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Mitochondrial dynamics quantitatively revealed by
STED nanoscopy with an enhanced squaraine
variant probe
Xusan Yang 1,7,8✉, Zhigang Yang 2,8✉, Zhaoyang Wu 1,8, Ying He2, Chunyan Shan 3,4, Peiyuan Chai3,

Chenshuo Ma5, Mi Tian2, Junlin Teng 3, Dayong Jin 6, Wei Yan2, Pintu Das2, Junle Qu 2✉ &

Peng Xi 1,6✉

Mitochondria play a critical role in generating energy to support the entire lifecycle of bio-

logical cells, yet it is still unclear how their morphological structures evolve to regulate their

functionality. Conventional fluorescence microscopy can only provide ~300 nm resolution,

which is insufficient to visualize mitochondrial cristae. Here, we developed an enhanced

squaraine variant dye (MitoESq-635) to study the dynamic structures of mitochondrial

cristae in live cells with a superresolution technique. The low saturation intensity and high

photostability of MitoESq-635 make it ideal for long-term, high-resolution (stimulated

emission depletion) STED nanoscopy. We performed time-lapse imaging of the mitochondrial

inner membrane over 50min (3.9 s per frame, with 71.5 s dark recovery) in living HeLa cells

with a resolution of 35.2 nm. The forms of the cristae during mitochondrial fusion and fission

can be clearly observed. Our study demonstrates the emerging capability of optical STED

nanoscopy to investigate intracellular physiological processes with nanoscale resolution for

an extended period of time.
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The term mitochondria comes from the Greek words mito
(particle) and chondria (lines), which describe their various
structural characteristics in live cells. Their various struc-

tural characteristics can reflect a number of cell activities, such as
proliferation, migration, and resistance to therapy1. Inside mito-
chondria, ATP is synthesised at the folds in the inner membranes
called cristae. The size of a mitochondrion is usually ~1 μm in
diameter and 4–10 μm in length, whereas the distance between
the cristae in mitochondria is ~100 nm, which means imaging
with a resolution far below 100 nm is necessary to visualise the
gaps between mitochondrial cristae. However, limited by the
diffraction of light, conventional optical microscopy techniques
are insufficient to visualise the sub-mitochondrial structures
(cristae) and their dynamics2.

A variety of superresolution techniques have been utilised to
visualise submitochondrial structures. For example, Jans et al.3

discovered the mitochondrial inner membrane organizing system
(MINOS) with STED. With 3D-STED, Schmidt et al.4 imaged
mitochondrial cristae with isotropic resolution. Using 3D sto-
chastic optical reconstruction microscopy (STORM), Huang
et al.5 showed the 3D ultrastructure of the mitochondrial network
in a fixed cell. Furthermore, to resolve the dynamics of mito-
chondria in living cells, Shim et al.6 developed lipophilic cyanine
dyes, while Tang et al.7 developed a photoactivatable Znsalen
complex. Ishigaki et al.8 reported the rich dynamics of mito-
chondria with a rhodamine derivative. However, because they are
limited by spatial resolution, the cristae can only be visualised as
lamellar curtain-like structures. In both cases, the spatial resolu-
tion was insufficient to distinguish individual cristae for further
analysis. Danielli et al.9 demonstrated label-free third-order
photoacoustic (PA) nanoscopy of the cytochromes in the inner
mitochondrial membrane in fibroblasts with a resolution of
88 nm. Recently, we reported the use of Hessian structured illu-
mination microscopy (SIM) to investigate mitochondrial
dynamics, in which the cristae can be clearly visualised10. Even
though Hessian-SIM features a fast imaging speed, the highest
spatial resolution (~90 nm) is still insufficient to measure the sizes
and distances in cristae during their evolution11. The high spatial
resolution (~50 nm) and temporal resolution (~1 frame per s) of
STED make it the most promising choice for the study of mito-
chondria, which are akin to tiny cells inside the host3,4,12,13.

