Brownian

motion, where a particle moves with a constant speed, while randomly changing direction due

to rotational diffusion. While several feedback strategies exist to achieve position-dependent

velocity, the possibility of spatial and temporal control over rotational diffusion, which is

inherently dictated by thermal fluctuations, remains untapped. Here, we decouple rotational

diffusion from thermal fluctuations. Using external magnetic fields and discrete-time feed-

back loops, we tune the rotational diffusivity of active colloids above and below its thermal

value at will and explore a rich range of phenomena including anomalous diffusion, directed

transport, and localization. These findings add a new dimension to the control of active

matter, with implications for a broad range of disciplines, from optimal transport to smart

materials.
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The behavior of self-propelling colloidal particles sheds light
on far-from-equilibrium physics and offers tantalizing
opportunities to perform tasks beyond the reach of other

micro- and nanoscale systems1. Many of these functions are
inspired by the striking similarity that synthetic active matter
exhibits with living systems such as motile bacteria. This analogy
therefore also provides an ideal opportunity to understand the
motion and (self-)organization of living systems through syn-
thetic models2. The fundamental mathematical description of
how active colloids move is given by active Brownian motion1: a
microscopic particle of radius R in a fluid of viscosity η moves
with constant speed v, while its orientation diffuses at a rate set by
the rotational diffusivity DR= (kBT)/(8πηR3), with kBT being the
characteristic thermal energy at absolute temperature T and kB
the Boltzmann constant. This minimal model has been success-
fully employed to describe a wealth of phenomena, from the
motion of active particles in complex structures3 to the optimi-
zation of search strategies4.

Recently, there has been a growing interest in pushing the
control of synthetic active matter beyond the standard active
Brownian particle (ABP) model to mimic more complex
behaviors, including directed transport and pattern formation.
These phenomena typically arise when the particle velocity or
the environmental fluctuations vary in space and time. For
example, a position-dependent translational diffusivity has
been proposed as a fundamental biological mechanism leading
to anomalous diffusion and localization of biomolecules in
cellular membranes5, while the temporal control of random
walks enables the emergence of collective motion in active
colloids6. The effect of a position-dependent velocity has also
been investigated as a means to control the organization and
the area explored by active particles (artificial and biological)
as well as their interactions7–16. Beyond their fundamental
relevance, these mechanisms can also be exploited for appli-
cations ranging from environmental remediation to targeted
drug delivery1.

Because translation and rotation in ABPs are coupled, intro-
ducing a feedback between rotational dynamics and position also
provides a means to control active Brownian motion. Biological
swimmers, such as chemotactic bacteria17, are in fact known
to tune their rotational dynamics to climb up or down chemical
gradients in order to localize food sources or to escape harmful
chemicals. However, while biological swimmers can do so by
varying their reorientation frequency (or tumbling rate)18, which
is an internal degree of freedom, the rotational dynamics of
a synthetic active particle is usually dictated by thermal
fluctuations.

Here, we control the rotational diffusivity of individual ABPs
by decoupling the amplitude of the rotational fluctuations from
the thermal bath. Through randomly-oriented magnetic fields
and a discrete-time feedback loop, we spatially and temporally
modulate the effective rotational temperature, above and below
the environmental temperature. This allows us to study the effect
of a position-dependent rotational diffusivity on the statistics of
active Brownian motion. In analogy with biological and artificial
sensor-actuator systems that rely on temporal sampling17,19, we
also consider that the feedback between DR and the particle’s
position is not instantaneous, but mediated by a discrete sampling
of position that results in a finite sensorial delay. We find that
periodic space-time modulations of the rotational dynamics bring
about a broad range of exotic phenomena, ranging from anom-
alous diffusion reminiscent of glassy dynamics to directed
transport and localization. We support our results with numerical
simulations, which also indicate new directions for future
developments.

Results
Controlling rotational dynamics. Our model ABPs self-propel
due to induced-charge electro-phoresis20–22. They consist of 4
μm-diameter silica Janus colloids, half-coated with a 120 nm-
thick nickel cap, which is magnetized in the direction perpendi-
cular to the Janus boundary (see inset in Fig. 1a). In this way, the
propulsion’s direction dictated by the compositional asymmetry
is aligned with the caps’ magnetic moment and can be externally
controlled by a magnetic field. We let the particles sediment at the
bottom of a liquid cell enclosed by two planar transparent elec-
trodes, which are separated by a vertical gap h= 120 μm, and
record the colloids’ position and cap orientation at a frame rate of
10 fps by video microscopy (see Methods for more details). The
colloids swim over the bottom substrate due to locally unbalanced
electrohydrodynamic flows generated by a spatially uniform 1
kHz AC electric field applied across the electrodes (Fig. 1a). The
swimming velocity v is proportional to the square of the electric
field / ðVpp=hÞ2, where Vpp is the peak-to-peak voltage, which is
varied in the range 1–10 V.

