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Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the

model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol con-

centrations causes DNA replication stress and an increased mutation rate. Specifically, we

find that ethanol slows down replication and affects localization of Mrc1, a conserved protein

that helps stabilize the replisome. In addition, ethanol exposure also results in the recruitment

of error-prone DNA polymerases to the replication fork. Interestingly, preventing this

recruitment through mutagenesis of the PCNA/Pol30 polymerase clamp or deleting specific

error-prone polymerases abolishes the mutagenic effect of ethanol. Taken together, this

suggests that the mutagenic effect depends on a complex mechanism, where dysfunctional

replication forks lead to recruitment of error-prone polymerases. Apart from providing a

general mechanistic framework for the mutagenic effect of ethanol, our findings may also

provide a route to better understand and prevent ethanol-associated carcinogenesis in higher

eukaryotes.
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Ethanol is a ubiquitous natural compound produced as a
primary metabolite by several yeasts and bacteria. In high
concentrations, ethanol is toxic to all lifeforms. Several

large-scale studies in model systems like Saccharomyces cerevisiae
and Escherichia coli reveal multiple, complex targets of ethanol,
including cellular membranes, protein stability, telomere length
homeostasis, and cell cycle control1–4. Apart from this short-term
toxicity, prolonged excessive ethanol intake is associated with
multiple diseases and a decreased life expectancy in humans5.
Epidemiological studies indicate a strong correlation between
alcohol intake and the risk of developing specific types of can-
cers6,7. Most tumors form at sites where tissues come into direct
contact with ethanol, such as the mouth, upper throat, and eso-
phagus6–8.

Despite the clear link between ethanol intake and the incidence
of specific tumors, the exact molecular mechanisms underlying
the carcinogenic effect of ethanol are still not fully understood.
Interestingly, the potential mutagenic effect of ethanol has also
not been extensively researched in other (model) systems. It is
known that several stressors, such as nutrient starvation, drug
treatment, and high salinity can affect mutation rates and genome
stability across multiple organisms9. The best-studied system is
arguably that of stress-induced mutagenesis (SIM) in bacteria10.
Multiple bacterial species display increased mutation rates or
altered mutational spectra when exposed to stressors, such as low
doses of antibiotics or nutritional stresses11–13. Although ionizing
radiation or alkylating agents can directly modify DNA bases,
other stressors such as proteotoxic stress do not directly cause
DNA damage but can trigger mutagenic stress responses. SIM
encompasses multiple signaling pathways, including the SOS
DNA damage response, the RpoS general stress response, and the
RpoE membrane protein stress response14–16. In many cases,
DNA polymerases with a lower replication fidelity, the so-called
translesion polymerases or error-prone polymerases, play a cen-
tral role15,16. These error-prone polymerases are induced or
recruited upon stress. As they replace the higher-fidelity repli-
cative polymerases, more mutations are introduced when DNA is
synthesized. Interestingly, a recent study showed that alcohol-
associated cancers display error-prone polymerase-associated
mutational spectra, although the exact mechanism by which these
polymerases are involved and/or are affected by ethanol remained
unclear17.

Environmental stress can also affect genome stability in
eukaryotes. The pathogenic yeast Candida albicans displays
gross chromosomal rearrangements and aneuploidies when
treated with fluconazole18. Different types of stress have been
reported to alter chromosome segregation and mutation rate in
S. cerevisiae19,20. For example, stresses that cause protein mis-
folding are associated with increased mutation rates and
aneuploidy19,21. SIM has also been reported in multicellular
eukaryotes, although the exact mechanistic details are often not
yet known. In Arabidopsis thaliana, e.g., high salinity leads to
accumulation of a distinct set of mutations22. In mammalian
cells, hypoxic environments result in increased mutation rates
and genome instability by suppressing error-free DNA repair
pathways23,24, and osmotic stress causes DNA damage and an
increased mutation rate25. More generally, defective replisomes
and replication stress also cause genome instability and ulti-
mately cancer in higher eukaryotes26–28. Regions of single-
stranded DNA (ssDNA), formed at dysfunctional and stalled
replication forks or at DNA double-strand breaks (DSB), can
underlie local, transient hypermutability in both yeast cells and
malignant tumors29.