Two constraints prohibit STED from being used for long-term
live-cell imaging. First, cells have limited tolerance to light
exposure due to phototoxicity. Mitochondria are more sensitive
to light than other cellular organelles; excessive light exposure can
cause mitochondrial dysfunction and mitophagy14–16. Second, for
STED nanoscopy, high-intensity light is required to achieve
improved resolution because the fluorescence in the donut area
must be converted to stimulated emission through high-power
laser illumination17. Moreover, the existing dyes for labelling
mitochondria (such as the MitoTracker dyes) have a practical
disadvantage, as they are not photostable enough to endure long-
term STED imaging at high resolution8,18. With the recently
developed SNAP substrates and benzylguanine derivative tags,
Bottanelli et al.19 imaged mitochondria and the ER network with
two-colour STED for 36 s. The Testa group demonstrated 3D
nanoscale imaging of the mitochondrial outer membrane labelled
with rsEGFP2-Omp25 (8 vol for 26 s)20.

To address the challenges in long-term STED live-cell nano-
scopic imaging, in this work, we have developed a squaraine dye
derivative (MitoESq-635) that is compatible with live cells. The
primary advantage of this dye is that it can be easily depleted by a
STED laser at relatively low power, which allows the cells to stay
in their native state during STED imaging. With this MitoESq-
635 STED dye, we achieved a spatial resolution of 35.2 nm during
time-lapse imaging of mitochondrial cristae dynamics. The fusion

and fission processes can be clearly visualized. Moreover, even the
evolution of the cristae structure can be observed over time,
which is impossible with other current imaging techniques.
Because it benefited from the photostability of MitoESq-635, 3D
stack STED imaging of a HeLa cell was demonstrated. Because it
enables dynamic imaging of mitochondrial cristae with super-
resolution, we believe that the MitoESq-635 dye will be widely
utilised for the study of mitochondria-related cell behaviours and
the discovery of the origin of mitochondria.

Results
Imaging live cells with a modified squaraine dye. We have
recently developed an enhanced squaraine variant dye (MitoESq-
635) for the labelling of mitochondria in live cells. Its chemical
structure is shown in Fig. 1a. It can be excited at 635 nm with 775
nm STED (Fig. 1b). A hexylamidophenylarsenicate moiety is
conjugated to the sulfide atom at the central position of the four-
membrane ring in the squaraine dye (Supplementary Note 1),
which can potentially be used as a protein label for the mito-
chondrial membrane or other organelles in live cells (Supple-
mentary Note 2). Due to the fast binding of phenylarsenicate to
vicinal dithiols and the prioritised targeting of mitochondria by
the dye molecules, incubating live cells with MitoESq-635 for a
few minutes is sufficient to label the mitochondrial membrane
with high density. Vicinal-dithiol-containing proteins (VDPs)
containing two active thiol groups in the vicinity can be cova-
lently labelled by a phenylarsenicate conjugate21,22. To verify that
the enhanced squaraine variant VDP probe (MitoESq-635 in
Fig. 1a) is specifically bound to the membrane proteins in the
mitochondria, HeLa cells treated with MitoESq-635 for 5 min
were imaged with a confocal laser scanning microscope. Imaging
to detect MitoESq-635 and MitoTracker colocalization in HeLa
cells suggested that the probe was mainly concentrated in mito-
chondria (Supplementary Figs. 1–3). During colocalization stu-
dies with ER and lysosome trackers, some localisation within the
ER was also observed23. Additionally, MitoESq-635 is widely
compatible with different cell lines, such as HeLa, MCF7, RAW
264.7, U2OS and primary neuron cells (Supplementary Fig. 4).
The covalent binding of MitoESq-635 with mitochondrial VDPs
was further verified by SDS-PAGE, fixed cell washing and colo-
calization experiments (Supplementary Figs. 5 and 6, Supple-
mentary Note 3).

