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A bilateral interfacial passivation strategy
promoting efficiency and stability of perovskite
quantum dot light-emitting diodes
Leimeng Xu1,2,3, Jianhai Li1,2,3, Bo Cai 1,2,3, Jizhong Song 1,2✉, Fengjuan Zhang1,2, Tao Fang1,2 &

Haibo Zeng 1,2✉

Perovskite quantum-dot-based light-emitting diodes (QLEDs) possess the features of wide

gamut and real color expression, which have been considered as candidates for high-quality

lightings and displays. However, massive defects are prone to be reproduced during the

quantum dot (QD) film assembly, which would sorely affect carrier injection, transportation

and recombination, and finally degrade QLED performances. Here, we propose a bilateral

passivation strategy through passivating both top and bottom interfaces of QD film with

organic molecules, which has drastically enhanced the efficiency and stability of perovskite

QLEDs. Various molecules were applied, and comparison experiments were conducted to

verify the necessity of passivation on both interfaces. Eventually, the passivated device

achieves a maximum external quantum efficiency (EQE) of 18.7% and current efficiency of

75 cd A−1. Moreover, the operational lifetime of QLEDs is enhanced by 20-fold, reaching

15.8 h. These findings highlight the importance of interface passivation for efficient and stable

QD-based optoelectronic devices.
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Lead halide perovskites possess photoluminescence quantum
yields (PLQYs) as high as 100% and narrow full width at half
maximum (FWHM) of around 20 nm, which makes them

high-profile candidates for high-quality lightings and displays1–6.
Up to now, major breakthroughs have been made in perovskite-
based light light-emitting diodes (LEDs), of which film-based
LEDs have achieved 20.3% and 21.6% of EQE at green and
infrared region, respectively7,8. As another vital part of perovskite
LEDs, QD-based LED (QLED) has obtained extensive attention
for their more flexible solution processing characteristics and
better mass production potential. Since the first device reported in
20154,9–11, perovskite QLEDs have also made great break-
throughs during the past years. For example, the red perovskite
QLEDs exhibited an EQE of 21.3% through an anion-exchange12,
which has surpassed the film-based LED in red region13. How-
beit, the maximum EQE of blue and green QLEDs is 2.8%14 and
16.48%15, respectively, which is lower than that of film-based
perovskite LEDs16,17. Consequently, it is highly desired to explore
a feasible and effective strategy to preparing the highly efficient
perovskite QLEDs.

In general, highly efficient exciton recombination in QD films
are significantly critical for high-performance QLEDs. Highly
luminescent perovskite QD films are determined by the quality of
QD materials and film constructions. As the central role, a lot of
work has been devoted to optimize the quality of colloidal QDs,
including component regulation, surface engineering and other
process optimization, which are effective to enhance the radiative
recombination of perovskite QD films. For example, the PL
properties of CsPbX3 QDs can be improved by alloying A-site
cation of FA and MA18,19, or doping the B-site metal cation of
Sn2+, Mn2+, Ce3+20–22. In addition, massive hanging bonds or
defects23,24 on QDs would reduce exciton recombination effi-
ciency. In this regard, some surface passivation routes were
applied, such as introducing the organic ligand of didodecyl
dimethyl ammonium bromide (DDAB)25,26, or passivating the
QDs with inorganic ligands27,28. The above-mentioned methods
all focus on the improvement of colloidal QDs, ignoring the
damage that the film-forming process may bring to QDs to a
certain extent. Therefore, it is also crucial to improve device
performance from the perspective of QD films.

As is known that a large part of fluorescence is lost when the
colloidal QDs transform into the QD solids, this is because
massive defects would be introduced inevitably during the film-
forming process29–31. These defects are prone to regenerate
during the device construction process on account of the highly
sensitive surface and complex interface environment, and hence
lead to the formation of non-radiative recombination centers. In
addition, these defects located on the interface between QD layer
and carrier-transporting layers would sorely affect the injection
and transportation of carriers, and degrade the device effi-
ciencies32–34. To solve the problem, a lot of film-treatment
methods have been applied to passivate the QD film, such as
proper oxygen treatment, solvent treatment, or coating organic
molecules on the interface35–38. Interface molecular passivation
has been widely used in perovskite-based device, which could not
only improve the effective radiation recombination, but also
enhance the stability6,8,39. However, most of work only focused
on the top surface of the perovskite film, few reports noticed the
importance of double-sided passivation. However, it is well
known that the perovskite layer is at the center of the sandwich
structure in practical optoelectronic devices, both the top and
bottom surface of the QD film may face the interface problems
that defects and other deposited materials can affect the carrier
behavior inside the film. Thus, the interface treatment on both
sides of perovskite QD film may provide a good way for the
depressed device efficiency and stability.

