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Unveiling the ferrielectric nature of PbZrO3-based
antiferroelectric materials
Zhengqian Fu 1,6, Xuefeng Chen 2,6, Zhenqin Li 1,3, Tengfei Hu 1,4, Linlin Zhang1, Ping Lu1,

Shujun Zhang 5, Genshui Wang 1,2✉, Xianlin Dong 1,2,4✉ & Fangfang Xu 1,4✉

Benefitting from the reversible phase transition between antiferroelectric and ferroelectric

states, antiferroelectric materials have recently received widespread attentions for energy

storage applications. Antiferroelectric configuration with specific antiparallel dipoles has been

used to establish antiferroelectric theories and understand its characteristic behaviors. Here,

we report that the so-called antiferroelectric (Pb,La)(Zr,Sn,Ti)O3 system is actually ferri-

electric in nature. We demonstrate different ferrielectric configurations, which consists of

ferroelectric ordering segments with either magnitude or angle modulation of dipoles. The

ferrielectric configurations are mainly contributed from the coupling between A-cations and

O-anions, and their displacement behavior is dependent largely on the chemical doping. Of

particular significance is that the width and net polarization of ferroelectric ordering segments

can be tailored by composition, which is linearly related to the key electrical characteristics,

including switching field, remanent polarization and dielectric constant. These findings pro-

vide opportunities for comprehending structure-property correlation, developing antiferro-

electric/ferrielectric theories and designing novel ferroic materials.
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D ielectric capacitors have been commercialized for a wide
range of applications including pulsed power systems,
electrical vehicles, and medical devices1–4. Benefitting

from the electrical field induced reversible phase transition
between antiferroelectric (AFE) and ferroelectric (FE) states, AFE
perovskite oxides (ABO3) become promising candidate for
dielectric energy storage capacitors due to their high power
density, good energy storage density, and long lifetime5–8.

Early in 1951, Kittel theoretically defined AFE configuration
in analogy with antiferromagnetism as neighboring lines of
dipoles pointing in antiparallel directions, while Sawaguchi
et al. experimentally observed AFE behavior in PbZrO3 ceramic
according to its characteristic dielectric response and hysteresis
loop9,10. Later on, the X-ray diffraction, neutron diffraction,
convergent-beam electron diffraction, and high-resolution
transmission electron microscopy have been applied to sub-
stantiate the AFE configuration in PbZrO3

11–15. Based on these
comprehensive structural investigations, the basic dipoles
ordering configuration of PbZrO3 was established in which the
two left-oriented dipole lines and two right-oriented dipole
lines arrange alternately. Therefore, the PbZrO3 has become the
prototypical AFE material for understanding the physics of AFE
and exploring new AFE materials. For AFE physics, theoretical
models always involve ferrielectric (FiE) phase when AFE order
parameter is coupled with field-induced polarization16,17, while
the FiE configuration has never been experimentally estab-
lished. For AFE materials, numerous chemical elements (A-
sites: La3+, Ba2+, Ca2+, Sr2+, etc.; B-sites: Sn4+, Ti4+, Nb5+,
etc.) have been attempted in PbZrO3 for decreasing its extre-
mely high switching field and optimizing energy storage char-
acteristics18–21. As a consequence, the large family PbZrO3-
based solid solutions were considered as AFE materials with
specific antiparallel polarization configuration, which has been
rarely challenged.

In PbZrO3-based ceramics, the chemical doping generally
drives the AFE phase from commensurate structure to incom-
mensurately modulated structure (IMS). The complex IMS was
firstly investigated by MacLaren et al. in (Pb0.96La0.04)
(Zr0.9Ti0.1)0.99O3 ceramics on atomic-scale, where the modula-
tion of A-site cations was found to exist in a sinusoidal fashion22.
Ma et al. further pointed out that the A-site cations were
either antiparallel but imbalanced or in a nearly orthogonal
arrangement in (Pb0.99Nb0.02[(Zr0.57Sn0.43)1−yTiy]0.98O3 cera-
mics23. These works have been regarded as an extraordinary step
forward to the understanding of cation displacement in IMS.
Nonetheless, early work has demonstrated that the prototypical
PbZrO3 showed multiple soft-mode vibrations, which mainly
involved trilinear coupling between vibrations of Pb cations and
librations of oxygen octahedra24. Moreover, the very recent work
on the electron-beam illumination induced phase transition in
PbZrO3 single crystals clearly showed the hierarchical evolution
of oxygen octahedra25. Thus, as an important component in
perovskite PbZrO3-based materials, the information of oxygen
octahedra should be essentially taken into account for compre-
hending structure-property correlation and developing AFE/FiE
theories.