In this study, we report that sublethal, naturally occurring
levels of ethanol cause proteotoxic and replication stress in the
model eukaryote S. cerevisiae. We find that ethanol increases

mutation rates. Our results show that ethanol exposure slows
down DNA replication and affects localization of Mrc1, a highly
conserved component of the replisome required for efficient
replication30. Moreover, this ethanol-associated genetic instability
relies on the recruitment of error-prone polymerases to the
replication fork. Together, our results shed light on the
mechanisms underlying ethanol-related genome instability. Our
findings reveal the framework of a complex chain of events when
yeast cells are exposed to ethanol and also serve as a starting point
to better understand how ethanol increases mutagenesis in higher
eukaryotes.

Results
Ethanol is mutagenic. To better understand how cells react and
adapt to increasing levels of ethanol, we previously performed a
long-term evolution experiment3, where non-ethanol tolerant
yeast cells were exposed to gradually increasing ethanol levels3.
Notably, the average number of single-nucleotide polymorphisms
in evolved clones, as determined by whole-genome sequencing,
was higher than expected, based on reported spontaneous
mutation rates as well as compared with other long-term evolu-
tion experiments31,32. This led us to hypothesize that ethanol
exposure caused an increased mutation rate.

To investigate the effect of ethanol on eukaryotic genome
stability, we determined mutation rates in S. cerevisiae cells
exposed to different ethanol levels, using the CAN1 gene as a
mutation reporter in a series of fluctuation assays33,34. Can1−

cells can grow on medium containing canavanine, a toxic
arginine analog. Determining the number of can1− (canavanine
resistant, canR) mutants in populations exposed to ethanol
allows calculating the mutation rate. This well-established
reporter assay demonstrated that mutation rates increase with
increasing ethanol concentrations (Fig. 1a). It should be noted
that the ethanol concentrations used in these experiments are
relatively low for yeast and did not reduce cell viability (Fig. 1c).
Importantly, in each of the experiments below, mutation rates
are always compared within one experiment. Although there is
experiment-to-experiment variation in the absolute mutation
rate (as is always the case when performing fluctuation assays),
the fold changes in mutation rate were always comparable—
ranging from 2.6- to 3.5-fold increase when comparing 6%
ethanol to 0% ethanol conditions for S288c wild-type (WT)
strain.

We next tested the effect of ethanol on mutation rates in
RM11-1a, a haploid derivative of a feral vineyard isolate. This
strain is phenotypically and genotypically distinct from the lab
strain S288c35. Ethanol also increases the mutation rate in this
strain (Fig. 1b). The mutagenic effect was also observed in
fluctuation assays employing a different mutation reporter,
URA3, where mutants are selected on 5-Fluoro-orotic Acid
(FOA) (Fig. 1d and “Methods”). In agreement with previous
reports34, we found that some FOAR colonies did not carry
mutations in URA3. All subsequent mutation reporter assays were
therefore performed using a canavanine-based fluctuation assay.
W303, another commonly used lab strain, is notoriously less
ethanol tolerant than S288c because of a mutation in SSD1, a gene
involved in cell wall integrity signaling36. Introducing the S288c
SSD1 allele into W303 increases its ethanol tolerance, but the
strain still grows poorly in ethanol compared with S288c.
Determining mutation rates in such a strain using a standard
fluctuation assay approach proved difficult, because the cells did
not grow well when exposed to ethanol over longer timespans.
However, we did find that even a short exposure to ethanol causes
an increase in canR mutant frequency in W303 (Supplementary
Fig. 1).
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Taken together, these data indicate that the observed ethanol-
associated increase in mutation rate is independent of genetic
background and reporter assay used.

Mutagenic effect of ethanol depends on acetaldehyde. The
carcinogenic effects of ethanol in mammalian cells have been
mostly considered to be caused by metabolism of ethanol to
acetaldehyde. Acetaldehyde can form mutagenic and carcinogenic
DNA adducts and cause interstrand crosslinks and DSBs, both
in vivo and in vitro37. Genetic linkage studies have shown that
individuals with mutations in acetaldehyde-metabolizing
enzymes display an increased risk for tumors of the upper gas-
trointestinal tract38. However, such individuals display excessively
high acetaldehyde levels compared with individuals carrying WT
alleles39. Hence, it is still unclear whether and to what extent
physiological acetaldehyde contributes to the carcinogenic effects
of ethanol, and whether other molecular mechanisms are also
involved.