In this work, we present a bilateral passivation strategy to
reduce the interfacial defects of perovskite QD film, through
evaporating a layer of organic molecules between QD films and
carrier transport layer (CTL). The phosphine oxide molecule,
diphenylphosphine oxide-4-(triphenylsilyl)phenyl (TSPO1), was
used as the typical passivation molecule. The density functional
theory (DFT) calculations were used to reveal the decreased defect
traps and non-radiative recombination. The decreased defects
were further verified by transient TA spectra analysis and space
charge-limited-current (SCLC) method, and the improved exciton
recombination efficiency is reflected in the increased PLQY of QD
film (increase from 43 to 79%) and increased electro-optic con-
version efficiency (the current efficiency of QLEDs increase from
20 to 75 cd A−1, and the maximum EQE from 7.7 to 18.7%). In
addition, the comparison experiments of unilateral and bilateral
passivation were conducted to demonstrate the necessity of pas-
sivating both interfaces. Besides TSPO1, a series of other organic
molecules used in this system also achieved impressive results,
which showed the universality of this bilateral passivation method.
Moreover, profiting from the strong interaction with perovskite
and blocking between perovskite and CTL, bilateral-passivated
molecules endow the films and LEDs with enhanced stability. For
example, a 20-fold enhancement in the T50 operational lifetime
(from 0.8 h to 15.8 h) was observed. Our study demonstrates that
defects on the interface between the QD films and charge trans-
porting layers are detrimental for devices, which can be hopefully
suppressed by bilateral passivation. The findings highlight the
importance of passivation on both interfaces of QD films for
constructing high-performance perovsktie QLEDs as well as other
QD-based optoelectronic devices, including solar cells, and
phodetectors.

Results
Bilateral passivation strategy and theoretical model. The high
density of dangling bonds and uncoordinated atoms (e.g. Pb
and/or halide vacancy) caused by solvent evaporation and lost
surface ligands is responsible for the traps and non-radiative
recombination, which degrade the PL emission and device
performances40,41. In this regard, we propose a bilateral passi-
vation strategy through evaporating organic ligands on both
top- and bottom-side of perovskite QD film, the theoretical
model passivated with TSPO1 as typical ligand was shown in
Fig. 1a. The interaction between uncoordinated Pb and P=O
from TSPO1 was deemed to be the key factor that passivate the
defects of QD films, which would be further discussed later. In
the device, those defects mentioned above would capture elec-
trons and holes, thus resulting in low device efficiency (Fig. 1b).
Meanwhile, these defects could provide ion migration channel
that might accelerate the degeneration of device, causing the
poor stability42. Based on the bilateral-passivated QD film, we
further designed the optimized device with TSPO1 on both top-
and bottom-side of QD films which was expected to passivate
the defects, decrease non-radiative recombination, and thus
improve the device performances (Fig. 1c).

The theoretical calculation based on aforementioned model in
Fig. 1a was applied to verify the conjecture. The forming energy
between Pb and O from TSPO1 was −1.1 eV calculated by
density functional theory (DFT), which showed that the
interaction between surface Pb and O= P could be easily formed.
Furthermore, the calculated density of states (DOS) was also
applied to assess the passivation action of TSPO1. We performed
DFT calculations assuming a PbBr2-rich CsPbBr3 surface, in
which non-coordinating Pb atom located outside surface. The
DOS curves of the TSPO1-passivated and pristine structures are
reversed to provide an intuitive comparison plotted in Fig. 1d and
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Supplementary Fig. 1. The DOS of the unpassivated surface
showed significant trap states on the band edge, which is due to
the non-coordinating Pb atom. While, the trap states in QD films
after passivating by TSPO1 was greatly weaken, which indicated
the TSPO1 could effectively passivate defects, eliminate the trap
states, and prevent the trapping of carriers.

