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Structural mechanism for gating of a eukaryotic
mechanosensitive channel of small conductance
Zengqin Deng 1,2, Grigory Maksaev 1,2,8, Angela M. Schlegel 3,4,8, Jingying Zhang1,2, Michael Rau 5,

James A. J. Fitzpatrick 1,5,6,7, Elizabeth S. Haswell 3,4 & Peng Yuan 1,2✉

Mechanosensitive ion channels transduce physical force into electrochemical signaling that

underlies an array of fundamental physiological processes, including hearing, touch, pro-

prioception, osmoregulation, and morphogenesis. The mechanosensitive channels of small

conductance (MscS) constitute a remarkably diverse superfamily of channels critical for

management of osmotic pressure. Here, we present cryo-electron microscopy structures of a

MscS homolog from Arabidopsis thaliana, MSL1, presumably in both the closed and open

states. The heptameric MSL1 channel contains an unusual bowl-shaped transmembrane

region, which is reminiscent of the evolutionarily and architecturally unrelated mechan-

osensitive Piezo channels. Upon channel opening, the curved transmembrane domain of

MSL1 flattens and expands. Our structures, in combination with functional analyses, delineate

a structural mechanism by which mechanosensitive channels open under increased mem-

brane tension. Further, the shared structural feature between unrelated channels suggests

the possibility of a unified mechanical gating mechanism stemming from membrane defor-

mation induced by a non-planar transmembrane domain.
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Mechanical force sensation mediated by mechan-
osensitive (MS) ion channels represents a prevalent and
fundamental biological process essential for all king-

doms of life1–3. MS channels underlie osmoregulation in bacteria,
hearing, touch, and proprioception in animals, and are proposed
to underlie response to osmotic stress, touch, vibration, and
gravity and developmental signals in plants4–11. The prokaryotic
MS channel of small conductance (MscS) opens in response to
hypoosmotic downshock, allowing rapid efflux of solvent and
solutes and thereby protecting bacterial cells from rupture12–14.
Found in many organisms including bacteria, fungi, algae, and
plants, MscS-Like (MSL) channels form a remarkably diverse
superfamily of MS channels that appear to be pivotal for man-
agement of osmotic pressure3.

Intrinsically sensitive to membrane tension, MscS channels from
several prokaryotes have been extensively characterized and served
as a prevailing model system for understanding physicochemical
principles in mechanotransduction9. X-ray and cryo-electron
microscopy (Cryo-EM) structures reveal that each protomer of the
homo-heptameric MscS channel consists of three transmembrane
helices (TM1-3) followed by a cytoplasmic barrel structure15–22.
The presumed closed and open structures suggest that TM1 and
TM2 constitute a peripheral membrane ‘tension sensor’, which is
attached to the central pore-lining helix TM3a followed by the
amphipathic TM3b running approximately parallel to the mem-
brane15–18. According to this model, rotation and tilting of TM1 and
TM2 as a rigid body under elevated membrane tension, accom-
panied by displacement of channel-bound lipid molecules, pulls
TM3a to open the hydrophobic pore gate16,18. However, different
gating models derived from electron paramagnetic resonance (EPR)
spectroscopy, molecular dynamics (MD) simulations, and recent
cryo-EM studies have also been proposed20,23–26, and these com-
peting models are actively debated9,20.

Much less is known about the structure of eukaryotic members
of the MscS superfamily. With only limited homology in the
pore-lining helix and the subsequent cytosolic portion, many
acquire extra transmembrane helices as well as additional extra-
membrane domains3. These added structural elements may give
rise to rich channel properties27, which have probably evolved to
fulfill adapted functionalities in particular physiological settings.
Fundamental questions naturally arise. How are these extra
transmembrane helices organized in the membrane? Do they
sense mechanical stimulation and contribute to channel gating?

Ten MSL channels have been identified in the land plant A.
thaliana, and they exhibit distinct membrane topology, domain
organization, cellular localization, and physiological functions3.
MSL1, predicted to contain five transmembrane helices and
localized to the inner membranes of mitochondria, is involved in
the regulation of membrane potential and maintenance of redox
homeostasis under abiotic stress28. When heterologously expres-
sed in giant E. coli spheroplasts, MSL1 displays stretch-activated
gating in excised patches and channel properties similar to those
of E. coli MscS (EcMscS)28, which demonstrates that MSL1 forms
a functional mechanosensitive channel. To gain insights into how
mechanosensitive channels gate, we have determined structures of
A. thaliana MSL1 (AtMSL1), presumably representing the closed
and open conformations, by single-particle cryo-EM. Our struc-
tures, in combination with electrophysiology experiments, reveal a
structural mechanism by which (at least some) mechanosensitive
channels open in response to increased membrane tension.