To investigate the importance of acetaldehyde in mediating the
observed ethanol-induced mutation rate increase in S. cerevisiae,
we used a combination of genetic and chemical approaches. We
first tested whether extracellular addition of acetaldehyde would
increase mutation rate. Cells exposed to high (>0.1% v/v)
acetaldehyde levels did not grow, corroborating the toxic effects

of acetaldehyde. Surprisingly, none of the sublethal acetaldehyde
levels tested resulted in an increased mutation rate (Fig. 2a).

As acetaldehyde is extremely volatile, the lack of detectable
mutagenic effect could be due to acetaldehyde evaporation during
the experiment. To minimize evaporation, we next added
acetaldehyde using a pre-chilled syringe to a chilled and sealed
glass vial containing yeast cells. As this low temperature did not
allow for cell growth, we could only determine the number of
canR mutants after acetaldehyde exposure and not an absolute
mutation rate (i.e., the number of mutations per generation). In
line with our previous findings, we did not observe an increase in
canR mutant frequency after acetaldehyde exposure (Supplemen-
tary Fig. 2a).

The S. cerevisiae genome encodes 5 alcohol dehydrogenase
genes (ADH1–5) involved in ethanol metabolism, with ADH2
encoding the enzyme responsible for converting ethanol to
acetaldehyde40. Deleting ADH2 did not affect the mutagenic
effect of ethanol and overexpressing ADH2 did not further
increase mutation rate upon ethanol exposure (Fig. 2b). These
results would indicate that acetaldehyde is not required for the
mutagenic effect of ethanol. However, as acetaldehyde levels did
not appear to be altered in these strains, as determined using two
different approaches (high-performance liquid chromatography
(HPLC) and enzymatic), we cannot draw any definite conclusions
about the contribution of acetaldehyde to ethanol-induced
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Fig. 1 Ethanol increases mutation rate. a, b Mutation rate increases with ethanol concentrations. Cultures of S. cerevisiae strain S288c (strain VK111) (a)
and RM11-1a (b) were grown in synthetic media (2% glucose) and indicated ethanol concentrations (v/v). For each condition, 54 cultures were analyzed.
Data represent mutation rate estimates, as determined by fluctuation assays on canavanine, error bars represent 95% confidence intervals. For more
details, see “Methods” section. Statistical significance of differences in mutation rates was assessed using a likelihood ratio test. *P < 0.05, ***P < 0.001.
Specifically, for S288c, p-values are as follows: 0–2%: p= 0.0290; 0–4%: p= 1.035 × 10−4, 0–6%: p= 2.962 × 10−10. For RM11-1a, p= 2.756 × 10−4.
c Ethanol does not affect cell viability. Cells of strain VK111 were grown in synthetic media (2% glucose), at different ethanol concentrations (v/v) for the
same time as a standard fluctuation assay. Cell viability was determined using methylene blue staining. Bars represent average of nine biological replicate
measurements ± SD. Error bars are clipped at 100%. At least 618 cells were analyzed per ethanol concentration. d Effect of ethanol on mutation rate is also
observed using URA3 mutation reporter. Cells of strain VK111 were grown in synthetic media (2% glucose) at different ethanol concentrations (v/v). For
each condition, 54 cultures were analyzed. Mutation rate estimates, as determined by fluctuation assays on 5-fluoro-orotic acid (FOA), are shown. Error
bars represent 95% confidence intervals. Statistical significance of differences in mutation rates was assessed using a likelihood ratio test. ***P < 0.001;
more specifically, p= 2.756 × 10−4. Source data for this figure are provided as a Source Data file.
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mutagenesis based on these experiments (Fig. 2c and Supple-
mentary Fig. 2b).

To get more insight into a potential role of acetaldehyde in the
mutagenic effect of ethanol, we next used fomepizole, a well-
established alcohol dehydrogenase inhibitor41,42. Fomepizole
addition did not abolish the mutagenic effect of ethanol, but
also did not appear to change acetaldehyde levels, again
preventing us from drawing any definite conclusions on the
contribution of acetaldehyde to the mutagenic effect of ethanol
(Supplementary Fig. 2c, d).