We control the orientation angle θ of the colloids’ cap (see
microscopy image in Fig. 1a) by two pairs of independent
Helmholtz coils generating spatially uniform magnetic fields of
any in-plane orientation (Fig. 1a, Supplementary Fig. 1, and
Supplementary Movie 1). In contrast to previous works, where
magnetic fields are used to remote-control active colloids23–27, we
randomize the direction of the magnetic field to endow the
colloids with an externally controlled rotational diffusivity, which
is decoupled from the thermal bath and the propulsion scheme
(Supplementary Movie 2). We vary the orientation of the
magnetic field at f = 1 kHz by random angular displacements
Δθ drawn from a Gaussian distribution with zero mean and
variance σ2= 2DR/f, where DR is the imposed rotational
diffusivity. Fig. 1b shows the orientation angle of the magnetic
field as a function of time for values of imposed DR ranging from
10−2 to 10 rad2 s−1. The corresponding distributions of the
particles’ angular displacements G(Δθ, Δt), measured from the
cap orientation, attest that θ and the direction of the magnetic
field diffuse according to the same Gaussian process (Fig. 1c). By
letting θ diffuse over the entire 2π range, we can therefore enforce
effective values of DR that are above and below the thermal
rotational diffusivity Dth

R (1.4 × 10−2 rad2 s−1 at room
temperature). In particular, we can achieve rotational dynamics
that are orders of magnitude faster than what the thermal bath
would otherwise dictate (rotational cooling is also shown in the SI
for 2 μm-diameter colloids in Supplementary Figs. 2 and 3).

External, independent control on DR and v enables us to adjust
the persistence of particle trajectories in real-time. For example,
as demonstrated in Fig. 1d, we can gradually increase the
propensity of an ABP to move along straight paths by decreasing
DR over time in a step-wise fashion from 10 to 10−1 rad2 s−1,
while keeping v constant (Supplementary Movie 3, Supplemen-
tary Fig. 4 and Supplementary Movie 4 show the complementary
case in which DR is kept constant and v is varied in a step-wise
fashion. See also Supplementary Supplementary Fig. 2 and
Supplementary Fig. 3 for 2 μm colloids). An analysis of the mean
squared displacements (MSD), calculated for each segment at a
fixed DR (Fig. 1e), shows that the timescale at which the ABP’s
motion goes from being ballistic to being diffusive is proportional
to �D�1

R , as expected. As a result, the MSD at long times is larger
for lower values of DR, suggesting the possibility of controlling the
area explored by an ABP by varying DR on demand. By
systematically varying the imposed DR while fixing the AC
voltage, and thus v, we can extract both DR and v from the MSD
to calculate the persistence length as LP ¼ vD�1

R . Fig. 1f and its
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inset show that LP can be varied over a wide range of values,
displaying the expected linear scaling on both control parameters.
These data thus attest to our ability to engineer the motion of
ABPs by independently controlling v and DR using electric and
magnetic fields.

A feedback loop for position-dependent rotational dynamics.
To study the impact of space-time modulations of the rotational
dynamics on the statistics of active Brownian motion, we
implemented a discrete-time feedback loop that updates DR based
on the ABP’s position r(t) (Fig. 2a, Methods, and Supplementary
Figs. 5 and 6). Similarly to the case of the non-instantaneous
response of motile microorganisms to environmental cues17, we
update DR at regular intervals based on the past ABP’s position r
(t − τ), where t= nτ, τ is the sampling period and n is the
number of samples. This is realized in the experiments by holding
DR constant between consecutive sampling periods, and in the
Langevin dynamics simulations by letting the rotational friction
vary according to a zero-order hold (ZOH) model19, as described
in the Methods section (see Fig. 2a). Moreover, in analogy with
Brownian motion in periodic potentials, which is a paradigmatic
model for the description of anomalous diffusion28–31, here we let
DR vary according to a checkerboard pattern of alternating square
regions of size L. In each square, DR takes on either a high (DH

R )
or a low (DL

R) value (Fig. 2b). Specifically, we consider scenarios

where DH
R ¼ 10 rad2 s−1, DL

R ¼ 0:01 rad2 s−1, and L/v such that
1
DL
R
> L

v >>
1
DH
R
(Fig. 2c, d and Supplementary Movie 5 and Supple-

mentary Fig. 7). These choices imply that the motion is pre-
dominantly diffusive in one region and ballistic in the other, with
two well-separated relaxation timescales.