Results
Structure determination of the AtMSL1 channel. We expressed
an AtMSL1 construct consisting of amino acids 80–497, which
lacks the mitochondrial targeting sequence, in the yeast

P. pastoris and determined the cryo-EM structure at an overall
resolution of ~3.1 Å (Fig. 1a–c, Supplementary Figs. 1, 2, Table 1).
The overall architecture and domain organization of the hepta-
meric AtMSL1 channel resemble those of the EcMscS channel
(Supplementary Figs. 3 and 4). In contrast to EcMscS, which
comprises three membrane-spanning helices (TM1-3), AtMSL1
indeed possesses two additional N-terminal transmembrane
helices, resulting in a transmembrane domain with five
membrane-spanning helices (TM1-5). Akin to TM3 in EcMscS,
the innermost helix TM5 is kinked such that TM5a lines the pore
and TM5b runs tangentially to the central pore axis and connects
to the middle and C-terminal domains, which are located in the
mitochondrial matrix (Fig. 1c). The transmembrane domain is
assembled as a seven-bladed propeller, in which each blade
comprises peripheral transmembrane helices (TM1-4) organized
approximately in a straight line surrounding the pore-lining helix
TM5. This unusual structural arrangement creates large unoc-
cupied spaces between the blades, which would presumably be
filled with lipids in a membrane environment (Fig. 1b). Probably
owing to limited protein-protein contacts between blades, the
peripheral transmembrane helices TM1-4 are less well resolved
than the remaining part of the channel in the cryo-EM density
map (Fig. 1a, Supplementary Fig. 2). Density for the first N-
terminal transmembrane helix TM1, which is located at the outer
perimeter, is present in the cryo-EM map but rather weak, and
thus TM1 is not modeled in the structure (Fig. 1c). The middle
and C-terminal domains of AtMSL1, including the extra-
membrane side portals, are analogous to those of EcMscS except
that AtMSL1 lacks the C-terminal seven-stranded β-barrel pre-
sent at the extreme C-terminus of EcMscS (Supplementary
Fig. 4).

Our structure is further corroborated by a recent independent
cryo-EM structure of AtMSL1 that was expressed in mammalian
cells29. The root-mean-square deviation (r.m.s.d) between these
two structures is ~1.4 Å for Cα atoms from TM4 to the C-
terminus. The most pronounced differences arise from the
peripheral TM2 and TM3 helices that appear to be dynamic
owing to lack of protein-protein interactions within the
heptameric channel (r.m.s.d ~3.1 Å for Cα atoms in TM2
and TM3).

Bowl-shaped transmembrane domain. The bowl-shaped trans-
membrane domain of AtMSL1 suggests that it naturally resides in
locally curved, rather than planar, biological membranes (Fig. 2a).
This notion is further supported by the distribution of charged
residues in these transmembrane helices, which presumably
demarcate the boundary of lipid bilayers (Fig. 2a). The cryo-EM
structure was determined in detergent micelles that are virtually
devoid of lipids. Thus, to assess whether this unusual shape is an
intrinsic property of AtMSL1, rather than an artifact owing to the
detergent environment, we also determined the cryo-EM struc-
ture of AtMSL1 embedded into lipid nanodiscs, which closely
mimic biological membranes30, at a lower resolution of 3.4 Å
(Supplementary Fig. 5). AtMSL1 structures in nanodiscs and
detergents are essentially identical (r.m.s.d of ~0.1 Å for all Cα
atoms), demonstrating that the curved transmembrane region is
inherent to AtMSL1. In line with our structures, a low-resolution
(~13 Å) cryo-EM map of the bacterial MscS homolog YnaI, which
also contains five TM helices, hinted at a curved membrane
surrounding its tapered transmembrane domain31. Furthermore,
our AtMSL1 structures are reminiscent of the eukaryotic
mechanosensitive Piezo channels, which contain extended arms
that are apparently curved within a membrane32–34. This shared
structural feature between evolutionarily and architecturally
unrelated MS channels points to the possibility of a unified
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mechanical gating mechanism stemming from membrane
deformation induced by a non-planar transmembrane domain32.