Acetaldehyde is reported to cause DNA interstrand crosslinks
and DSBs43. Non-homologous end-joining (NHEJ) helps main-
tain genome integrity by aiding repair of aldehyde-induced
DSBs44. Deleting YKU70, a key NHEJ component, does not
further increase mutation rate in ethanol-exposed cells (Supple-
mentary Fig. 3a), suggesting that the mutagenic effect of ethanol
might not be mediated through acetaldehyde-induced DSBs.
Acetaldehyde can also form DNA adducts and some of these
adducts form DNA interstrand crosslinks7,43,45. PSO2 encodes a
nuclease involved in repair of DNA breaks that result from

interstrand crosslinks and strains deficient in PSO2 show low
mutability in response to interstrand crosslink-inducing muta-
gens46. Deletion of PSO2 does not abolish the mutagenic effect of
ethanol (Supplementary Fig. 3b), suggesting that acetaldehyde
might not be the principal mediator of the mutagenic effect of
ethanol, or at least that the underlying mechanism may be more
complex than direct chemical modification of DNA by
acetaldehyde.

In another effort to investigate if the mutagenic effect of
ethanol depends on its metabolism to acetaldehyde, we tested the
effect of other alcohols. Methanol and isopropanol both cause an
increase in mutation rate (Fig. 2d). Methanol is metabolized by
yeast cells to formaldehyde, a known mutagen. Isopropanol on
the other hand cannot be metabolized by yeast cells. These data
indicate that alcohol metabolism is not required to increase
mutation rate.

We next performed additional fluctuation assays using a total
of five genetically different yeast strains, four acetaldehyde
concentrations, and two mutation reporters (URA3 and CAN1).
Our results show that in some, but not all of the yeast strains
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Fig. 2 Role of acetaldehyde in mutagenic effect of ethanol. a Extracellular addition of acetaldehyde does not alter mutation rate. Cells (VK111) were grown
in synthetic media (2% glucose), supplemented with the indicated acetaldehyde concentrations (v/v). For each condition, 54 cultures were analyzed. Data
represent mutation rate estimates, as determined by fluctuation assays on canavanine. Error bars represent 95% confidence intervals. Statistical
significance of differences in mutation rates was assessed using a likelihood ratio test. b Altered ADH2 levels do not abolish the mutagenic effect of ethanol.
Cells (VK111, EV14, and EV19) were grown in synthetic media (2% glucose) at different ethanol concentrations (v/v). For MVP11 in 6% ethanol, 36 cultures
were analyzed. For all other conditions, 54 cultures were analyzed. Data represent mutation rate estimates, as determined by fluctuation assays on
canavanine. Error bars represent 95% confidence intervals. Statistical significance of differences in mutation rates was assessed using a likelihood ratio
test. ***P < 0.001. Specifically, p-values are 2.204 × 10−10, 4.108 × 10−15, and 0 for WT, adh2Δ, and ADH2 OE, respectively. c Acetaldehyde levels are not
altered in adh2 mutant cells. Strains VK111, EV14, and EV19 were grown in synthetic media (2% glucose) with 0 or 6% ethanol added. Bars represent
average of three biological replicates per strain ± SD. Acetaldehyde levels were determined enzymatically using a Megazyme Acetaldehyde Assay.
d Methanol and isopropanol also increase mutation rate. Cells (VK111) were grown in synthetic media (2% glucose) at different alcohol concentrations
(v/v). EtOH ethanol, MeOH methanol, isoPropOH isopropanol. For each condition, 108 cultures were analyzed. Data represents mutation rate estimates,
as determined by fluctuation assays on canavanine. Error bars represent 95% confidence intervals. Statistical significance of differences in mutation rates
was assessed using a likelihood ratio test. ***P < 0.001. P-values for all comparisons were reported as 0. Source data for this figure are provided as a Source
Data file.
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tested, acetaldehyde increases mutation rate (Supplementary
Fig. 4). We also noticed that the highest acetaldehyde concentra-
tion used in our assays (0.1%) was borderline lethal, suggesting
that acetaldehyde clearly affected the cells. These results indicate
that the lack of mutagenic effect of acetaldehyde observed in some
strains is not due to a technical problem and provide additional
support that the mutagenic effect of ethanol observed in yeast is
not solely due to acetaldehyde.

Taken together, our results do not support the central role of
acetaldehyde in the mutagenic effect of ethanol, although it has to
be noted that manipulating and measuring acetaldehyde
concentrations is difficult.