Given the existence of multiple parameters that affect the
dynamics and the spatial organization of the ABPs, in the
following subsections we examine them, and highlight their main
contributions, separately. We begin by determining the role of the
characteristic timescale L/v and continue with the effect of the
sampling period τ, before concluding with an analysis on particle
localization.

Non-Gaussianity: L/v and exponential tails. We find that our
feedback scheme coupled with modulations of DR brings about
different types of anomalous diffusion at different time and length
scales, depending on the sampling period τ and the timescale L/v.

We begin by examining the statistics of particle motion for
nonzero but small sampling periods τ << L/v. In this regime, while
the trajectories within each region are either ballistic or diffusive
(Fig. 2c–d), the overall dynamics presents unique features. The
distribution of one-dimensional displacements, rescaled by L, G
(∣x∣/L, Δt) (Fig. 3a–d) presents different types of non-Gaussianity
at different lag times Δt depending on the ratio Δt(L/v)−1. We
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Fig. 1 Controlling rotational dynamics through randomly-oriented magnetic fields. a Schematic of the experimental setup. A Janus silica particle, half-
coated with a magnetized Ni cap, undergoes self-propulsion at the bottom of a liquid cell enclosed by two transparent electrodes. Propulsion stems from
induced-charge electro-phoresis generated by an AC electric field E

!
perpendicular to the plane in which the particle moves (the curved yellow arrows

depict local unbalanced electrohydrodynamic flows). A uniform magnetic field B
!

(blue arrow), produced by four coils, controls the in-plane orientation of
the particle, while its motion is observed with an optical microscope. The inset shows an optical micrograph of a 4 μm particle, with the Ni cap in black. The
white arrow shows the particle’s orientation angle θ, which is aligned with the cap’s magnetic moment and thus with the magnetic field. Scale bar: 5 μm.
b Imposed θ as a function of time for three values of DR. The colored bands delimit a 2π range. Data are shifted along the y-axis for clarity. c Probability
distributions of angular displacements G(Δθ, Δt) for different DR and lag time Δt= 0.1 s (dashed lines: imposed Δθ, solid lines: measured Δθ) with the
same colors as in b. The gray symbols show the measured G(Δθ, Δt) without magnetic field, corresponding to the thermal Dth

R (gray line: Gaussian fit,
see Supplementary Table 1). d Trajectory of an ABP with v= 5.5 μm s−1 and an imposed DR varying over time. e MSD of an ABP with v= 5.5 μm s−1

for different imposed DR: 0.1 (diamonds), 1 (triangles), 5 (circles) and 10 (squares) rad2 s−1 (colors as in d). f Persistence length (LP) as a function of
rotational relaxation time D�1

R for different values of v: 8.2 (circles), 6.7 (triangles), and 2.7 (squares) μm s−1. The inset shows LP as a function of v for the
thermal Dth

R = 0.014 rad2 s−1 (gray squares) and for an imposed DR of 0.07 and 0.144 rad2 s−1 (black triangles and circles, respectively). Error bars
correspond to the data standard deviation.
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quantify the departure from Gaussian behavior in terms of the

excess kurtosis (Fig. 3e): γ ¼ hx4i
hx2i2 � 3, where γ = 0 for a normal

distribution. For Δt << L/v, G(∣x∣/L, Δt) is broader and flatter than
a normal distribution (γ < 0), which is consistent with the
broadening of G(x, Δt) reported for ABPs at intermediate
timescales, when the motion is dominated by ballistic segments32.
However, as Δt approaches L/v, G(∣x∣/L, Δt) develops into a
leptokurtic distribution (γ > 0) characterized by a Gaussian peak at
small ∣x∣ followed by an exponential tail up to ∣x∣ ≃ L, after which
it rapidly decays.