Here, we use atomic-resolved scanning transmission electron
microscopy to explore the electric dipoles ordering configurations
in (Pb,La)(Zr,Sn,Ti)O3 (PLZST) system, which is one of the most
promising PbZrO3-based AFE materials. We demonstrate the so-
called AFE PLZST system has actual arrangement of dipoles in
FiE configuration. The coupling between A/B-cations and O-
anions is explicitly elucidated. Based on the FiE configurations,
the key electrical properties can be clearly understood upon
varying the composition.

Results
Characterization of average structure. Pb0.97La0.02(Zr0.50SnxTi0.50-x)
O3 ceramics with x= 0.50, 0.45, 0.375 (hereafter denoted as PLZST
50/50/0, PLZST 50/45/5, and PLZST 50/37.5/12.5, respectively) were
prepared by high temperature solid-state sintering method. X-ray
diffraction studies reveal their crystal structures are periodically
modulated because the characteristic superlattice reflections (marked
by arrows) appear ahead of the {100} basic reflection (Fig. 1a, all
crystallographic indices refer to the simple pseudocubic unit cell in
this work). According to the crystal structure of PbZrO3, these peaks
are mainly associated with the displacement of cations. They gra-
dually move upward to the {100} peaks indicating the modulation
period (NIMS) increases with decreasing Sn/Ti ratio. Combined with
the selected area electron diffraction (SAED) patterns of [001], [100],
and [1�12] zone axes (Fig. 1b and Supplementary Fig. 1), it is con-
firmed that the modulation wave is along [110] direction with
average NIMS of 4.04, 6.15, and 9.37 for PLZST 50/50/0, PLZST 50/
45/5, and PLZST 50/37.5/12.5, respectively (Fig. 1c). The fractional
(irrational) values of NIMS indicate that all three PLZST composi-
tions show IMS. Meanwhile, the appearance of characteristic
superlattice reflections associated with oxygen octahedral tilts in
XRD (Fig. 1a, marked by dash rectangle) and [1-1.2] SAED patterns
(Supplementary Fig. 1a, marked by blue arrow) indicates that the
octahedra of PLZST have the similar antiphase tilt with PbZrO3. It
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Fig. 1 Average structural characteristics of PbZrO3 and PLZST system.
a The XRD patterns showing two types of superlattice reflections originated
from the cations modulation marked by arrows and octahedra tilts marked by
dash rectangle, respectively. The 2θ range of 18°–20° are enlarged on the
right to clearly show 1/2{11�1} peaks associated with antiphase tilt of oxygen
octahedra. The main {100} peaks of PbZrO3 is approximately aligned with
PLZST 50/50/0 for clearly comparing modulation period. b The [001] SAED
patterns showing the modulation wave along [110] direction. The satellite
reflections associated with modulation mode are marked by yellow arrows.
c The modulation period (NIMS)= λ/d110 (λ refers to modulation wavelength
in real-space) calculated from SAED patterns. The average data of modulation
period for each sample is obtained from more than five different areas and
error bars represent the standard deviation.
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can be seen that the intensity of 1/2{11�1} reflections gradually
decreases with decreasing Sn/Ti ratio. This implies the strong cou-
pling of octahedra tilts with cations displacement, which is believed
to stabilize the modulated structure24,26,27 and will be further dis-
cussed in the following.