In addition to passivating defects, the P=O has strong
interaction with surface Pb atom, which could prevent the loss of
ligands from electric field. The weak adhesion of surface ligands
on perovskite QD is responsible for defect regeneration43. We
compared the bond order between surface Pb atom and several
functional group of common organic ligands (TSPO1, sulfydryl,
carboxyl and amidogen ligands), as shown in Fig. 1e. It could be
seen that carboxyl and amidogen ligands (such as oleic acid and
oleylamine) cannot bond with Pb atom, which is responsible for
the poor stability and attenuating luminescence. However,
phosphorus oxygen groups exhibited stronger interaction with
Pb (bond order is 0.2) compared to other groups, which could
suppress the regeneration of defects. The regenerative defects
might act as the ion migration channel that was detrimental to
stability. Meanwhile, the tough passivation layer could also block
the ion migration and damage to perovskite from the transport
materials at the interface, leading to better device stability.

Characterization of perovskite QD films. We investigated per-
ovskite films based on CsPbBr3 QDs synthesized by the typical
hot-injection method3,4. The as-synthesized QDs had a cubic and
uniform morphology with the size of 8 nm and the QD ink exhibit
excellent PL properties with a PLQY of 85 ± 3% and a FWHM of
20 nm (Supplementary Fig. 2). Nevertheless, the light emission of
the film exhibited a sharp decline due to the formation of non-
radiative recombination centers during the film-forming process.
The QD films are shown in Fig. 2a, and the schematic diagrams

present the passivating location of the TSPO1 molecules. The
photogragh of QD film under UV lamp exhibits that the naked
CsPbBr3 QD film shows a dim glow compared to colloidal QDs.
While, the emission is significantly enhanced after passivating
TSPO1 at the interface of QD film, the up-side passivation shows
better improvement than bottom passivation because the exposed
upper surface faces severer challenge. Eventually, the bilateral-
passivated film exhibits the brightest glow. It means that the
passivation on both up- and bottom-side of QD film is necessary,
traps are effectively passivated by TSPO1. The interaction between
TSPO1 and perovskite was confirmed by Fourier transform
infrared (FTIR) spectroscopy (Fig. 2b), in which the characteristic
peak at 1188 cm−1 was observed for TSPO1, corresponding to the
stretching vibrations of P=O bond. It can be found that the P=
O peak drifts to about 1184 cm−1 in the QD films, which indicates
that the bonding between TSPO1 and perovskite QD can be
formed6,44. In addition, X-ray photoelectron spectroscopy (XPS)
results showed that Pb 4 f peak shifts towards higher binding
energy (BE) of about 0.2 eV for TSPO1-passivated QD films in
reference to unpassivated one (Fig. 2c). It also unveiled the che-
mical bonding between P=O group and Pb atom, which is due to
the coordination between electronegative O− and uncoordinated
Pb2+, leading to higher binding energy for Pb 4 f. This showed
that Pb atom on QD films indeed had interaction with O of
TSPO1, which was consistent with the calculated results.

The steady-state PL spectra of above QD films were presented
in Fig. 2d, which showed that PL intensity of the QD films were
greatly enhanced with PL peaks remaining unchanged after
TSPO1 passivation. It means that the TSPO1 effectively improve
the radiative recombination without altering the structure of
perovskite QDs. The absolute PLQY of QD films under different
passivation strategy were tested to further evidence the increased
exciton recombination efficiency, as shown in Fig. 2e. It could
be seen that PLQY of naked QD film exhibited a sharp decline to
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43 ± 4% versus colloidal QDs. The low PLQY could be greatly
improved with increasing TSPO1 passivation thickness. However,
the optimization effect was saturated when the TSPO1 thickness
reached a certain value because the defects were passivated
adequately at this level. Compared to passivation on bottom, top-
side passivaion exhibited better optimization due to the exposed
upper surface. While, unilateral passivation only was not as
effective as the bilateral passivation. The maximum PLQY of QD
film could be increased to 79 ± 3% under bilateral passivation,
which indicated more efficient electron−hole recombination in
the passivated QD films. From above results, although single-side
interface passivation can also improve the performance of QD
film, treatment on both sides is more effective.