Exponential tails in G(x, Δt) have already been observed in
glassy systems and for the diffusion of colloids in macromolecular
environments33–35. They are often explained in terms of dynamic
heterogeneity, which is the coexistence of faster and slower
particles, which explains their appearance also in our system. At
timescales Δt≃ L/v, we also have two distinct populations of
particles, which travel over very different length scales depending
on where they reside on the checkerboard: diffusive in DH

R -regions
and ballistic in DL

R-regions. Because Δt ’ L=v >> DH
R , ABPs in

DH
R -regions are effectively diffusive, with a Deff ’ v2=DH

R
1, and

thus their displacements are normally distributed. They are
responsible for the Gaussian peak, and travel distances much
smaller than L. Conversely, ABPs in DL

R-regions move in a
ballistic fashion because Δt ’ L=v << 1=DL

R, and thus their
displacements scale as vΔt, which are of order L. Interestingly,

while dynamic heterogeneity in glassy colloidal systems arises
from hindered translational diffusion due to steric interactions
with other particles36, here it is the result of a spatially
heterogeneous rotational dynamics. As we will show later, the
parallel with glassy systems goes even further.

As we examine dynamics at longer Δt, the excess kurtosis γ
attains a positive maximum at Δt≃ L/v (Fig. 3e and Fig. 4a–b)
and later decays to zero, indicating that Gaussian statistics is
eventually recovered at long times, as expected. Interestingly, the
MSD exhibits a super-diffusive scaling ~Δt1.7 up to the same
critical timescale, after which the diffusive regime (~Δt1) is
gradually recovered in the limit of long time scales (see Fig. 3f).
This in stark contrast to the dynamics of ABPs with constant DR.
In the latter case, γ is negative at intermediate timescales and zero
on short and long timescales, and a transition from a ballistic
(MSD ~ t2) to a diffusive (MSD ~ t1) scaling of the MSD is found
at Δt≃ 1/DR

32.
Finally, at a given τ << L/v, the timescale L/v dictates not only

the Δt at which the maximum degree of non-Gaussianity is
attained, but also its extent (Fig. 4a, b). This is again a direct
consequence of the motion being the combination of distinct
ballistic and diffusive segments. The excess kurtosis γ grows with
Δt because the extent of the exponential tail grows faster with Δt
(~Δt) than the broadness of the Gaussian peak (� ffiffiffiffiffi

Δt
p

). Given
that ABPs can travel in a ballistic fashion only up to ~L, the tail
of G(∣x∣/L, Δt), and thus γ, keeps growing up to Δt ~ L/v. Hence,
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Fig. 2 Position-dependent rotational dynamics: sampling a checkerboard pattern with a sensorial delay. a (top) Block diagram illustrating the feedback
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with the particle’s position r(t) consists of four blocks in series: sampling, delay, zero-order hold (ZOH), and DR = f(r). a (bottom) Schematic
representation of how r(t) is sampled at discrete time points t= nτ (corresponding to r[n]) and reconstructed via a ZOH model (r*(t)) after a delay of τ, i.e.,
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experimental (black) and simulated (red) trajectories of ABPs with DR varying according to the checkerboard pattern. (v= 3.5 μm s−1, L= 32 μm, DH

R = 10
rad2 s−1, DL

R ¼ 0:01 rad2 s−1, and τ= 0.4 s).
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the greater L/v, the greater the maximum γ, which is
correspondingly attained at larger Δt. It is worth noting that, in
the limiting case of small L=v ≲ 1=DH

R , an exponential tail cannot
develop and as a result γ remains negative, approaching zero in
the limit of long times, as in the case of ABPs with constant DR

(Fig. 4a).

Non-Gaussianity: τ and subdiffusion. The sampling period τ has
a qualitative impact on the statistics of motion depending on its
value relative to the timescale L/v (Fig. 4c–h). In particular, we
identify three regimes: τ= 0, which corresponds to an instanta-
neous update of DR based on the ABP’s position, τ < L/v and
τ > L/v.

For τ = 0 (Fig. 4c, black circles and Supplementary Fig. 8) γ
attains multiple local maxima at Δt(L/v)−1= 1, 3, and 5, with the
global maximum being at Δt(L/v)−1= 3. Such maxima in γ also
mark changes in the scaling of the MSD (Fig. 4e), which exhibits a

superdiffusive scaling ~Δt1.7 up to Δt ≃ L/v, after which it
starts to saturate and attain a subdiffusive scaling (MSD ~ Δta,
a < 1) up to Δt ≃ 3–5L/v, with higher L/v leading to smaller a.
For Δt >> L/v, the MSD eventually recovers the diffusive scaling
(a= 1).