Atomic-scale analysis of modulated structure. Because sponta-
neous polarization (Ps) linearly relates with the atomic displace-
ment, atomic-scale high-angle annular dark field (HAADF)
imaging was performed to investigate the dipoles ordering con-
figurations based on cations displacement in PLZST system. The
picometer-precision fitting was applied to extract the cation col-
umn positions (see the details in Methods). Previous neutron
diffraction studies on Zr-rich Pb(Zr,Ti)O3 confirmed that Pb
cations were responsible for the spontaneous polarization because
the displacement magnitude of Pb cations was about three times
that of Zr/Ti28,29. Similarly, it can be immediately accessible by
directly observing the experimental HAADF images (Supple-
mentary Fig. 2) that the A-site cations have obviously larger
displacement than B-site cations in our PLZST system. Thus, we
define the atomic displacement vectors (DAB) as the relative offset
of the A-site cations from the center of four adjacent B-site
cations in the (001) plane. Displacement maps (Fig. 2) reveal that
the dipoles are modulated periodically in all PLZST compositions,
leading to the appearance of coherent fringes in medium-
magnified TEM images (Supplementary Fig. 3). The modulation
intervals are found to increase with decreasing Sn/Ti ratio, not
necessarily only two dipole lines as modeled in the prototypical
AFE configuration. The modulation structures are of
incommensurate-type with fluctuant periods, which could be
intuitively viewed from the width of dark/light-blue segments.

Interestingly, we observed two different modulation modes
(either magnitude-type or angle-type) for each PLZST composi-
tion. In the magnitude modulation mode (Fig. 2a–c), all dipoles
align nearly horizontally where the dark-blue segments exhibiting
larger DAB magnitude than the light-blue segments. On the other
hand, in the angle modulation mode (Fig. 2d–f), the dipoles in the
dark-blue segments and the light-blue segments have approxi-
mately equal DAB magnitude but their orientations change
alternately. In such case, it can be predicted that the net polar-
ization should produce in both magnitude (in horizontal direc-
tion) and angle (in vertical direction) modulation modes.
Therefore, we can conclude that the so-called AFE PLZST system
essentially possesses ferrielectric (FiE) nature (also see the
quantitative data in Supplementary Fig. 4). Based on the analysis
for several areas in each PLZST composition, we found that the
magnitude modulation mode was dominant and the two mod-
ulation modes could interchange freely (Supplementary Fig. 5).
Besides, the polarization tends to be zero at the transitional area
between dipole lines of different orientations (see the interface
between dark-blue and light-blue segments), especially in the
magnitude modulation mode. It can be noted that the PLZST 50/
50/0 inherits the fourfold modulation period with some local
areas approximately maintaining the dipoles ordering config-
uration of PbZrO3 (e.g., the red circled area in Fig. 2a).

In order to explore the oxygen octahedral contribution to the
observed FiE configuration and understand the coupling between
O-anions displacement and A/B-cations displacement, atomic-
scale annular bright field (ABF) imaging was applied to analyze
the local structural characteristic of O-sublattice in the dominant
modulation mode (Figs. 3 and 4). Similarly, the DAB mappings
(Fig. 3e–h) clearly show modulation of cation displacement as
those observed in HAADF images (Fig. 2). It is generally accepted
that the equally antiparallel DAB collaborates with antiphase
tilting of oxygen octahedra to stabilize the prototypical AFE
structure in PbZrO3. Actually, the distortion of oxygen octahedra
should also have an important influence on the prototypical AFE
structure, which can be clearly seen from the irregular shape of
oxygen octahedra in Fig. 3a. The tilt and distortion of oxygen
octahedra can be characterized by measuring the rippling of O-
sublattice along x- and y-direction (Fig. 3i). Based on the
experimental ABF images (Fig. 3b–d), we map the corner-shared
BO6 octahedra of PLZST system (Fig. 3j–l). The as-expected tilt
and distortion of oxygen octahedra (see the irregular shape of
oxygen octahedra and the rippling of O-row/column) was then
found to occur simultaneously contributing to the observed FiE
configuration in PLZST system. Interestingly, the coupling along
x-direction is manifested by the modulation of y-rippling for O-
sublattice, i.e., the large/small magnitude of DAB usually
corresponds to the high/low degree of y-rippling of O-rows
(Fig. 3f–h, n–p), which can be understood by the Coulomb
interaction (Supplementary Fig. 6). Thus, it can be understood
that the decrease of intensity of 1/2{11�1} reflections in XRD
(Fig. 1a) and SAED (Supplementary Fig. 1a) is caused by the
increase of volume fraction of the areas with small y-rippling
amplitude. Compared with the one in PbZrO3 (Fig. 3m), it can be
clearly seen that the y-rippling of O-rows in PLZST system breaks
the long-rang antiphase octahedral tilt of a−a−c0 system and is
periodically modulated with local disorder.