Reduced non-radiative recombination in bilateral-passivated
perovskite QD film. Ultrafast exciton dynamics analysis was
carried out to make a further insight into the promotion effect of
TSPO1 passivation for PL properties. Both QD films showed
photo-bleaching peaks at around 515 nm (Supplementary Fig. 3a
and 3b) corresponding to their energy band structure, which are
consistent with the steady-state PL peak. From the entire
bleaching color mapping, no extra bleaching signal appears after
passivated by TSPO1, indicating no associated energy transfer
process occur between TSPO1 and QDs. In order to parse these
blending spectral profiles, the characteristic decay-associated
spectra (DAS) of QD film was obtained through a global fitting
analysis (Fig. 3a, b). The extracted time constants were as follows:
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τ1= 0.86 ± 0.01 ps, τ2= 22.41 ± 0.11 ps, and τ3 > 250 ps for the
pristine QD films, while τ1= 0.73 ± 0.02 ps, τ2= 16.91 ± 0.12 ps,
and τ3 > 250 ps for the passivated sample. The above decay
parameters mainly express the following three processes of
excitons:20,45 hot-exciton relaxation process in the band (τ1),
exciton trapping to the trap states at band edge (τ2), exciton
recombination (τ3) as presented in Fig. 3c inset. Apparently, the
first two processes of the passivated sample were accelerated
compared to the unpassivated one, which demonstrated that
TSPO1 facilitated the state coupling related to the relaxation
processes. The TSPO1-passivated QD films with a shorter lifetime
of τ1 and τ2 indirectly indicated the τ3 would be longer. The
comparison of decay time τ3 indicated that the TSPO1-passivated
QD films exhibited a slower kinetic recombination delay (Fig. 3c),
which reflected a lower density of surface defect trap states in the

films. Thus, the surface defect related non-radiative recombina-
tion was suppressed by TSPO1.

Typically, the trap states on the interface of QD films would
increase the non-radiative recombination of excitons, leading to
the shorten lifetime. Therefore, passivating the interface of QD
films would make a profitable impact on the carrier lifetime, thus
conduce to the prolonged exciton lifetime. In order to compare
the difference, time-resolved PL mapping of QD films was
conducted as shown in Fig. 3d, e. The conspicuous improvement
in the PL decay lifetime absolutely indicated surface defect
passivated by TSPO1. Resultantly, the TSPO1-passivated films
showed an average lifetime of approximately 13.9 ns longer than
that of approximately 6.7 ns for primal QD films (Supplementary
Fig. 4). These findings imply that TSPO1 effectually reduce the
non-radiative recombination centers on the QD films.
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Performance improvement in bilateral-passivated perovskite
QLED. The QLED device structure with multilayer of indium tin
oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly-(styrenesul-
fonate) (PEDOT:PSS)/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)
amine] (PTAA)/QDs/1,3,5-Tris(1phen-y-1H-benzimidazol-2-yl)
benzene (TPBi)/LiF/Al is used to evaluate the electro-
luminescence performance (Fig. 4). In order to demonstrate the
necessity of bilateral passivation, three passivated structure, QDs/
TSPO1, TSPO1/QDs, TSPO1/QDs/TSPO1, were designed in
QLEDs. Figure 4a–d presented the carrier transportation and
recombination process of unilateral-passivation only device

(QDs/TSPO1). We observed the increasing TSPO1 thickness
partly decreased the electrical properties of the device possibly
due to the relative poor carrier mobility, compared with the TPBi
(Fig. 4b and Supplementary Fig. 5). However, the luminance was
obviously enhanced under TSPO1 passivation, which reflected the
higher exciton recombination efficiency to some extent (Fig. 4c).
In particular, the device with 2 nm TSPO1 exhibits the highest
luminance, which reaches a maximal value greater than 14000 cd
m−2 at 6.8 V. The device after passivation exhibited higher
luminance and lower current density under the same voltage
driven, which indicated the device had a higher electro-optic
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conversion efficiency. For example, the current efficiency of the
device with 2 nm TSPO1 was 63.1 cd A−1 (Supplementary Fig. 6),
higher than that of the control device. Accordingly, the passivated
device exhibited a higher EQE with a peak value of 13.5% in
Fig. 4d, which was higher than the un-passivated one (EQE of
7.7%). It could be seen that TSPO1 passivation could effectively
improve the radiative recombination and enhance the perfor-
mance of perovskite QLEDs.