In EcMscS, two rings of bulky hydrophobic side chains from
L105 and L109 create a ‘vapor lock’ that blocks ion passage by
dewetting the channel pore35. The corresponding residues in
AtMSL1, V319 and F323, likely play an equivalent role in forming
a hydrophobic gate (Fig. 2b, c). Pore radius calculation reveals
that F323, near the C-terminal end of the pore-lining helix TM5a,
defines the narrowest constriction along the central permeation
pathway, which is comparable to the closed EcMscS gate in
dimension. This indicates that the AtMSL1 structure represents a
non-conducting, resting state, which is consistent with the
absence of membrane tension in detergent micelles and lipid
nanodiscs where the structures were determined.

Open conformation of AtMSL1. Like TM3a in EcMscS24,36, the
pore-lining helix TM5a in AtMSL1 contains several glycine and
alanine residues with small side chains, which give rise to tight
helix-helix interfaces in the closed conformation (Supplementary
Fig. 3, Fig. 3a, b). Perturbation of this critical interface by the
introduction of a bulkier side chain at position 106 in EcMscS
(A106V) resulted in an X-ray structure in a presumed open con-
formation16. This position, strategically located between two con-
secutive pore narrowing residues (L105 and L109), is highly
conserved among MscS homologs and appears to be essential for
the tight helix packing that stabilizes the closed conformation
(Fig. 3a, b). Inspired by these observations, we introduced the

equivalent mutation in AtMSL1 (A320V) to evaluate whether
analogous destabilization accordingly favors an open conformation.

Electrophysiological analyses of EcMscS, AtMSL1, and AtMSL1
A320V expressed in giant E. coli spheroplasts indicated that
AtMSL1 A320V exhibits much longer open dwell times (that is,
the amount of time spent in the open or partially open states)
upon tension release than AtMSL1 when gating is triggered by a
brief application of negative pressure (Fig. 3c). Once gated, 90%
of AtMSL1 gating events had open dwell times of less than 20 s,
compared to 44% of AtMSL1 A320V gating events (Fig. 3d). Only
2% of AtMSL1 gating events had open dwell times above 80 s,
compared to 50% of AtMSL1 A320V gating events.

Both AtMSL1 and AtMSL1 A320V exhibited subconducting
states, but this was more frequently observed with AtMSL1
A320V (Table 2, Fig. 3c). Furthermore, AtMSL1 A320V was more
likely than AtMSL1 to open immediately after patch formation
and prior to the application of pressure ramps as the patch of
membrane within the glass pipette has inherent lateral tension
due to the lipid-glass adhesion force (Table 2). EcMscS, AtMSL1,
and AtMSL1 A320V had statistically indistinguishable unitary
conductances and relative gating pressure thresholds (0.49 ± 0.16,
0.64 ± 0.14, and 0.55 ± 0.15, respectively) when measured at a
membrane potential of −70 mV (Table 3). However, unlike
EcMscS14,26, neither AtMSL1 nor AtMSL1 A320V displayed
inactivation in response to repeated pressure ramps, regardless of
ramp rate or length. Thus, the A320V mutation is likely to
stabilize the open state of AtMSL1 or to kinetically impede its
closure.
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Table 1 Cryo-EM data collection, refinement and validation statistics.

AtMSL1 in detergents (EMDB: 21444)
(PDB: 6VXM)

AtMSL1 A320V in detergents (EMDB:
21445) (PDB: 6VXN)

AtMSL1 in nanodiscs (EMDB: 21447)
(PDB: 6VXP)

Data collection and processing
Magnification 105,000 105,000 105,000
Voltage (kV) 300 300 300
Electron exposure (e–/Å2) 62 62 62
Defocus range (μm) −1.0 to −2.5 −1.0 to −2.5 −1.0 to −2.5
Pixel size (Å) 1.1 1.1 1.1
Symmetry imposed C7 C7 C7
Initial particle images (no.) 936,130 428,889 457,683
Final particle images (no.) 158,172 52,883 23,077
Map resolution (Å) 3.06 2.96 3.39

FSC threshold 0.143 0.143 0.143
Map resolution range (Å) 2.5–6.0 2.5–6.0 3.0–7.0
Refinement
Initial model used (PDB code) 5AJI This study This study
Model resolution (Å) 3.0 3.1 3.5