Similarly, the coupling along y-direction can be manifested by
the modulation of horizontal component of atomic displacement
(Fig. 4). In PbZrO3, the coupling features the characteristic that
Zr-cations move in the same direction as Pb-cations while O-
anions move in the opposite direction (Fig. 4a). In contrast, the
coupling behavior in PLZST is strongly dependent on composi-
tion although displacement of both A/B-cation and O-anion are
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Fig. 2 Polarization mapping based on cations displacement in PLZST
system. a–cMagnitude modulation mode and (d–f) angle modulation mode
of dipoles ordering configurations (front) as revealed from the atomic-scale
HAADF images (back) acquired along the [001] direction. The dark/light-
blue backgrounds highlight the switch of polarization configuration. The full
view of the corresponding HAADF images are presented in Supplementary
Fig. 2. The red circled area in (a) shows the dipoles ordering configuration
being nearly consistent with the one in PbZrO3.
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modulated in corresponding period. Specifically, firstly, the
PLZST 50/50/0 has a similar way to PbZrO3, but there is a
phase difference about one d110 between A-cations and B-cations/
O-anions (Fig. 4b). The horizontal displacement of O-anions in
Fig. 4b refers to the data of odd column while its comparison to
the displacement of even column and the sum of both columns
are presented in Supplementary Fig. 7. Secondly, the PLZST 50/
45/5 shows inverse behavior to PbZrO3, i.e., B-cations move in
the opposite direction to Pb-cations while O-anions move in
accordance with A-site cations, synchronous alternation of large
positive value and small negative value (Fig. 4c). Thirdly, the
PLZST 50/37.5/12.5 presents nearly the same fashion as PbZrO3,

in which the displacement of O-anions has approximately equal
positive and negative value (Fig. 4d). Apart from the difference in
coupling behavior, the displacement amplitude of both A/B-
cation and O-anion gradually decrease with decreasing of Sn/Ti
ratio, consequently led to the decrease of intensity of 1/2{11�1}
reflections in XRD (Fig. 1a) and SAED (Supplementary Fig. 1) as
well. Of particular interest is that the displacement of O-anion
gradually changes its position with the reference of zero-line
while the A-cations maintain the unbalanced displacement in
all three compositions. Thus, the displacement of O-anion is
also strongly affected by the doping effect of B-site elements.
For instance, the stronger hybridization between B-cation and
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O-anion occurs with higher Ti content in B-site (Zr/Sn/Ti)
composition by taking account of difference in ionic radius and
electronegativity.

Accompanied with the quantitative analysis of atomic displace-
ment, the local polarization (Fig. 4 and Supplementary Fig. 8) is
calculated in terms of standard definition Ps ¼ 1

V

P
i Z

*
i , where V,

δi and Z*
i are the volume of unit cell under consideration, atomic

displacement with respect to the ideal position, and the Born
effective charge, respectively. The Z*

i values of cubic PbZrO3 in
ref. 30 are used for the PLZST system. Clearly, the horizontal Ps is
also periodically modulated because of the main contribution
from the displacement of A-cations and O-anions. The Ps of
PLZST system have been substantially suppressed compared with
PbZrO3, especially in some local areas where structural disorder
decreases the amplitude of the oxygen modulation. Thus, the
O-anions should be taken into consideration for quantitative
characterization of the polarization modulation. Nevertheless,
the Ps profiles also presents the FiE configuration in all three
PLZST compositions, being consistent with the quantitative DAB

mapping.