Ethanol-exposed cells do not accumulate ROS. The carcino-
genic effects of ethanol have also been linked to reactive oxygen
species (ROS) produced during ethanol metabolism7. ROS can
cause lipid peroxidation and the subsequent formation of
(mutagenic) DNA adducts. We assessed ROS production in
ethanol-treated cells using the cell permeant reagent H2DCFDA
(2’,7’-dichlorofluoroscein diacetate), a commonly used oxidant-
sensitive probe47. After diffusion into the cell, H2DCFDA is first
deacetylated by cellular esterases. In the presence of ROS, this
probe is then readily oxidized into a fluorescent compound. As
expected, exposing cells to hydrogen peroxide increased oxidant
levels (p= 0.0029, unpaired t-test with Welch’s correction)
(Supplementary Fig. 5). Ethanol-exposed cells on the other hand
do not show an increase in fluorescence. These results indicate
that ethanol exposure does not cause an increase in ROS.

Mutations indicate that ethanol affects replication. If the
mutagenic effect of ethanol is caused by specific mutational
mechanisms, this could result in a specific mutational spectrum.
To investigate this, we sequenced the CAN1 ORF of canavanine-
resistant colonies, isolated from fluctuation assays performed in 0

and 6% ethanol conditions. A total of 234 sequences were ana-
lyzed (121 for 0% and 113 for the 6% (v/v) ethanol condition; see
also “Methods,” Fig. 3a, and Supplementary Data 1). All
sequenced colonies contained at least one mutation in the CAN1
ORF. We did not find a significant difference between the loca-
tion and distribution of mutations in 0 or 6% ethanol conditions
(Supplementary Fig. 6).

We generally found more transitions in cells that had been
exposed to 6% ethanol, although the overall distribution of
broadly defined mutation classes (insertions and deletions,
transitions, and transversions) did not appear to be markedly
different between 0 and 6% ethanol (Fig. 3b, χ2-test, p= 0.0611).

Interestingly, both in vivo and in vitro studies have indicated
that acetaldehyde causes GG-to-TT mutations, due to the
formation of GG intrastrand crosslinks45,48. The CAN1 ORF
contains 180 GG pairs and some of these can generate stop
codons and non-synonymous mutations when mutated to TT.
Hence, it seems plausible that some GG-to-TT mutations would
generate canavanine-resistant colonies. No GG-to-TT mutations
were identified in the CAN1 ORF isolated from ethanol-treated
cells. In line with our previous observations (Fig. 2 and
Supplementary Fig. 2 and 3), this could again indicate that, in
our conditions, acetaldehyde is not the main mediator of ethanol-
induced mutagenesis.

A more in-depth look at the specific type of mutations revealed
that cells exposed to 6% ethanol display different types of
nucleotide substitutions, with more C to T substitutions
compared with 0% ethanol (Fig. 3c, two-sided Fisher’s test, p=
0.0322). This type of transition has been linked to spontaneous
deamination of cytosine nucleotides. These transitions could
indicate the presence of increased levels of single-stranded DNA
in ethanol-exposed cells, as ssDNA is more prone to spontaneous
deamination of cytosine residues49.

Hence, we next checked for the formation of ssDNA upon
exposure to ethanol. We quantified relocalization of the yellow
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fluorescent protein (YFP)-tagged ssDNA-binding Rfa1 protein
(Rfa1-YFP) to foci as a measure for ssDNA50. Cells not exposed
to ethanol display mostly a diffuse nuclear localization of Rfa1,
consistent with no ssDNA accumulation (Supplementary Fig. 7a).
When cells go through S phase in the presence of methyl
methanesulfonate (MMS) (a DNA alkylating agent known to
cause the formation of ssDNA), cells progressively accumulate
bright Rfa1 foci (Supplementary Fig. 7c). However, when cells go
through S phase in the presence of 6% ethanol, we do not observe
an increase of Rfa1 foci (Supplementary Fig. 7b), indicating that
ethanol-exposed cells do not contain more ssDNA regions than
untreated cells.

Ethanol causes proteotoxic stress. To learn more about the
cellular response to ethanol, we performed RNA sequencing
(RNA-seq) of ethanol-exposed cells. The results hinted at repli-
cation stress in ethanol-exposed cells. For example, RNR3
expression levels are increased in ethanol-exposed cells (Supple-
mentary Data 2). RNR3 encodes a subunit of ribonucleotide
reductase, an enzyme catalyzing the rate-limiting step in dNTP
synthesis. RNR expression level is a key transcriptional read-out
for replication stress and is highly induced under replication
stress conditions51.