FSC threshold 0.5 0.5 0.5
Model resolution range (Å) 2.7 2.7 3.1
Model composition

Non-hydrogen atoms 15,064 14,385 14,819
Protein residues 1939 1862 1939
Ligands 21 7 0

B factors (Å2)
Protein 36.2 93.1 73.6
Ligand 20 111 N/A

R.m.s. deviations
Bond lengths (Å) 0.006 0.008 0.008
Bond angles (°) 0.763 1.283 1.126

Validation
MolProbity score 1.57 1.28 1.64
Clashscore 5.58 5.31 6.59
Poor rotamers (%) 0 0 0

Ramachandran plot
Favored (%) 96.1 98.45 95.94
Allowed (%) 3.9 1.55 4.06
Disallowed (%) 0 0 0
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We determined the cryo-EM structure of the AtMSL1 A320V
mutant in detergents to an overall resolution of ~3.0 Å (Fig. 4a, b,
Supplementary Fig. 6, Table 1). Side views of the reference-free
2D projections indicate marked changes in the transmembrane
region of A320V compared with that of the wild-type AtMSL1
(Supplementary Fig. 7a–c). The bowl-shaped transmembrane

region observed in the wild-type channel flattens, which is
accompanied by considerable in-plane expansion. Flattening and
expansion were recapitulated in reconstitution of A320V into
lipid nanodiscs (Supplementary Fig. 7d), though A320V-
nanodiscs did not yield high-resolution 3D reconstruction. In
the structure of A320V in detergents, the diameter of the
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transmembrane domain is increased from 90 to 105 Å while the
height of the channel is reduced from 116 to 92 Å, compared with
those in the wild-type structure (Fig. 4a, b). These drastic global
conformational changes in the transmembrane domain result in
substantial opening of the central pore, which increases in
diameter from ~8 Å in the wild type to ~20 Å in A320V (Fig. 4c,
d). Therefore, we conclude that the A320V structure represents
an open, conducting conformation.

Gating mechanism. On the basis of these two structures, we can
infer that the transition from the closed to the open state of MSL1
involves pronounced structural rearrangements in the trans-
membrane domain, whereas the soluble domains in the mito-
chondrial matrix remain essentially unchanged (Fig. 4e, f,
Supplementary Movie 1) (r.m.s.d of ~1.1 Å for Cα atoms of
residues 341–491). Upon channel opening, the peripheral helices
TM2-4 approximately move as a rigid body by a rotation of ~135°
(approximately about the helical axis of TM3) and a translation of
~30 Å. These conformational changes give rise to a flattened and
expanded transmembrane domain in a lipid bilayer, in which
transmembrane helices are more densely associated (Fig. 4g, h).
The pore-lining helix TM5a becomes more tilted within the
membrane and joins TM5b without an apparent kink (Fig. 4e, f).
Concomitantly, the outward movement of the straightened TM5
helix results in wide opening of the hydrophobic gate (Fig. 4h,
Supplementary Fig. 8), which renders the conduction path less
hydrophobic at this region (Supplementary Fig. 9). The increased
pore diameter and decreased hydrophobicity support our con-
clusion that the A320V structure represents an open, conductive
conformation. Consistently, straightening of the pore-lining helix
was suggested in a simulated open EcMscS conformation, which
was further supported by patch-clamp experiments of alanine
substitutions at positions near the kink24. In the open structure of
AtMSL1 A320V, fewer lipid-attributable densities are observed
between transmembrane helices than in the closed state (Sup-
plementary Fig. 8), which is in accordance with the proposal that

Table 2 Spontaneous opening and subconducting states for
AtMSL1 and A320V.

AtMSL1 AtMSL1 A320V

Channel(s) open before
pressure ramp

25% (3/12
traces)

57% (8/14 traces)

Channel exhibits
subconducting state

29% (30/102
traces)

50% (17/34 traces)

Subconducting state follows full
opening

17% (5/30
traces)

82% (14/17 traces)

Table 3 EcMscS and AtMSL1 and A320V have similar
conductances and relative gating pressures.