Structure–property correlation. According to the above struc-
tural characterizations, the interplay of FE, FiE, and AFE order-
ings and the structure-property relationship can be understood
comprehensively. Figure 5 models the ideal FiE ordering config-
urations of PLZST system compared with the AFE ordering
configuration of PbZrO3. Here, only the dominant magnitude
modulation mode is given for PLZST system. It should be noted
that the dipoles ordering configurations in PLZST system actually
have fluctuant periods and cyclic variation of magnitude, and in
particular, the dipoles tend to be zero at the transitional area
between dipole lines of different orientations (Figs. 2 and 4).
Thus, the schematic illustrations with fixed modulated period and
magnitude of dipoles in Fig. 5 are just the simplification of the
experimental observations. Clearly, the AFE ordering originates
from a couple of two-layer equivalent FE ordering segments with
opposite directions (Fig. 5a) while the FiE ordering stems from
two inversely polarized but nonequivalent FE ordering segments
whose width is composition-dependent (Fig. 5b–d). The double/

multiple hysteresis loops are so inveterate for PbZrO3-based
materials that their AFE nature has been rarely challenged due to
the similar polarization loops as observed in Fig. 5e. Nevertheless,
some electric properties can hardly be understood based on
prototypical AFE model. The FiE nature of PLZST system results
in detectable remanent polarization (Pr), which increases linearly
with the net polarization of FE segments (ΔPs). It should be noted
that although the measured ΔPs value in the FiE region of PLZST
50/50/0 is obviously larger than the one in PLZST 50/45/5, the
existence of large areas with AFE ordering (see Supplementary
Fig. 9 and circled region in Fig. 2a) eventually results in an overall
smaller Pr for PLZST 50/50/0. The modulation period (NIMS) will
increase by enlarging the FE ordering segments with decreasing
the Sn/Ti ratio, i.e., 2 rows, 3 rows, and 5 rows for PLZST 50/50/0,
PLZST 50/45/5, and PLZST 50/37.5/12.5, respectively, due to the
fact that Ti favors the ferroelectricity while Sn favors the anti-
ferroelectricity19. In this case, the interactions between the nearest
neighboring dipoles with opposite direction will decrease, which
will lead to the increased dielectric constant (ɛRT) and decreased
forward switching field (EAF), as shown in Fig. 5f and Supple-
mentary Table 1. We also correlated NIMS with Pr, εRT and EAF in
the Sr-doped PLZST system, where the similar trend was
observed (Supplementary Fig. 10 and Supplementary Table 2),
supporting the proposed correlation between modulation struc-
ture and macroscopic properties. Thus, the structure with anti-
parallel, equal and narrow FE segments is highly desired for high
energy storage application because it has low Pr and large forward
switching field. This has been strongly evidenced in PLZST 50/50/
0, which possesses the highest energy storage density of 9.82 J/
cm3 with satisfied energy efficiency of 84% (see the inset in
Fig. 5e).

In summary, the current work determines the FiE nature of
PLZST system, which has long been regarded as AFE materials.
The FiE ordering originated from two unequal FE ordering
segments with opposite directions (magnitude modulation) or
two equal FE ordering segments with different orientations (angle
modulation), which can be tailored by composition tuning, i.e.,
the Sn/Ti ratio in the studied PLZST system. The FiE ordering is
mainly attributed to the coupling between A-cations and O-
anions, which is strongly dependent on composition but has the
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the Fig. 3a–d, where the displacement are defined as negative value when it aligns to the left. The corresponding profiles for vertical component are
presented in Supplementary Fig. 8. The error bars represent the standard deviation measured from the experimental image.
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common characteristics including, (a) both A-cations and O-
anions are periodically modulated, breaking the long-range order
of equally antiparallel cation displacement and antiphase octahe-
dral tilt of the a−a−c0 system in PbZrO3; (b) the FE segments with
large/small A-cations displacement correspond to the O-sublattice
with high/low degree of y-rippling; (c) the tilt and distortion of
oxygen octahedra simultaneously occur to stabilize the IMS. The
relationship of composition, structure, and property has been
established, providing a solid ground for materials design
for numerous high/pulse power applications. In addition, the
observation of FiE configurations is expected to motivate the
exploration of AFE/FiE theories in perovskite oxides. Of particular
importance is that, the chemical-driven dipole modulation,
especially with large modulation period (Fig. 2f and Supplemen-
tary Fig. 5b), in PbZrO3-based materials may open up additional
opportunities for the emerging topological domains, such as flux-
closure, polar vortices, and polar skyrmions31–33, which up to now
can only be obtained by epitaxial strain, while the coupling
between epitaxial strain and chemical doping on the modulated
dipole ordering configurations remains an open question.