A broader analysis of differentially regulated genes revealed
that genes involved in protein degradation and refolding are
significantly upregulated in ethanol-exposed cells (Fig. 4a and
Supplementary Data 3). Ethanol has been reported to cause
denaturation of proteins and the formation of protein inclu-
sions52. In our RNA-sequencing data, we find evidence that
exposure to 6% ethanol, a relatively low, naturally occurring, and
sublethal concentration, also causes proteotoxic stress. For
example, KAR2 is upregulated 12-fold in cells that have been
exposed to ethanol for two generations (Supplementary Data 2).
KAR2 encodes a molecular chaperone whose transcript level
increases in response to high levels of unfolded proteins53. Genes
encoding other chaperones, such as HSP82 and HSP104, are also
upregulated in ethanol, further suggesting that ethanol causes
protein misfolding (Supplementary Data 2).

Subsequent experiments confirmed that ethanol causes pro-
teotoxic stress. First, we used a well-established read-out for
protein aggregation, namely aggregation of a fluorescently tagged
reporter, the human Von Hippel-Lindau (VHL) protein54. When
cells accumulate misfolded proteins, the protein quality control
machinery becomes overloaded and the VHL protein forms
aggregates, visible as fluorescent foci54. Ethanol causes an increase
in such fluorescent foci, further corroborating the hypothesis that
ethanol causes proteotoxic stress (Fig. 4b). In conditions where
many unfolded proteins accumulate, proper proteasomal func-
tioning is crucial for clearing these misfolded proteins, to
safeguard the cell against proteotoxic stress. Proteasome inhibi-
tion by the drug MG-132 severely inhibited growth in 6% ethanol,
indicating that proper proteasomal functioning is required in
these conditions (Fig. 4c).

Together, these analyses show that a key marker for replication
stress is upregulated, and that cells are experiencing proteotoxic
stress, likely related to misfolding of proteins, when exposed to
ethanol. This proteotoxic stress could even ultimately lead to
replication stress, as it could result in unstable replisomes caused
by, e.g., misfolding of crucial replisome components.

Ethanol slows down replication. To further check whether
ethanol causes replication stress, we investigated Sml1 levels in
ethanol-exposed cells (Fig. 5a). Sml1 is an established sensor for
Mec1 checkpoint activation. Mec1 is a genome integrity check-
point protein kinase that becomes activated when cells experience

replication blockages55 or DNA damage. Sml1 is a downstream
target of Mec1 whose levels decrease when the replisome
encounters replication blockages or DNA damage56. Ethanol-
exposed cells display decreased Sml1 levels, indicative of repli-
cation stress checkpoint activation (Fig. 5a).

Interestingly, although quantification of YFP-Rnr3 fluores-
cence signal in ethanol-exposed cells are in line with our RNA-
seq data, namely that ethanol significantly increases Rnr3 protein
levels, exposing cells to MMS causes a much higher increase in
Rnr3 protein levels (Fig. 5b). In addition, Rad53, the effector
kinase that is phosphorylated after activation of either the DNA
damage checkpoint or the DNA replication checkpoint, is not
phosphorylated in response to EtOH treatment (Supplementary
Fig. 8). We also do not detect a significant increase in ssDNA
levels in ethanol-exposed cells (Supplementary Fig. 7), with
ssDNA accumulation being a signal for checkpoint activation.
Together, this data indicate that ethanol only causes a mild
replication stress checkpoint activation, one that is much less
pronounced compared with MMS.

We next assessed the effects of ethanol exposure on replication
by examining cell cycle progression (Fig. 5c and Supplementary
Fig. 9). Cells were synchronized in G1 phase with α-factor and
released into S phase in the presence of 0 or 6% ethanol. S-phase
progression was delayed in cells exposed to 6% ethanol,
suggesting a replication defect in ethanol-exposed cells.

To further confirm whether DNA replication is affected upon
ethanol exposure, we analyzed replication progression by DNA
combing from asynchronous cell cultures. This allowed us to
measure replication fork progression (track length). Ethanol-
exposed cells showed significantly shorter track length compared
with cells that were not exposed to ethanol (Fig. 5d, e). This data
indicates that the cell cycle delay observed in ethanol-exposed
cells is caused by altered DNA replication and suggest that
ethanol affects replication fork progression.

EtOH affects Mrc1 localization. As replication rate is highly
dependent on Mrc1, the homolog of metazoan Claspin30,57,58, an
evolutionary conserved component of the replisome that links the
replicative helicase with DNA polymerase activities59, we next
investigated the effects of ethanol on Mrc1. Interestingly, ethanol
causes relocalization of Mrc1—from the replication fork to a
perinuclear compartment, termed IntraNuclear Quality Control
Compartment (INQ) (Fig. 6a, b). INQ has been shown to
sequester misfolded, ubiquitylated, and sumoylated proteins in
response to proteotoxic, replication, and genotoxic stresses60.