EcMscS AtMSL1 AtMSL1 A320V

Conductance (nS) 1.02 ± 0.17 1.12 ± 0.16 0.98 ± 0.12
Relative gating
pressure (Px/PMscL)

0.49 ± 0.16 0.63 ± 0.14 0.55 ± 0.15

Channel activities were triggered by application of 2.5 s symmetric pressure ramps at
membrane potentials of −70mV. Values are averages ± standard deviation. No difference in
conductance or gating pressure relative to endogenous EcMscL was observed between wild-
type AtMSL1 and A320V using one-way ANOVA followed by post hoc Tukey’s test, p < 0.05.
N= 10 patches per variant. Source data are provided as a Source Data file.
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channel-bound lipids repartition to the bulk membrane bilayer
under increased membrane tension to promote channel opening
in EcMscS18.

Thus, a single mutation in the pore-lining helix facilitates
channel opening in both prokaryotic and eukaryotic MscS
channels. However, conformational changes involved in channel
gating show important similarities and differences between
EcMscS and AtMSL1 (Supplementary Movies 1, 2; Supplementary
Fig. 9). While the soluble domains remain virtually stationary
during gating, the transmembrane domains experience substan-
tial rearrangements. Both EcMscS and AtMSL1 channels appear
to possess a peripheral ‘tension sensor’ (TM1-2 in EcMscS and
TM1-4 in AtMSL1) that is attached to the pore-lining helix and
undergoes dramatic repositioning upon activation. However, the
direction and nature of the ‘tension sensor’ movements of the two
channels are in marked contrast. Ultimately, the pore-lining helix
becomes more perpendicular to the membrane plane in
EcMscS16,18, but more tilted in AtMSL1 upon channel opening.

Discussion
For a channel embedded in a membrane with lateral tension (σ),
the free energy difference between the closed and open con-
formations can be expressed as

ΔG ¼ ðΔGchannel þ ΔGbendingÞ � σΔA; ð1Þ
where ΔGchannel is the difference of free energy intrinsic to
channel gating, ΔGbending the free energy difference of membrane
bending associated with channel gating, and ΔA the difference of
in-plane cross-sectional area of the channel32,37. Here, the closed
and open structures of AtMSL1 provide a straightforward struc-
tural mechanism for gating by lateral membrane tension. Under
low tension, the transmembrane region of AtMSL1 is curved.
Increased lateral tension favors a more planar bilayer, which
drives flattening of the transmembrane ‘tension sensor’, resulting
in an in-plane area expansion of the transmembrane region
(~23 nm2 for resolved TM2-TM5 helices) as well as straightening
and outward movement of the pore-lining helices that ultimately
open the hydrophobic gate. This simple but elegant concept of
membrane flattening and area expansion has been previously
suggested for mechanical gating of the architecturally unrelated
Piezo1 channel on the basis of its intrinsically curved trans-
membrane region32. Indeed, force-induced flattening and
expansion of Piezo1 have been indicated by atomic force
microscopy studies38, but no open structure for Piezo channels
has been determined. In this work we provide a near-atomic
visualization of the membrane flattening and expansion process
involved in channel gating. These results may be applicable to
MscS homologs harboring even more transmembrane helices,
and additional helices could function as an extension of the
‘tension sensor’ that undergoes force-induced flattening and
expansion. Therefore, the structural transition illuminated in this
study may represent a unified gating mechanism that underlies
numerous mechanotransduction events in all kingdoms of life.

Methods
Cloning and expression and purification. DNA encoding Arabidopsis thaliana
MSL1 (AtMSL1, NCBI: NP_567165.2) was synthesized (Gene Universal Inc.) and
served as the template for subsequent cloning. The N-terminal 79 amino acids
corresponding to the mitochondrial targeting sequence was removed from the
expression construct. Primers 5′-TAGCCTCGAGCCACCATGAGCAGCAAA
AGCGATG-3′ and 5′-CCTTGAAACAAAACTTCCAAAGAATTCGA-3′ were
used to generate the DNA fragment encoding residues 80–497 of AtMSL1, which
was ligated into a modified yeast Pichia pastoris expression vector pPICZ-B that
contains a C-terminal PreScission protease cleavage site and a GFP-His10 tag. The
A320V mutation was generated by site-directed mutagenesis using the primers 5′-
GTTACCGCCTTTGCCGCCCGTG-3′ and 5′- GACGCCACCGACACCACCG-3′.

For expression in E. coli spheroplasts, AtMSL1 residues 80–497, codon-
optimized for expression in E. coli, were synthesized (ThermoFisher Scientific).