The emergence of subdiffusion reinforces the previously
mentioned analogy with glassy dynamics. Nonetheless, in our
system, there is no physical caging by neighboring particles37.
Subdiffusion is instead the result of an “effective dynamical
caging”, arising from the randomization of the direction of
motion of ballistic ABPs as these enter DH

R -regions. In fact, up to
Δt ≃ L/v, the MSD is dominated by ballistic segments of length
~vΔt in DL

R-regions. Conversely, over the same timescale,
diffusive ABPs in DH

R -regions only travel comparatively negligible
distances �v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt=DH

R

p
. However, over timescales ≳L/v, ballistic

ABPs cannot travel distances greater than ≃L without crossing
into a DH

R -region. As they do so, there is a finite probability that
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they diffuse back and cross the DL
R-region from which they came

in the opposite direction (Supplementary Movies 6 and 7). Such
reflection events give virtually null displacements over timescales
up to ~2L/v, the time ballistic ABPs take to cross a DL

R-region and
travel back. The MSD then grows only as ’v2=DH

RΔt for those
particles that cross a DL

R-region an odd number of times and
remain in a DH

R -region. Finally, such a dynamical caging, and the
subsequent subdiffusive motion, become less prominent with
decreasing L/v, as the difference between diffusive and ballistic
displacements diminishes (Fig. 4e).

Moving to nonzero values of τ brings about qualitative changes
to the characteristics of γ depending on whether τ < L/v or
τ > L/v. Up to τ ~ L/v, higher values of τ translate into higher
values of γ, into the increased prominence of the maximum at
Δt ≃ L/v, and into the gradual disappearance of local minima
(Fig. 4c). Because nonzero values of τ introduce a finite delay in
the update of the rotational dynamics, ballistic ABPs can
penetrate into DH

R -regions up to lengths ~v(2τ) before adjusting
their rotational dynamics (see Fig. 2a). This not only increases the
effective distance that ABPs can travel in a ballistic fashion, but
can also allow them to cross entire regions without adjusting their
rotational dynamics. The increase in the maximum value of γ
with increasing values of τ is therefore due to a larger disparity
between the relative contributions of ballistic and diffusive
displacements.

Increasing τ beyond ≃L/v leads to the gradual decrease of γ
across intermediate timescales and the disappearance of a
maximum in the limit of τ ≫ L/v (Fig. 4d). For τ > L/v, the
modulations of the rotational dynamics start to depart consider-
ably from the inherent periodicity of the checkerboard pattern. In
the limit of large τ, the rotational dynamics of the ABPs is
determined by their initial position rather than the region over
which they move. This implies the existence, at all times, of two
different populations of particles moving in an either ballistic or
diffusive fashion, whose DR remains constant for a period of time
equal to τ. In this case, the overall dynamics is the mere

superposition of the dynamics of ABPs with different DR.
Therefore, in the limit of large τ, γ does not present a maximum
and remains negative or close to zero (Fig. 4d).

Values of τ > 0 also lead to the disappearance of subdiffusion at
Δt ≃ L/v (Fig. 4f–h). Nonetheless, the MSD still displays a cross-
over between a superdiffusive and a diffusive scaling on short and
long timescales, respectively. The disappearance of subdiffusion is
again due to the fact that a finite τ allows ballistic ABPs to
penetrate into DH

R -regions up to greater lengths before updating
their DR. This fact not only minimizes the probability that ABPs
diffuse back into the DL

R-region from which they entered, but also
increases the chances that ballistic ABPs cross entire DH

R -regions
without updating their DR, thus contributing to higher MSDs. For
analogous reasons, increasing τ also causes the superdiffusive-to-
diffusive transition to take place at Δt > L/v because ballistic ABPs
can travel distances greater than L.

Localization. While a position-dependent rotational dynamics
alone cannot sustain pattern formation38,39, the finite sensorial
delay introduced by the sampling (τ > 0) in the feedback loop
leads to the localization of ABPs in DH

R -regions (Fig. 5). Inter-
estingly, the degree of localization is a nonmonotonic function of
τ(L/v)−1. For instantaneous updates of DR (τ= 0), the time-
averaged steady-state spatial distribution ρ(x, y) is homogeneous,
with no manifestations of the underlying DR pattern (Fig. 5a,
numerical simulations). As τ is increased, ρ(x, y) increases in
DH

R -regions at the expense of DL
R-regions up to a maximum

degree for a critical τ ≃ 0.1−0.3L/v, before returning to a
homogeneous distribution in the limit of large τ(L/v)−1 (Fig. 5a).