Photostability and stimulated emission saturation intensity of
the modified squaraine dye. MitoESq-635 exhibited a maximum
molar absorption coefficient in H2O, 0.59 × 105 L mol−1 cm−1, at
635 nm. The fluorescence quantum yield (Φx) and lifetime
depend on the polarity of the solvents (Supplementary Fig. 7a–c
and Supplementary Note 4). MitoESq-635 has an emission peak
at 670 nm with a quantum yield (Φx= 0.25) in dimethylsulfoxide
(DMSO). Due to the acceleration of the nonradiative decay
processes from the lowest excited singlet state, the fluorescence
quantum yield and lifetime are quite lower in water and PBS than
values of these parameters in organic solvents (e.g., DMSO). The
fluorescence lifetime of MitoESq-635 was measured to be 1.7 ns
after labelling the mitochondria of HeLa cells (Supplementary
Fig. 7d–g). Compared with gold standard live-cell mitochondrial
probes, MitoESq-635 exhibits much more robust photostability
when exposed to a focused laser during confocal microscopy
(MitoTracker Green) and during STED nanoscopy (MitoTracker
DeepRed, Fig. 1d, e). With MitoESq-635, rare photobleaching and
mitochondrial shape variations are observed upon exposure to
STED scanning for over 100 s (1 s per frame, imaging time: 0.66 s,
recovery time: 0.34 s, STED beam: 30.2 mW at 775 nm), as shown
in Fig. 1e. Under the same imaging conditions, in contrast, the
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fluorescence signal from MitoTracker Green dropped very
quickly due to significant photobleaching (>70% in 100 scans,
Fig. 1e), making it unsuitable for long-term live-cell STED ima-
ging. Supplementary Fig. 8 shows a similar result: MitoESq-635
exhibited much more robust photostability than MitoTracker.
When the STED power is reduced, data was successfully acquired
by using MitoESq-635 with STED imaging over 200 frames for
10 min (3 s per frame, imaging time: 2.58 s, recovery time: 0.42 s,
STED beam of 8.96 mW at 775 nm), as shown in Supplementary
Movie 1 and Supplementary Note 5.

ATTO 647N is the standard fluorescent label in the red spectral
region commonly used for STED nanoscopy because of its strong

absorption, high photostability and high resolution at relatively low
STED power. However, the squaraine-STED dye has a saturation
intensity of 4.37MW/cm2, which is ~3.4-fold lower than that of
ATTO 647N (15.0MW/cm2, Fig. 1c, which is close to the data for
10MW/cm2 provide in the reference study24). The MitoESq-635
probe exhibited low toxicity in HeLa cells at a concentration of
1 μM after 1 h of incubation (Supplementary Fig. 9), which suggests
that the morphological changes of mitochondria are primarily from
exposure to the STED imaging light. However, as the concentration
and incubation time increase, probe cytotoxicity will also occur. The
low saturation intensity and extended photostability make the dye
very suitable for long-term STED imaging in live cells.
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Fig. 1 A highly photostable, bright, enhanced squaraine probe for mitochondria labelling. a Chemical structure of MitoESq-635 used for the specific
labelling of VDPs. b Absorption and emission spectrum of the enhanced squaraine dye, for which a 775-nm pulse laser can be employed for depletion and a
635-nm can be employed laser for excitation during the STED setup. c The detected fluorescence signal of the MitoESq-635 and ATTO 647N solution dye
pool on a coverslip as a function of the depletion beam intensity; the excitation beam was 635 nm with a 5-ps pulse width and 80MHz, and the STED beam
was 775 nm with 600 ps pulse width and 80MHz. d Comparison of photostability under a confocal laser microscope of HeLa cells co-stained with MitoESq-
635 (0.1 μM) and MitoTracker Green (Rhodamine123) (0.1 μM). Upper row, MitoESq-635 excited at 633 nm and collected at 645–680 nm. Lower row,
MitoTracker Green (Rhodamine 123) excited at 488 nm and collected at 500–560 nm. Confocal images were obtained under the same imaging conditions,
excitation under 1.97 μW averaged power and 1 frame per s acquisition speed (imaging time: 0.66 s, recovery time: 0.34 s). The fluorescence signal of each
image is plotted as a function of the recorded image number. Scale bar, 10 μm. e Comparison of the photostability under a STED nanoscope of living HeLa
cells stained with MitoESq-635 (0.1 μM) and MitoTracker DeepRed (0.1 μM). STED images were obtained under the same imaging conditions: excitation
under 1.1 µW averaged power at 640 nm, STED beam of 30.2mW average power at 775 nm, and 1 frame per s acquisition speed (imaging time: 0.66 s,
recovery time: 0.34 s). The fluorescence signal of each image is plotted as a function of the recorded image number. Scale bar, 2.5 μm.
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Next, the probe was employed for 3D z-stack STED imaging in
live cells. Previously, it was challenging to perform STED in 3D z-
stacks because of photobleaching during imaging. As shown in
Fig. 2 (Supplementary Movies 2 and 3), the regions (i, ii) in panel
a were scanned with a z-step of 200 nm, and STED 3D z-stacks
were obtained by the construction of different layers of STED
images represented by different colours. Raw data were used to
obtain fine STED images of mitochondria, which could be
optimised through deconvolution. From the magnified STED
image of a single mitochondrion, it can be observed that the
probe was mainly localised in the cristae, which were formed by
inner membrane folding within the mitochondria. The morpho-
logical structures in cristae were resolved by STED nanoscopy
and matched well with those in previously reported APEX 2-
labelled electron microscopy (EM) images (panel d)25, and their
full width at half maximum was as small as ~51 nm (panel c),
which was in line with that observed in the EM images (panel e).
To avoid measurement artefacts caused by low signal-to-noise
ratios, we also performed Fourier ring correlation (FRC)
analysis26. The FWHM here is close to the FRC analysis result
(as shown in Supplementary Fig. 10).