This fragment was used to replace His-MSL1 in pET300-His-MSL128 by Gibson
cloning. The resulting pET300-AtMSL1 vector was then linearized and a C-
terminal GFP tag preceded by an EcoRI restriction site added by Gibson cloning to
pET300-AtMSL1 to create pET300-AtMSL1-GFP. To create pET300-MscS-GFP,
the EcMscS sequence was used to replace the AtMSL1 sequence in pET300-
AtMSL1-GFP using Gibson cloning. The A320V mutation was introduced into
pET300-AtMSL1-GFP by site-directed mutagenesis using the primers 5′- GTTGGT
GGCGTTGTGACCGCATTTGC-3′ and 5′- GCAAATGCGGTCACAACGCCACC
AAC-3′, creating pET300-A320V-GFP.

The wild-type AtMSL1 channel and the A320V mutant were expressed in
Pichia pastoris (strain SMD1163H, Invitrogen). Cells were harvested and disrupted
by milling (Retsch MM400) and resuspended in buffer containing 50 mM Tris-HCl
pH 8.0, 150 mM NaCl, a mixture of protease inhibitors (2.5 μg ml−1 leupeptin,
1 μg ml−1 pepstatin A, 100 μg ml−1 4-(2-Aminoethyl) benzenesulfonyl fluoride
hydrochloride, 3 μg ml−1 aprotinin, 1 mM benzamidine and 200 μM
phenylmethane sulphonylfluoride) and DNase I. Cell membranes were solubilized
by adding Lauryl Maltose Neopentyl Glycol (LMNG, Anatrace) to a final
concentration of ~1% (w:v) while stirring for 2 h at 4 °C. Solubilized protein was
separated from the insoluble fraction by centrifugation for 0.5 h at 30,000 × g. The
suspension was incubated with 3 ml of cobalt-charged resin (G-Biosciences) for 3 h
at 4 °C with rotation. Resin was then washed with 30 ml buffer containing 20 mM
Tris-HCl pH 8.0, 150 mM NaCl, 20 mM imidazole, and 85 μM glyco-diosgenin
(GDN, Anatrace). The GFP-His10 tag was removed by PreScission protease at 4 °C
overnight with gentle rocking. The flow-through containing the channel protein
was then collected, concentrated, and further purified on a Superose 6 increase 10/
300 GL column (GE Healthcare Life Sciences) in 20 mM Tris-HCl pH 8.0, 150 mM
NaCl and 40 μM GDN. The peak fractions were combined and concentrated for
cryo-EM experiments.

Nanodisc reconstitution. Soybean polar lipid extract (Avanti Polar Lipids, Inc.) in
chloroform was dried to form a thin film in a glass tube under argon and then by
vacuum desiccation for over 2 h. The lipid film was rehydrated to 10 mM in buffer
containing 20 mM Tris-HCl pH 8.0, 150 mM NaCl, and 14 mM DDM, and soni-
cated immediately before use. Protein with C-terminal GFP-His10 tag was eluted
from the cobalt-charged resin and concentrated to ~45 μM and then mixed with
the scaffold protein MSP2N2 and lipids in a final molar ratio of ~1:0.5:50. The
mixture was incubated on ice for 10 min before the addition of Bio-beads SM-2
(Bio-Rad) to a final volume of ~12.5% (v/v) to remove the detergent. In the
meanwhile, PreScission protease was also added to cleave the C-terminal GFP-
His10 tag. The resulting mixture was incubated at 4 °C overnight with constant
rotation. The supernatant was isolated by centrifugation, concentrated and further
purified on a Superose 6 increase 10/300 GL column (GE Healthcare Life Sciences)
in buffer containing 20 mM Tris-HCl pH 8.0 and 150 mM NaCl.

Cryo-EM sample preparation and imaging. Cryo-EM grids were prepared with
FEI Vitrobot Mark IV (FEI). 3.5 μl of purified channel protein (~6 mgml−1 in
detergent micelles or ~3 mgml−1 in lipid nanodiscs) was applied onto glow-
discharged copper Quantifoil R2/2 holey carbon grids (Quantifoil). Grids were
blotted for 2 s at ~100% humidity and flash frozen in liquid ethane. For imaging,
the grids were loaded into a Titan Krios (FEI) electron microscope operating at
300 kV, which is equipped with GIF Quantum energy filter and a Gatan K2
Summit (Gatan) detector. Movies were recorded using the EPU software (https://
www.fei.com/software/epu-automated-single-particles-software-for-life-sciences/)
in super-resolution mode with a pixel size of 0.55 Å and a nominal defocus value
between −1.0 and −2.5 μm. Data were collected with a dose of ~7.8 electrons per
Å2 per second, and each movie was recorded by 40 frames (200 ms per frame) for
an 8 s exposure.