We further quantify the degree of departure from the
homogeneous distribution by studying the evolution of the ratio
between the simulated average ρ(x, y) in DH

R - and DL
R-regions: ρ

H

and ρL, respectively (Fig. 5b, c). In agreement with the density
maps shown in Fig. 5a, the ρH/ρL ratio is 1 in the limit of small or
large τ and presents a maximum at intermediate values of τ
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(Fig. 5b). In particular, the maximum ρH/ρL ratio is a linearly
increasing function of L/v (Fig. 5c).

The existence of a maximum degree of localization and its
dependence with L/v can be explained with a simple transport
argument based on the dynamic asymmetry introduced by finite
values of τ. As previously mentioned, ballistic ABPs can in fact
penetrate into DH

R -regions up to lengths ≃v(2τ) before updating
their DR, whereas diffusive ABPs keep diffusing up to lengths
�v

ffiffiffiffiffiffiffiffiffiffiffi
D�1

R τ
p

in between updates. The deeper ballistic ABPs can
penetrate into diffusive regions, the longer it takes them to diffuse
out. Therefore, nonzero values of τ imply that, overall, particles
end up spending more time in DH

R -regions. This picture is in
qualitative agreement with the higher degree of localization in the
center of the DH

R -regions for τ ≃ 0.3L/v (Fig. 5a).
More quantitatively, because at steady state the net flux

between regions must be zero, we can write:

ρH

TH ¼ ρL

TL ; ð1Þ

where TH and TL are the average residence times of the ABPs in
DH
R - and DL

R-regions, respectively. Therefore, max ρH=ρLð Þ is equal
to max TH=TL

� �
. For 0 < τ << L/v, we expect TH and TL to scale

as ~(L/v)2 and ~L/v, respectively, because the residence time in a
DH
R -region depends on the time that an ABP takes to penetrate

into it (~L/v) and to diffuse out of it (� L2

2v2=DH
R
). Hence, the

maximum of the ratio ρH/ρL = TH/TL scales linearly with L/v, as
shown in Fig. 5c.

The different scaling of TH and TL is also confirmed by the
experimental and simulated residence time distributions at
different L/v (Fig. 5d–e). In particular, the distributions of TH

and TL collapse onto the same master curves, when rescaled by
L2

2v2=DH
R
and L/v, respectively, and quickly drop to zero for rescaled

values of TH and TL greater than 1. Moreover, by renormalizing
the ρH/ρL ratio by its respective maximum for a given L/v, and

plotting it as a function of τ(L/v)−1, we find that both simulated
and experimental data collapse onto a single master curve
(Fig. 5f).

Finally, in the limit of τ > L/v the degree of localization starts to
drop because at such large sampling periods the rotational
dynamics is decoupled from the inherent periodicity of the
underlying checkerboard pattern. This cross-over can be viewed
in terms of the Nyquist–Shannon’s theorem19. When τ ~ L/v, the
frequency at which the ABPs sample their environment is
comparable to the highest frequency at which the ABPs can cross
a region of the checkerboard pattern. This means that for τ > L/v
the ABPs cannot sense changes of DR happening on a length scale
L. At all times, the ABPs will retain a given DR for a period equal
to the sampling period. This leads to two different populations
moving in an either ballistic or diffusive fashion depending on
their respective initial positions, which are updated every τ.

Interestingly, for τ > L/v, the disconnect between the ABP’s
sampling resolution and the spatial periodicity of the underlying
pattern brings about a degree of localization that oscillates over
time (Fig. 6). Nonetheless, such oscillations are damped for
τ >> L/v due to lingering correlations of particle motion based on
past positions introduced by the delay component in the feedback
loop. By removing the delay, while retaining the discrete
sampling, such that DR is updated every t= nτ according to the
ABP’s current position r(t) rather than the past one r(t − τ), we
can obtain instead persistent oscillations with a period equal to τ
(Fig. 6a, b).

Discussion
Our findings illustrate that engineering the feedback between the
internal dynamics (e.g., DR, v) and the state (r(t)) of ABPs allows
tailoring their response, both in terms of the statistics of motion
at the single-particle level and in relation to their global spatio-
temporal organization. In particular, we show that the response is
defined by the balance of timescales in the system, the ones
characteristic of active Brownian motion. i.e., set by v and DR, and
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the externally imposed ones, set by the modulation of dynamical
landscapes and the feedback clock. Our experiments show that,
by decoupling rotational fluctuations from the thermal bath, we
now have full control on each of these timescales, which enables
us to begin exploring new directions, where numerical simula-
tions play an essential role in providing guidelines and large
statistics for the validation of the results.