Correspondingly, the unilateral passivation only on the other
interface of QD film (TSPO1/QDs) was also constructed as
shown in Fig. 4e. The current density decreased with increasing
thickness of passivation layer, which exhibited the same trend as
the foregoing results. While the brightness of the device was
enhanced profiting from the effective passivation by TSPO1, the
maximum luminance reach 11000 cd m−2 at 6.8 V when the
thickness of TSPO1 was 2 nm. The bottom-passivated device also
obtained improved electro-optic conversion efficiency that was
reflected on lifted current efficiency and EQE in Supplementary
Fig. 7 and Fig. 4h. Under the 2 nm TSPO1 between QDs and
PTAA, the current efficiency increased to 43 cd A−1, and EQE
increased to 10.2%. Compared to TSPO1 passivation between QD
and TPBi, the PTAA/TSPO1/QD model did not achieve the same
significant optimization effect, because TSPO1 was reported to be
a partial electron transport material46 that made it perform better
at the interface between QDs and ETL. From the above results,
either the upper-side or the bottom-side passivation by TSPO1
can successfully improve the device efficiency, which means that
passivation on both upper and lower interfaces of QD film is
necessary.

Indeed, unilateral passivation has achieved good results,
however, if we passivate the top and bottom interfaces of the
QD film with TSPO1 simultaneously, can we improve the
performance of the device by another level? Therefore, we further
constructed the bilateral passivation devices with 2 nm TSPO1 on
both upper and lower sides of perovskite QD film as shown in
Fig. 4i. As expected, the bilateral TSPO1 passivation made
remarkable improvement in device performance (Fig. 4j–l).
Figure 4j presented the current density and luminance vs. voltage
curves, bilateral TSPO1 further reduced the current density for
the lower carrier transport ability of TSPO1. Nevertheless, the
exciton recombination efficiency could be greatly improved
through bilateral passivation. The maximal luminance was
enhanced to 21,000 cd cm−2, which is much higher than
unilateral passivated devices. Meanwhile, the current efficiency
was increased to 75 cd A−1 (Fig. 4k), and the maximal EQE
reached 18.7%, which achieved an improvement of 140%
compared to unpassivated device (Fig. 4l). The EL spectra did
not shift after passivation, the optimized devices and controlled
one both exhibit the EL peak centered at 516 nm with a FWHM
of 20 nm (Supplementary Fig. 8). It indicated that the passivation
layer would not affect the crystal structure of perovskite.
Furthermore, no spectrum drift was observed under the driving
of different voltages (Supplementary Fig. 9). It can be seen that
interface passivation is an available strategy to improve the device
performance, and compared to unilateral passivation, bilateral
passivation provides a better option for highly efficient LEDs.

Performance of bilateral-passivated perovskite QLEDs with
various organic molecules. Here, we were trying to offer a uni-
versal bilateral passivation strategy for perovskite LEDs, thus,
besides TSPO1, a series of organic molecules with various func-
tional groups, including DPEPO, TPPO (~P=O), DMAC-DPS
(~S=O), nitrosobenzene (~N=O) and benzophenone (~C=
O), were also applied in the bilateral-passivated device structure.
Figure 5a exhibited the schematic diagram of the bilateral-

passivated device structure and its corresponding TEM image of
the sectional view. The schematic structures of these organic
molecules are listed in Fig. 5b and Supplementary Fig. 10. In
addition to N=O would seriously damage the perovskite QDs
and QD film, other molecules could improve the QLED perfor-
mances to varying degrees (Fig. 5c, d and Supplementary Fig. 11),
of which P=O and S=O performed better. Compared to con-
trolled device, the bilateral-passivated QLEDs with P=O and
S=O based molecules showed higher brightness under same
current density (Fig. 5c), which demonstrated increased radiative
recombination. Meanwhile, the improved conversion efficiency
was revealed by the average peak current efficiency and EQE
(Fig. 5d, e) from 20 devices. The device performance parameters
through bilateral passivation strategy with these organic mole-
cules were summarized in Table 1. The current efficiency of
passivated devices was over 60 cd A−1, and the average EQE of
devices passivated by TSPO1, DPEPO and TPPO was over 15%.
These results indicate bilateral passivation strategy are generalized
and feasible for passivating the defects on the surface of QD films,
and increasing the exciton recombination.