Image processing and map calculation. Image stacks were first aligned, binned
by 2, and dose-weighted using MotionCor239, and then subjected to contrast
transfer function (CTF) determination using GCTF40. Following motion correction
and CTF estimation, low-quality images were manually removed from the datasets.
For AtMSL1 in detergent GDN, 1031 particles were manually selected to compute
two-dimensional class templates for automated particle picking in RELION341. A
total of 936,130 particles were automatically picked from 3618 micrographs. A box
size of 256 pixels was used for particle extraction and a mask diameter of 190 Å was
used for 2D classification. Two rounds of 2D classification were performed to
identify particles representing the channel (454,555 particles), which were imported
into cryoSPARC42 to generate an initial map for 3D classification in RELION3.
Three classes showing intact channel features (158,172 particles) were selected and
subjected to 3D refinement, yielding an overall resolution of 3.48 Å. CTF refine-
ment and Bayesian polishing further improved the resolution to 3.06 Å after
masked 3D refinement.

For AtMSL1 in nanodiscs, 2595 particles were manually picked to generate 2D
class templates for automated particle picking in RELION3, which resulted in a
total of 457,683 particles from 3486 micrographs. After two rounds of 2D
classification, 140,548 particles were selected for 3D classification using low-pass
filtered map of AtMSL1 in detergent micelles as the initial model. One class (23,077
particles) was selected for 3D refinement, reaching an overall resolution of 4.2 Å.
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CTF refinement and Bayesian polishing improved the resolution to 3.39 Å after
masked 3D refinement.

For the AtMSL1 A320V mutant in detergents, 5553 particles were picked
using LoG-based auto-picking to generate 2D classes for automatic picking in
RELION3. Automatic picking resulted in 428,889 particles from 1947
micrographs. From two rounds of 2D classification, 192,899 particles were
selected and imported into cryoSPARC to calculate an initial map for 3D
classification requesting four classes in RELION3. Two classes (96,781 particles)
containing clear TM densities were selected for further 3D refinement, reaching
an overall resolution of 3.86 Å. 3D classification without image alignment was
performed and two classes (74,578 particles) were selected for further 3D
refinement, yielding a 3.81 Å reconstruction. CTF refinement and Bayesian
polishing improved the resolution to 3.27 Å after 3D refinement. 3D
classification without image alignment using the polished particles was
performed, and the major class containing 52,883 particles was selected for
masked 3D refinement, reaching a final overall resolution to 2.96 Å.

For A320V in nanodiscs, 2016 particles were manually selected for 2D class
templates. Automatic picking resulted in 464,730 particles from 3234 micrographs.
From two rounds of 2D classification, 65,310 particles were selected. However, 3D
reconstruction did not reach resolution beyond 8 Å in cryoSPARC and RELION3,
and therefore we did not build the model.

Model building and coordinate refinement. A homology model of the AtMSL1
extramembrane domain was generated using coordinates of EcMscS (PDB: 5AJI)
by the SWISS-MODEL server43. The model was placed into the cryo-EM density
map by using UCSF Chimera44 and then manually rebuilt in COOT45. The
transmembrane region was de novo built in COOT. Iterative model building in
COOT and refinement using real_space_refine in PHENIX46 were performed to
obtain the final model. The final model shows good geometry and contains
amino acids 203–229, 236–269, and 276–491. The structure of AtMSL1 in lipid
nanodiscs was built using the AtMSL1 structure in detergent micelles as a
reference, followed by multiple rounds of model rebuilding in COOT and
refinement using real_space_refine in PHENIX. For the AtMSL1 A320V mutant,
resolution of the EM density map is higher in the C-terminal extramembrane
domain. Density for the transmembrane region is weaker. The C-terminal
domain of the wild-type AtMSL1 was first placed into the EM density map as a
rigid body. Owing to weaker density in the transmembrane domain, TM5 was de
novo built in COOT, and this partial model comprising the C-terminal domain
and TM5 was refined against the map using real_space_refine in PHENIX. In the
final steps, TM2-TM4 helices from the wild-type channel were modeled into the
A320V cryo-EM density map as a rigid body, and then further refined. The final
A320V structure contains residues 204–229, 236–269, 276–302 and 313–491.
Final refined models were validated using MolProbity47. Pore dimensions were
estimated by using HOLE48. Structural figures, including the surface hydro-
phobicity plots49, and morphed movies (using the linear interpolation method)
were prepared using PyMol (pymol.org) and UCSF Chimera44. The phylogenetic
tree was generated by MEGA X50.