Methods
Materials synthesis. Pb0.97La0.02(Zr0.50SnxTi0.50-x)O3 ceramics with x= 0.50, 0.45,
0.375 (hereafter denoted as PLZST 50/50/0, PLZST 50/45/5, and PLZST 50/37.5/
12.5, respectively) were prepared by high temperature solid-state sintering method.
Pb3O4, ZrO2, TiO2, La2O3, and SnO2 powders with the purity of at least 99.0% were
weighted and 0.5 wt% excess PbO were added to compensate for the volatilization

of Pb during sintering. Raw materials were ball-milled for 6 h and dried at 120 °C.
Then they were calcined at 900 °C for 2 h. The PLZST powders were ball-milled
again for 24 h, dried, mixed with 6 wt% PVA as binding agent and then pressed
into pellets of 13 mm in diameter at 150MPa. Finally, the binder was burnt out at
800 °C for 2 h and the pellets were sintered at 1300 °C for 2 h.

Electric properties characterization. All samples were polished to the thickness of
0.10–0.15 mm and the silver thin film was sputtered with the diameter of 0.75mm
as electrode. The room temperature polarization-electric field (P-E) hysteresis loops
were characterized by aix ACCT TF 2000 analyzer FE measurement system (aix
ACCT Co., Aachen, Germany) at 10 Hz and different electric fields.

X-ray diffraction. The X-ray diffraction were examined by an X-ray diffractometer
(D/Max-2550V, Rigaku, Tokyo, Japan) with a Cu-Kα radiation. The slow scanning
speed (time/step: 3 s per 0.005°) was set in order to clearly observe the superlattice
reflections.

Transmission electron microscopy (TEM). TEM specimens were prepared by a
conventional approach combining mechanical thinning and finally Ar+ ion-mil-
ling in a Gatan PIPS II. The ion-milling voltage was gradually decrease from 3 keV
to 0.5 keV to reduce ion-beam damage. Specimens were then coated with a thin-
layer of carbon to minimize charging under the electron beams. The dark-field
(DF) images and select-area electron diffraction (SAED) patterns were carried out
on JEOL JEM-2100F microscope. The atomic-scale high-angle annular dark-field
(HAADF) and annular bright-field (ABF) images were carried out on Cs-corrected
JEOL JEM-ARM300F and Hitachi HF5000 microscopes. The experiment condi-
tions were: probe size in 7C mode and convergence semi-angle of 18 mrad and
collection semi-angle of 53–180 mrad (HAADF) and 10–20 mrad (ABF) for JEOL
microscope; probe size in UHR mode and convergence semi-angle of 20 mrad and
collection semi-angle of 60–320 mrad (HAADF) and 11–22 mrad (ABF) for
Hitachi microscope.
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The accurate and precise extraction of atomic column positions from HRSTEM
images permits to quantify crystal structure parameters along the selected
direction. In this case, the dipoles ordering configuration can be immediately
accessible by direct imaging of the crystal structure. In this work, the picometer-
precision fitting of atomic columns was done by MATLAB code, a least squares
estimation algorithm for accurate and precise quantification of the atomic column
positions and intensities with considering overlap between neighboring atomic
columns, which has been used in previous literatures34,35. Considering the fact that
the B-cations have very small displacement, the B-cations positions are averaged as
reference points to calculate the displacement of A-cations, B-cations, and O-
anions. The fitting of the atomic columns for A-cations, B-cations, and O-anions in
this work has a 95% confidence interval of 4 pm, 3 pm, and 7 pm, respectively. The
larger deviation of A-site columns than the one of B-site columns represents an
overestimation of the precision of the fitting algorithm due to the modulated
structure, which leads to a large fluctuation in distance between adjacent columns.
Nevertheless, the polarization maps and profiles reveal the same evolution of
modulation period with XRD (Fig. 1a), SAED (Fig. 1b and Supplementary Fig. 1)
and modulation fringes (Supplementary Fig. 3), implying that the calculation
results in this study are reliable and secure.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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