Improved stability of bilateral-passivated QLED. The defects on
the interface of QD films evolve into the channels of ion migra-
tion, degrade the exciton recombination and emissive properties,
which would make it poor stability, being the same as the
situation observed in analogous film-based solar cells42,47. Apart
from enhancement in exciton recombination (e.g. PL and EL
efficiency), bilateral passivation can enhance the material and
device stabilities. We compared the PL attenuation of unilateral
passivated, bilateral passivated and pure QD-based films under
continuous illumination (365 nm) in ambient air with RH 40%.
The PL emission intensity of bilateral-passivated film remained
exceed 85% of the original value for 10 h, the unilateral passivated
film remained 70%, while the pure QD films lost 60%, as evi-
denced in Supplementary Fig 12. Furthermore, the operational
luminance stability and voltage shift of the devices based on QDs
passivated with and without passivation was measured at a con-
stant current density with an initial luminance of about 1000 cd
m–2 (Fig. 6a, b). The pristine device exhibited a short T50

operational lifetime of 1.4 min and a large operational voltage
shift. Compared with the control devices, the unilateral passivated
devices showed a lower shift in its operational voltage, and
exhibited a longer T50 of 14 min. Through bilateral passivation,
we achieved a great improvement with T50 of 30 min, which is 20
times longer than the controlled device. These results demon-
strate that bilateral passivation is essential for device stability.
And by using the relation L0nT50= const. (n= 1.5)48, T50 for
controlled and passivated device at 100 cd m–2 is predicted to be
47 min and 15.8 h, respectively.

Furthermore, we compared the operational lifetime of
controlled and bilateral-passivated device under different initial
luminance (Fig. 6c, d). When the initial luminance was 1000 cd
m–2, the pure QLED exhibited a T50 lifetime of 1.4 min with
current density of 10 mA cm–2, while the bilateral-passivated
device owned a greatly improvement of 30 min with current
density of 1.5 mA cm–2. Under higher luminance of 5000 cd m–2,
the lifetime of pure device was 40 s with current density of 84 mA
cm–2, relatively, the lifetime of passivated one was 7.2 min, where
the current density was 10 mA cm–2. Moreover, higher brightness
at 7000 cd m–2 (the highest luminance) and 10000 cd cm–2 was
also tested for pure QLED and passivated QLED respectively. The
unpassivated device showed a quick quenching within 30 s at high
current density of 243 mA cm–2. The bilateral-passivated one had
a T50 of 3.4 min, and the current density under 10,000 cd cm–2

luminance was only 30 mA cm–2. From the above results, we
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could conclude that the higher luminance (higher current
density), the faster the device decays for the same device.
Compared to unpassivated one, the bilateral-passivated device
need less current when reaching the same brightness, which may
be also responsible for the better stability, it also illustrates its
more effective radiation recombination. In general, bilateral
passivation is an effective strategy to enhance the exciton
recombination efficiency and increase the material and device
stabilities.

Decreased defects in bilateral-passivated device. The enhanced
exciton recombination of QD films with bilateral passivation
(TSPO1 as example) as analyzed in Fig. 7. The defect trap is
highly crucial for the exciton recombination. Thus, to accurately
evaluate the trap density in these devices, electron-only device
with a ITO/TPBi/QDs/TPBi/LiF/Al architecture and hole-only
device with a ITO/PEDOT:PSS/PTAA/QDs/TPD/Al architecture
were constructed (Fig. 7a, c), the construction details were pre-
sented in supporting information. The SCLC method was
employed to estimate the trap densities of the QD films49,50. The

marked change of the current injection could be used to identify
the trap filling process (I ∝ Vn). As the bias increase, the trap
states are gradually filled until reaching the trap-filling limit
voltage (VTFL). The trap density was calculated by51

ntrap ¼
2ε0εVTFL

eL2
; ð1Þ

where ε is the relative dielectric constants of CsPbBr3 (≈22)52, ε0
is the vacuum permittivity, L is the thickness of QD films, and e is
the elementary charge. VTFL is obtained by fitting the above I–V
curves (Fig. 7b, d). The electron trap density for the initial and
bilateral-passivated QD films was calculated to be 2.12 × 1018

cm–3, and 1.05 × 1018 cm–3, respectively. While, the hole trap
density was reduced from 6.7 × 1018 cm–3 to 3.08 × 1018 cm–3

after passivation. The passivated QD films presented lower carrier
trap density. In addition to SCLC, DLCP method was also applied
to test the trap density (Supplementary Fig. 13), which also
demonstrated that the trap density of bilateral-passivated device
was effectively decreased. From the above results, passivation
layer could effectively reduce the defects, which is responsible for
reducing non-radiative recombination, resulting in higher radia-
tion efficiency.