Looking toward the future, our findings open up new inter-
esting avenues to direct the dynamics and organization of ABPs.
Local control over the rotational dynamics offers an alternative
means to control the persistence of active trajectories at a given
velocity, which can be harnessed to optimize the navigation of
ABPs in complex environments40,41. The introduction of periodic
modulations in the rotational dynamics of ABPs also defines a
new framework to study a variety of anomalous diffusion phe-
nomena28–31, beyond the cases presented here, with the emer-
gence of interesting analogies with glassy dynamics, as discussed
above. Since ABPs enable directed transport and pattern forma-
tion, even in the absence of particle interactions and external
forces38,42,43, introducing various forms of feedback, commu-
nication2, delay44, information flows11 and sensory ability12

defines new opportunities. Borrowing ideas and tools from signal
processing and control systems, we envisage the engineering of
more complex dynamical responses. We could, for instance,
adapt ideas developed for nuclear detectors (dead-time analysis)
or robotic systems (feed-forward responses or negative
delays39,45) to devise new signal reconstruction strategies between
discrete sampling events for ABPs, or design higher-order or

integral responses to mimic the way in which biological micro-
swimmers sense and adapt to chemical signals46. Finally, a last
challenge, which also constitutes an exciting opportunity, is to
translate the capabilities provided by external feedback and
control into internal responses, e.g., through adaptation and
reconfiguration46, in order to develop fully autonomous artificial
microswimmers.

Methods
Fabrication of Janus particles. In order to fabricate our active Janus particles,
silica colloids with 4.28 μm diameter (5% w/v, microParticles GmbH, Germany) are
diluted to 1:6 in MilliQ water and spread on a glass slide, previously made
hydrophilic by a 2-minute air plasma treatment. Upon drying of the suspension, a
close-packed particle monolayer is formed. The monolayer is then sputter-coated
with 120 nm of nickel (Safematic CCU-010, Switzerland) to create the Janus sur-
face. After coating, the glass slide is placed overnight above a neodymium magnet
(50 × 50 × 12.5 mm3, 1.2 T) to align the magnetic moments of all particles in the
direction of the compositional asymmetry. The particles are retrieved from the
glass slide by pipetting and withdrawing a droplet of water on top of the mono-
layer. An identical procedure is followed for 2 μm silica particles, for which data are
shown in the SI.

Cell preparation. The transparent electrodes are fabricated from 24 mm × 24 mm
No. 0 coverglasses (85–115 μm-thick, Menzel Gläser, Germany) covered with 3 nm
of chromium and 10 nm of Au deposited by metal evaporation (Evatec BAK501 LL,
Switzerland), followed by 10 nm of SiO2, deposited by plasma enhanced chemical
vapor deposition (STS Multiplex CVD, UK) to minimize the adhesion of particles
to the substrate. A water droplet containing the particles is deposited on the bottom
electrode within the 9 mm-circular opening of a 0.12 mm-thick sealing spacer
(Grace Bio-Labs SecureSeal, USA). The top and bottom electrodes are connected to
a signal generator (National Instruments Agilent 3352X, USA) that applies the AC
electric field, with a fixed frequency of 1 kHz and varying the Vpp voltage between 1
and 10 V. For 5 V, the applied electric field is 42 V mm−1.

Experiments. The magnetic moment of the Janus particles is confined to the
electrode plane and freely rotated within it through a custom-built setup fitted with
two pairs of independent Helmholtz coils47. The magnetic field is constant within a
few percent over a 1 mm2 area in the center of the cell and the maximum applicable
magnetic field is 65 mT. In the experiments, we use a field of 30–40 mT to orient
the particles. In order to impose an effective rotational diffusivity to the particles,
the magnetic field angle at step n+ 1 (θn+1) is obtained by adding to θn a random
angular displacement Δθ, which is given by Eq. (2), where DR is the target rota-
tional diffusivity, Δt is the time step (1 ms in our experiments), and η is a random
number sampled from a normal Gaussian distribution.