As Mrc1 is important to maintain a normal replication rate,
efficient DNA replication and replisome stability30,58,59, and as
defective replisomes have been linked to increased genome
instability27,61, our data suggest that ethanol could affect
mutation rate by dissociating Mrc1 from the replisome. Mrc1
relocalization in ethanol conditions could also explain the DNA
replication defect observed in ethanol-exposed cells, as exposing
cells to ethanol for 2 h affects both Mrc1 localization and
replication rate (Fig. 5).

To test whether the ethanol-associated increase in mutation
rate is affected by Mrc1, we determined mutation rate of a strain
overexpressing MRC1 in 0 and 6% ethanol conditions (Fig. 6c).
MRC1 overexpression greatly reduces the mutagenic effect of
ethanol. In summary, our data shows that Mrc1 relocalizes
to INQ in response to ethanol, with this relocalization
potentially affecting replisome stability, replication rate and
genome stability.

Mutagenic effect of ethanol requires error-prone polymerases.
Replication forks lacking Mrc1 progress more slowly and have
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been reported to lead to DNA damage30,57,58,62. Translesion
polymerases are recruited to sites of replication fork stalling and/
or DNA damage27. Translesion polymerases have a higher error-
rate than the regular replicative polymerases and are hence
sometimes referred to as error-prone polymerases16. These
polymerases also often make consecutive errors in a single round
of DNA synthesis63, causing a typical pattern of complex muta-
tions—defined as multiple mutations that are separated from
their nearest neighbor by no more than a stretch of ten

nucleotides29. Although not statistically significant, we also
observe such complex mutations in our ethanol-exposed cells
(Fig. 7a).

We used multiple experimental approaches to investigate
whether error-prone polymerases are involved in the ethanol-
associated increase in mutation rate. First, stalling of replication
forks triggers ubiquitination of PCNA/Pol30, the highly con-
served sliding clamp for replicative polymerases64. Ubiquitin
attachment in turn acts as a scaffold for other proteins involved in
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replication past difficult or damaged DNA regions. Specifically,
mono-ubiquitination of Pol30 at residue K164 acts as a docking
site for error-prone polymerases64,65. To test whether Pol30
ubiquitination is required for the mutagenic effect of ethanol, we
determined the mutation rate of a strain containing a Pol30K164R

variant that cannot be ubiquitinated (Fig. 7b). Interestingly,
mutating this ubiquitination site completely abolishes the
mutagenic effect of ethanol.

Next, we created single knockouts of the different error-prone
polymerases and determined mutation rate in 0 and 6% ethanol
(Fig. 7b). S. cerevisiae contains four translesion polymerases:
polymerase ζ consists of Rev3 and Rev7, with REV3 encoding the
catalytic subunit and REV7 the accessory subunit that stimulates
Rev3 activity; polymerase η consists of Rad30, whereas Rev1 is a
deoxycytidyl transferase that can form a complex with Rev3 and
Rev7. Deletion of REV1 or REV7 almost completely abolishes the
effect of ethanol on mutation rate, whereas rev3Δ and rad30Δ
strains show a modest reduction in ethanol-associated mutation
rate increase, indicating that polymerase ζ is the primary source
of ethanol-induced mutations.

Lastly, we examined the presence of Rev1-3-7 and Pol2, the
catalytic subunit of replicative polymerase ε, at replication forks
using Chromatin immunoprecipitation (ChIP) (Fig. 8). Cells
containing epitope-tagged versions of these proteins were arrested
with mating factor and released into medium containing either 0
or 6% ethanol. At ARS305, an early-firing origin, Pol2 is loaded
20 min after release and arrives 3 kb upstream and downstream
20–60 min later. In the presence of ethanol, less Pol2 is bound to
chromatin, suggesting that the replisome is unstable66. We also
observe a general tendency for more translesion synthesis
polymerase binding to chromatin in ethanol. This further
supports our model that ethanol causes replication stress and
triggers recruitment of error-prone polymerases.