The effects of passivation molecules on defect state of QD films
are further clarified carrier dynamic under illumination. As
schemed in the inset of Fig. 7e, f, before passivation, the defects
easily exist at the interface and capture carriers, which would affect
the carrier transport channel related to complex trapping/detrap-
ping processes. While, once the defects are passivated, interface
would provide a flat channel for carrier transportation. The
interfacial defect trapping/detrapping processes can be qualitatively
clarified by photo-excited transient current response measure-
ment53–56. As shown in Fig. 7e, we could find that photo-generated
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Table 1 Device performance for QLED with different
passivation molecules.

Sample Lmax (cd cm−2) Current efficiency (cd A−1) EQE (%)

Control 7000 20 7.7
TSPO1 21000 75 18.7
DPEPO 20000 66 17.1
TPPO 18000 71 17.8
DMAC-DPS 13700 63 12.8
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current of the unpassivated QD films showed slower turn-on and
turn-off dynamics than that of passivated QD films under the same
test condition. The slowly steadying of transient response process
(Fig. 7f) in primitive QD films could be ascribed to the time taken
for the defect trapping/detrapping processes to reach steady state
after under the light switching (turn-on/off). Relatively, the quickly
reaching the steady state indicate that the density of defects in
passivated QD films is greatly depressed.

Discussion
In summary, the bilateral passivation strategy demonstrated in
this work results in effectively controlling the surface states of QD
films. We introduced a layer of organic molecules (e.g. P=O,
S=O and C=O) on both top- and bottom-side interface of QD
films to reduce the defect density and suppressed the non-
radiative recombination. The decreased defects of the QD films
are clarified by transient photocurrent measurements, SCLC and
DLCP method. The passivated QD films exhibit high exciton
recombination features with a PLQY of 79%, and the corre-
sponding LEDs have a high electro-optic conversion efficiency
with the EQE of 18.7%. Interestingly, the passivation approach
makes the QD materials and LEDs exhibit a higher stability. For

example, a T50 operational lifetime of 15.8 h for QLEDs based on
QD films passivated by TSPO1 is a factor of 20 longer than the
control devices. The proposed bilateral passivation strategy can be
widely applied to other types of perovskite materials, and other
optoelectronic devices including solar cells, and photodetectors.

Methods
Chemicals. PbBr2 (99.99%), Cs2CO3 (99.9%), oleic acid (OA, AR), oleylamine
(OAm, AR) were purchased from Macklin Inc. Hexane, toluene, and ethyl acetate
were analytical grade and were purchased from Aladdin Inc. Poly (bis(4-phenyl)
(2,4,6-trimethylphenyl) amine) (PTAA), and 1,3,5-Tris(1-phenyl-1H-benzimida-
zol-2-yl)benzene (TPBi) were purchased from Xi’an Polymer Light Technology
Corp. (PLT). All reagents were used as received without further purification.

Synthesis of CsPbBr3 QDs. 0.2 g PbBr2 were loaded in a 100 mL four-neck flask
containing 15 mL of octadecylene (ODE), 3 mL of oleylamine (OAm) and 1.5 mL
of oleic acid (OA), after degassed 10 min at 100 °C, maintained at this temperature
and continued mixing for 30 min, and then heated to 170 °C in 10 min under Ar
flow. 0.55 mL cesium stearate (CsSt)/ODE solution (0.15 M) was injected quickly,
5 s later, the production was rapidly cooled to RT by the ice-water bath. The
resultant QDs were precipitated by 40 mL of ethyl acetate and extracted through
centrifugation. The collected precipitate was further dispersed in toluene/hexane,
add extra ethyl acetate for the second purification, the final precipitate was col-
lected via centrifugation and re-dispersed in n-octane/hexane for further use.
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Device fabrication. PEDOT:PSS solutions (Baytron P VPAl 4083, filtered through
a 0.22 μm filter) were spin-coated onto the ITO-patterned glass substrates at 4000 r.
p.m. for 60 s and baked at 140 °C for 15 min. PTAA (5 mg/mL in chlorobenzene)
and CsPbBr3 QDs (20 mg/mL in n-octane) were deposited layer-by-layer via spin
coating at 2000 r.p.m. for 60 s. Before deposing the next layer, PTAA and QD
layers were baked at 120 °C for 15 min and 60 °C for 10 min, respectively. The
passivation molecules on the top and bottom of QD films, TPBi (40 nm), and LiF/
Al electrodes (1 nm/100 nm) were deposited through thermal evaporation with a
shadow mask under a high vacuum of ~2 × 10−4 Pa. The light-emitting area of the
device was 4 mm2 as defined by the overlapping area of ITO and Al electrodes.