Electrophysiology. AtMSL1, A320V, and EcMscS were expressed in giant spher-
oplasts made using E. coli strain MJF516, which lacks mscS, mscK, ybiO, and yjeP51.
A lysogenized version of E. coli strain MJF516 (generated using the Novagen λDE3
lysogenization kit (Millipore Sigma)) was transformed with pET300-EcMscS-GFP,
pET300-AtMSL1-GFP, or pET300-A320V-GFP. Giant spheroplasts were prepared
following the protocol52 with the following modifications: treatment with cepha-
lexin only was performed for 1 h, at which point isopropyl β-d-1-
thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM and
cultures shaken at 42 °C, 180 rpm for an additional hour before being stored
overnight at 4 °C in 50 mL conical tubes.

Patch-clamp electrophysiology was performed with inside-out excised
patches. Pipette buffer contained 200 mM KCl, 90 mM MgCl2, 5 mM CaCl2,
5 mM Hepes, pH 7.4 and the bath buffer was identical to the pipette buffer with
the addition of 400 mM sucrose. Pressure was controlled and applied using an
HSPC-1 high speed pressure clamp system (ALA Scientific) and data acquired
using an Axon Axopatch 200B amplifier and a Digidata 1440A digitizer
(Molecular Devices). All pipettes were of bubble number ~4.5. Data were
acquired at 20 kHz for pressure sensitivity and conductance measurements and
at 10 kHz for open-state lifetime measurements and all data low-pass filtered at
5 kHz. Pressure sensitivity was evaluated at −70 mV membrane potential using a
symmetric pressure ramp consisting of a 2.5 s increase in applied suction
followed by a 2.5 s suction release. Open state lifetime measurements were
performed at a membrane potential of −70 mV and consisted of a symmetric
pressure ramp of 1 s suction increase followed by 1 s suction release and
continued application of 70 mV pipette potential without additional suction for
95.7 s after suction release.

Data analysis and measurements were performed using ClampFit 10.6 software
(Molecular Devices). For all measurements, traces in which channel gating was
observed prior to pressure ramp application were discarded to ensure that only
initial channel gating events were measured. The relative gating pressures of each
channel, PX/PMscL, where X is either AtMSL1, A320V, or EcMscS was calculated
using the gating pressure at which the first sustained channel opening occurred36.

For relative gating pressure and conductance calculations, values from all possible
traces for a given patch were averaged, then the average and standard deviations of
all patch averages calculated. Patch averages of conductance and relative gating
pressures were analyzed using one-way ANOVA followed by post hoc Tukey’s tests
to test for significant differences in relative gating pressure and conductance
between AtMSL1, A320V, and EcMscS.

To determine open-state lifetimes of AtMSL1 and A320V, the open dwell times
of pressure-triggered channel openings were measured, with channels considered
fully closed only when activity was lost for a period of 5 s or longer. Typically, only
a single channel was observed in each patch; if multiple channels opened, only the
first was used for analysis. Open dwell times observed for each channel were then
binned into the following categories: 0–19.99 s, 20–39.99 s, 40–59.99 s, 60–79.99 s,
80+ s, and the percentage of openings in each category calculated for AtMSL1 and
A320V. Pipette potential was unclamped at 97.7 s.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. A reporting summary for this Article is available as a
Supplementary Information file. Source data are provided with this paper. The cryo-EM
maps have been deposited to Electron Microscopy Data Bank with accession codes EMD-
21444, EMD-21445, and EMD-21447. Atomic coordinates have been deposited to the
Protein Data Bank (PDB) with accession codes: PDB 6VXM, PDB 6VXN, PDB 6VXP.
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