Subcellular dynamic nanoscopic imaging with MitoESq-635.
While detailed structural information for intracellular membranes
at the nanoscale has emerged from electron microcopy27–29 as
well as localised superresolution microscopy30, it is still unclear
how different forms of mitochondria have evolved. A super-
resolution technique with sufficient spatial and temporal resolu-
tion is highly desired. To study the highly dynamic and subtle
morphological changes within mitochondria, we developed a
long-term STED nanoscopic imaging strategy to visualise mito-
chondrial membranous dynamical structures in living cells. Fig-
ure 3a (Supplementary Movie 4) shows the mitochondrial
dynamics in a living Drp 1 KO HeLa cell visualized with STED
(imaging time: 2.58 s, dark recovery: 0.42 s, 3 s per frame in total;
STED beam: 7.84 mW at 775 nm before the objective). Figure 3b, c
show the change in the FWHM value in the STED image at
different time points from 71 nm at 00:00 to 132 nm at 03:00. The
time-lapse STED images of living cells will have both fluorescence
signals and resolution loss as the frame number increases. Note
that due to its low SNR, the resolution measurement in frame 60
has difficulty exhibiting a reliable cross-section profile and
determining the resolution relying on its FWHM, so we also
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included the FRC analysis results of frames #1 and #60. Figure 3c
shows that mitochondria width increases and that intensity
decreases with time. In Fig. 3d, the changes in mitochondria
width and fluorescence intensity under different STED powers are
further analysed. The width and fluorescence intensity change
faster when the STED power is higher. The 775-nm STED power
of 7–9 mW should be an optimised power in our case, balancing
between resolution, photobleaching and photodamage (Supple-
mentary Note 6). To further improve resolution, STED power
should be increased, in which case a longer dark recovery can
help reduce photobleaching and photodamage. Taking advantage
of the live-cell compatibility of MitoESq-635, the rapid nanoscale
spatiotemporal mitochondrial dynamics in living HeLa cells were
captured with STED (3 s per frame; exposure time 2.58 s; rest for
0.42 s; STED power at 8.96 mW, 7.84 mW and 6.72 mW; 200
frames; 10 min; Supplementary Movie 1). Additionally, we were
able to record the longer-term (over 60 min, 3.9 s per frame fol-
lowed by 71.5 s of dark recovery) nanoscale spatiotemporal
dynamics of the mitochondrial inner membrane with STED
nanoscopy at a resolution of 35.2 nm (Fig. 4a–c, for the raw data,
Supplementary Movie 5; this resolution is close to the FRC result
shown in Supplementary Fig. 11) and observe mitochondrial
fission. As shown with the white arrow, the thin and elongated
mitochondria first form bubble structures at 16:22; then, the
cristae grow quickly inside these bubbles, and they separate to
form individual small mitochondria with rich and constantly
changing internal cristae structures (21:22–56:33) (Fig. 4a).

The time-lapse STED images revealed thin, extended tubular
intermediates connecting neighbouring mitochondria both before
and after fission (Fig. 4d). The average widths of these tubular
structures before and after fission are ~85 and 42 nm,
respectively. Additionally, the cristae width after fission was
measured to be 42 nm, which agrees well with the reported EM
results31. The quenching beam (STED) could cause intracellular
condition changes at a light dose to a certain extent. Upon further
increasing the power of the quenching beam, the fluorescence
molecule could be oxidised under the high depletion beam power
of 51 mW (Supplementary Fig. 12).