Characterization measurements. The PL spectra of the QD films were obtained
by using a Varian Cary Eclipse spectrometer. The PL stability test was performed
with a continuous laser under 365 nm excitation at 4 mW cm–2 power density. All
the samples were tested in air. FTIR measurements were performed using a Shi-
madzu IR Prestige-21 instrument, with a resolution of 4 cm−1.The absolute PLQY
was measured using a Horiba Fluorolog system equipped with a single grating and
a Quanta-Phil integration sphere coupled to the Fluorolog system. The TRPL decay

lifetimes were acquired via a monochromator/spectrograph (Omni-λ300, Zolix)
and an oscilloscope (GDS-3354, GWINSTEK). The ultrafast transient absorption
(TA) measurements were performed on a femtosecond (fs) pump-probe system
(Helios, Ultrafast System LLC) under ambient conditions. The pump pulses (center
wavelength 400 nm, ~20 nJ pulse−1 at the sample cell) were delivered by an optical
parametric amplifier (TOPAS-800-fs) excited by a Ti:sapphire regenerative
amplifier (Legend Elite-1K-HE; 800 nm, 35 fs, 3 mJ pulse−1) seeded with a mode-
locked Ti:sapphire laser system (Micra-5) and pumped with a Nd:YLF laser
(Evolution 30). The time delay between the pump and probe pulses were varied by
a motorized optical delay line (maximum ~8 ns). The photo-excited transient
response measurement was conducted by using a 442 nm continuous laser con-
trolled by a shutter.

Device tests. The EL spectra, L–J–V characteristics and EQE were collected by
using a Keithley 2400 source, a fiber integration sphere, and a PMA-12 spectro-
meter for light output measurements in glovebox filled with N2 and at room
temperature (the measurements equipment is designed by Hamamatsu Photonics
Co., Ltd.). T50 lifetime is the time over which the device luminance drops to 50% of
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the initial value. All of the measurements have been carried out in N2 without
encapsulation. Devices were driven by a Keithley 2400 source meter at constant
current, and luminance intensity that proportional to photocurrent was measured
with a commercial photodiode biased at 0 V.

First-principles calculation. First-principles calculation was performed in the
framework of density functional theory as implemented in the VASP program. The
generalized gradient approximation (GGA) formulated by Perdew, Burke, and
Ernzerhof (PBE) was used as the exchange-correlation functional to optimize the
structure and simulate density of states (DOS). The electronic wave functions were
expended in plane-wave basis sets with a kinetic energy cutoff of 400 eV. The
Monkhorst–Pack k-point meshes with a grid spacing of 2π × 0.04 Å−1 or less were
used for electronic Brillouin zone integration. The equilibrium structural para-
meters (including both lattice parameters and internal coordinates) of each
involved material were obtained via total energy minimization by using the
conjugate-gradient (CG) algorithm, with the force convergence threshold of 0.01
eV Å−1. To properly take into account the long-range van der Waals interaction
that plays a non-ignorable role in the perovskites involving organic molecules, the
DFT-D3 method was adopted. Hybrid functional HSE06 was used to correct DOS
results because GGA-PBE usually underestimates conduction bands.

The binding energy Eb is defined as

Eb ¼ Eperovskiteþmolecule � Eperovskite þ Emolecule

� �
; ð2Þ

where Eperovskite + molecule, Eperovskite, and Emolecule are DFT calculation energies of
perovskite anchoring molecule, perovskite, and single P=O molecule, respectively.
In addition, 3 × 3 × 1 supercell of perovskite surface model was adopted to screen
the interaction between two molecules.

Data availability
Source data are provided with this paper. Additional data related to this study are
available from the corresponding authors on reasonable request.
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