θtþ1 ¼ θt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DRΔt

p
η ð2Þ

The Janus particles are imaged with a home-built bright-field microscope in
transmission and image sequences are taken with a sCMOS camera (Andor Zyla) at
10 fps with a 512 × 512 pixels2 field of view. The image series to measure the
thermal and imposed rotational diffusivity are acquired using a 50× objective
(Thorlabs). The positions of the center of the JPs and of the metal cap are located
using Labview routines. Then, a vector connecting both centers is used to
determine the orientation of the particle at each frame for different DR, from which
the angular displacement distribution in Fig. 1c was calculated. The image series of
ABPs actuated by the magnetic and the AC electric fields, are acquired with a 10×
objective (Thorlabs). In this case, only the particle center of mass is located, and all
the dynamical information is extracted from the final particle trajectory.

For the experiments with space-dependent DR, single particles are located in real
time by a custom LabView software. Series of 1024 × 1024 pixels2 images are
recorded at 5.88 fps. The coordinates are used to update the particle DR based on a
predefined landscape. For the data presented in the main text, the field of view is
divided into checkerboard patterns with 5 × 5, 10 × 10 and 20 × 20 squares,
respectively, with alternating regions of DH

R = 10 rad2 s−1 and DL
R = 0.01 rad2 s−1.

DR is updated every τ, using values ranging from the smallest possible delay of 170
ms to τ= 17 s, based on the particle coordinates at t − τ. We vary the ballistic
timescale L/v by varying L between 16 and 64 μm um and v in the range 3–12 μm s
−1.

The particle thermal translational (Dth
T ) and rotational (Dth

R ) diffusion
coefficients at room temperature (24 °C) are extracted from their 2D trajectories in
the absence of magnetic and electric fields.
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Numerical simulations. We simulate the dynamics of the ABPs by solving the
equations of motion:

m€x ¼ f xðθÞ � γT _x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγT

p
ηxðtÞ

m€y ¼ f yðθÞ � γT _y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγT

p
ηyðtÞ

I€θ ¼ γRðx; y; τÞ _θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγRðx; y; τÞ

q
ηθðtÞ;

ð3Þ

where m and I are the mass and the moment of inertia of the colloid, respectively,
fx(θ) and fy(θ) are the x and y components of the active force acting on the colloid,
γT is the friction coefficient associated with translational motion, γR(r, τ) is the
state-dependent friction coefficient associated with rotational motion, and ηx(t),
ηy(t), and ηθ(t) are uncorrelated random numbers satisfying:

hηxi ¼ hηyi ¼ hηθi ¼ 0; hη2xi ¼ hη2yi ¼ hη2θi ¼ 1: ð4Þ
The active forces fx(θ) and fy(θ) are set equal to γTv cosðθÞ and γTv sinðθÞ,

respectively, such that in the absence of thermal noise and in the limit of long times
the particles move at a constant velocity equal to v. We solved Eq. (3) in the
underdamped limit through a Verlet-type integration scheme proposed by
Gronbech-Jensen and Farago using the Itô convention48. Although Eq. (3) could
also be solved in the overdamped limit, this approach allowed us to achieve a faster
convergence to the homogeneous distribution for τ= 0 using a relatively small
integration step dt= 0.001 s.

For a position-dependent DR, we let the rotational friction γR(r) = kBT/DR(r)
vary as a function of the ABP’s position r = [x(t), y(t)] according to a checkerboard
pattern as follows:

γRðrÞ ¼
γHR � γLR

2
1þ sgn sin

πx
L

� �
sin

πy
L

� �h in o
þ γLR ; ð5Þ

where:

sgnðxÞ ¼ 1; x ≥ 0

�1; x < 0

�
; ð6Þ

and γHR and γLR correspond to the regions of high and low DR, respectively.
For the implementation of the discrete time-feedback loop using the ZOH

model, we update γR every t = nτ, where n is the number of samples. Since the
rotational diffusivity is a physical quantity that must be continuous in time, we
reconstruct it from discrete-time inputs using the following function:

γRðr; τÞ ¼
Xþ1

j¼�1
γR½j�Π t� nτð Þ; ð7Þ

where γR[j] is γR(r) evaluated at r t ¼ jτð Þ:

γR½j� ¼
Z þ1

�1
γR rð Þδ t� jτð Þdt; ð8Þ

Π is a rectangular function defined as:

Π ¼ 1; 0≤ t < τ

0; otherwise :

�
ð9Þ

and j is an integer number which is set equal to n − 1 in the simulations for a delay
equal to τ, and to n for the those without delay.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The code used in this study is available from the corresponding authors upon reasonable
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