We also observed the fusion process of mitochondria, as shown
in Fig. 4f, h (Supplementary Movies 6 and 7). Figure 4g shows the
width of mitochondria at the fusion point in Fig. 4f, which grows
from ~0.3 μm to ~0.8 μm. As highlighted by the white dashed
boxed area in Fig. 4h, the mitochondria were initially in a typical
line structure. Then, the cristae began to form and grow rapidly
(15:05) as well as merge and combine with a larger area (23:53-
41:28). The merge made the finger-like structures disappear, and
a hollow structure with several shoots containing cristae formed
(52:47–60:19). The shoots then formed a complicated network of
cristae (44:00). The arrows point to several areas where the rod-
like isolated mitochondria expanded with newly formed cristae
and fused into one large mitochondrion with several bubbles.
After mitochondrial fusion, the cristae membrane began to
remodel. All of these changes are supported by previous EM
results (Supplementary Fig. 13). The inner mitochondrial
membrane is compartmentalised into numerous cristae, which
expand the surface area of the inner mitochondrial membrane to
enhance its ability to produce ATP. The oxidative phosphoryla-
tion system (OXPHOS) facilitates energy conversion for ATP
production so that mitochondria can supply energy for other
subcellular organelles, which make mitochondria the indispen-
sable ‘power plants’ for eukaryotic cells.

Discussion
Mitochondria are vital subcellular organelles because they gen-
erate energy for a variety of cellular and developmental processes.

Mitochondrial dysfunction is associated with numerous severe
diseases, including several devastating neurodegenerative dis-
eases. Furthermore, the degree, functional relevance and mole-
cular causes of the heterogeneity of mitochondrial structure and
function in healthy and stressed single cells require both mole-
cular/biochemical tools and advanced superresolution living cell
microscopy. When responding to different cellular statuses,
mitochondria constantly change the morphologies of their outer
and inner membranes to regulate energy production. To inves-
tigate their dynamic behaviour in live cells, fast and high-
resolution superresolution microscopy techniques are required.
Because the distances between mitochondrial cristae are <90 nm,
SIM cannot fully resolve cristae due to limited resolution
enhancement. Single-molecule localisation microscopy techni-
ques can provide 20–50 nm spatial resolution, but their poor
temporal resolution can lead to significant motion blur during the
imaging process. Although STED can provide high spatial and
temporal resolution simultaneously, the current STED dyes for
mitochondria are generally incompatible with live cells during
long-term STED imaging due to high light intensity-induced
photobleaching. Very recently, during the review process for this
manuscript, the Jakobs group reported a cell line expressing
mitochondrial protein fused to a SNAP-tag to enable high reso-
lution STED of mitochondrial cristae in live cells for 2 min (every
15 s per frame, 8 frames)32. Wang et al.33 developed a fluorescent
labelling reagent and captured the structures of the mitochondrial
cristae with a resolution of ∼60 nm when depleted at 660 nm for
390 s. In the two works, the Jakobs group achieved high resolu-
tion (70 nm) STED of mitochondrial cristae in live cells for 2 min,
and Wang et al. captured the structure of mitochondrial cristae
with a resolution of ~60 nm (after deconvolution) for 390 s (300
frames). Compared with Ref. 32, our technique offers a much
longer imaging time. With respect to Ref. 33, we obtained better
resolution with less STED power. A detailed comparison can be
found in Supplementary Tables 3 and 4 (Supplementary Note 5).
In this work, we report the use of MitoESq-635, which is a
squaraine dye specifically designed for long-term live-cell STED
imaging of mitochondria. MitoESq-635 probes have superior
photophysical properties compared with organic dye ATTO
647N probes, which are commonly employed in STED nano-
scopic imaging. The colocalization of MitoESq-635 with Mito-
Tracker demonstrated that it can label mitochondria membranes.
Here, we achieved 35.2 nm spatial superresolution. The dynamic
imaging of live cells over 50 min (3.9 s per frame followed by
71.5 s of dark recovery) clearly revealed the fusion and fission
processes of mitochondria. Because of the low saturation inten-
sity, STED imaging of 3D stacks can reveal the ultrastructure of
mitochondria in live cells. Overall, the labelling specificity and
performance of MitoESq-635 in low-power STED make it highly
attractive as a next-generation standard for long-term super-
resolution imaging of mitochondria.

Methods
UV/Vis absorption and fluorescence spectroscopy measurements. A stock
solution of MitoESq-635 (1 mM) was prepared in DMSO solvent and then diluted
with ethanol to 1.0 μM. The UV/Vis absorption spectra of MitoESq-635 were
measured using a Perkin Elmer 3000 spectrophotometer (PE, USA), and fluores-
cence emission was measured with Horiba spectrofluorometric equipment (Hor-
iba) with a Xenon lamp, a regular PMT detector and an In/Ga/As detector for NIR
II measurements.

Fluorescent probe design. Synthesis procedures of compounds and design stra-
tegies are shown in Supplementary Note 1 (Supplementary Fig. 14) and Supple-
mentary Note 2 (Supplementary Fig. 15), respectively. The probe is suitable for
live-living cell imaging (Supplementary Fig. 16). Supplementary Figs. 17–23 show
chemical structure identifications (1H, 13C NMR and mass spectra) of compounds
and MitoESq-635.
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Cell culture. The cell lines, including HeLa, MCF7, RAW 264.7, U2OS, SH-SY5Y
and SKOV cells, were cultured at a suitable density (moderate) in DMEM media.
All culture media were supplemented with penicillin (100 units/mL), 10% (v/v)
FBS (WelGene) and streptomycin (100 mg/mL), and cells were incubated in a 5%
CO2 atmosphere at 95% humidity and 37 °C. The cells were placed in confocal
dishes 24 hours prior to the experiments.

Confocal microscopy. The selected cell lines were seeded on cover slips or glass-
bottomed dishes (SPL Lifesciences Co., Ltd.) before they were grown to a suitable
density (24 hours) via incubation in a humid atmosphere containing 5% (v/v) CO2

at 37 °C. The cells were incubated with MitoESq-635 or mitochondrial, lysosomal,
or ER trackers for different times (e.g., 30 min) in a humid atmosphere with 5%
(v/v) CO2 at 37 °C. Then, the cell images were obtained using a confocal laser
scanning microscope (Leica SP2 and SP8, Leica, Germany). Related information is
available in the figure captions.

SDS-PAGE and fluorescent imaging of gels. The selectivity of MitoESq-635 for
proteins and cells was identified by 10% SDS-PAGE experiments. The different
protein samples were treated with DTT or H2O2 and incubated with
MitoESq-635 in PBS buffer at 37 °C for 1 h. After labelling, the obtained
samples were precipitated in 50% (v/v) acetone for 2 h at −20 °C and then
mixed with SDS-PAGE loading buffer containing tris (2-carboxyethyl) phos-
phine (TCEP), and electrophoresis was carried out immediately. The gel was
observed and imaged using a fluorescent scanner (Tanon-5220S, Shanghai,
China) with green light excitation with a bandpass filter with a range from 635
to 675 nm.

STED superresolution for live cells. STED imaging was performed with a Leica
TCS SP8 STED 3X system equipped with a white light laser for excitation and a
775-nm pulsed laser for STED depletion. A ×100 oil-immersion objective (Leica,
N.A. 1.4) was employed.

Statistical analysis. The width of mitochondria and fluorescence intensity were
detected by using Fiji software. Both a box plot chart of the mitochondria width
and an error bar chart of fluorescence intensity were obtained using OriginPro
9.1 software. The Gaussian cumulative fit peak was processed with Origin
2018 software.

Deconvolution. Deconvolution was performed by using Huygens Software
embedded in the Leica TCS SP8 STED 3X system. The deconvolution process was
completed by using an auto setting in Huygens. Detailed parameters were as fol-
lows: (1) background: automatic estimation, (2) estimate mode: lowest, (3) area
radius: 0.7, (4) deconvolution algorithm: CMLE, (5) maximum iteration: 40, (6)
signal-to-noise ratio: 7, (7) quality threshold: 0.05, (8) iteration mode: optimised,
(9) bleaching correction: if possible, (10) PSFs per brick: one PSF and (11) brick
layout: auto.

Statistics and reproducibility. Figures 1d, e; 2a–d; 3a, b; and SI Figs. 4, 5, 7d, e, 8a,
b, 10a, 11a and 12 were repeated two times with similar results. Figure 4a, b, f, h, i
and SI Figs. 1–3 and 13 were repeated three times with similar results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available through “figshare.com” with
the identifier(s) “https://doi.org/10.6084/m9.figshare.12252842”34. The data that support
the findings of this study are available from the corresponding author upon reasonable
request. The MitoESq-635 dye can be obtained from the author (Z.Y.) upon reasonable
request.
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