Taken together, our results show that the mutagenic effect of
ethanol is caused by the recruitment of translesion polymerases to
replicating DNA. The data support a model where ethanol
exposure causes general protein instability and triggers relocaliza-
tion of Mrc1 from the replication fork to INQ. In the absence of
Mrc1, the replisome becomes unstable and progresses more
slowly. This triggers the recruitment of error-prone polymerases,
through the ubiquitination of Pol30, ultimately resulting in an
increased mutation rate in the presence of ethanol (Fig. 9).

Discussion
At high levels, ethanol is lethal to all living organisms. Our results
show that even relatively low, naturally occurring ethanol levels
lead to an increased mutation rate in the model eukaryote S.
cerevisiae. Specifically, we show that ethanol causes both pro-
teotoxic and replication stress, and that ethanol exposure results

in relocalization of Mrc1, a crucial replisome component, from
the replication fork to INQ. This triggers exchange of the repli-
cative polymerase with error-prone polymerases, which ulti-
mately leads to increased mutation rates.

Currently, the primary trigger for Mrc1 relocalization is still
unkown. Genotoxic, proteotoxic and replication stress can cause
Mrc1 relocalization to INQ60. Further research is required to
determine whether Mrc1 is, for example, recruited to INQ as part
of a general, proteotoxic response (with Mrc1 being just one of
the proteins that is misfolded and targeted to INQ), or if Mrc1
relocalization is part of a specific signaling pathway67.

Furthermore, our experiments are not conclusive about the
potential role of acetaldehyde. However, it is clear that the
mechanisms underlying the mutagenic effect of ethanol are more
complex than previously thought. Ethanol and/or acetaldehyde
could cause chemical damage to the DNA, which causes repli-
cation fork stalling and recruitment of error-prone polymerases.
It seems equally plausible that the recruitment of these poly-
merases is directly caused by the proteotoxic effect of ethanol on
the replication fork, causing it to become unstable and stall. In
fact, both mechanisms are not mutually exclusive and are difficult
to disentangle. In the case of lesions due to chemical DNA
damage (e.g., caused by acetaldehyde-derived adducts), we would
expect replication fork collapse and a strong checkpoint activa-
tion. Interestingly, we do not observe a strong checkpoint acti-
vation by ethanol, indicating that replication forks do not
collapse, again pointing to the complex mechanisms underlying
the mutagenic effects of ethanol.

The proteotoxic stress observed in ethanol-exposed cells could
be due to ethanol-generated protein adducts. In fact, studies have
identified various ethanol-induced protein adducts7,68. These
adducts have been mainly attributed to ethanol metabolism, with
acetaldehyde and ROS reacting with proteins to form adducts.
Although our data seems to indicate that ROS and likely also
acetaldehyde are not responsible for the mutagenic effect of
ethanol, it is possible that ethanol-generated adducts, perhaps
together with other sources of ethanol-derived proteotoxic stress,
such as denatured proteins, could underlie the observed muta-
genic effect of ethanol, potentially by affecting replication fork
components.

Different environmental stresses can trigger a common tran-
scriptional response, the environmental stress response, com-
prising changed expression of >300 genes69. Such sudden,
massive transcriptional changes can lead to genome instability,
caused by replication–transcription conflicts70. Mrc1 plays a key
role in preventing these replication–transcription conflicts upon
sudden stress: stressors such as heat, oxidative and osmotic stress,
and low glucose levels trigger N-terminal phosphorylation of
Mrc1 and a subsequent delay in replication67,71. This delay

Fig. 4 Ethanol causes proteotoxic stress. a RNA-seq indicates that ethanol causes proteotoxic and replication stress. Cells (VK111) were grown for two
and four generations (indicated as gen) in medium supplemented with the indicated ethanol concentrations. Heat map represents expression changes
(expressed as log2 fold change) in the different samples relative to time point zero. Values are colored according to the scale shown, with blue indicating
low values and red indicating high values. Samples are hierarchically clustered based on expression changes. Term-enrichment analysis of differentially
expressed genes indicates that processes involved in protein degradation and refolding are significantly upregulated in ethanol conditions (see also
Supplementary Data 3 for enrichment scores and p-values). b Ethanol exposure causes aggregation of VHL-mCherry. Cells expressing VHL-mCherry
(VK3703) were grown to mid-exponential phase in synthetic medium lacking uracil with 2% raffinose as a carbon source. VHL-mCherry expression was
induced by addition of 3% galactose (final concentration) for 3 h, after which cells were exposed to the indicated ethanol concentrations for the indicated
times. At least 1500 cells (from 2 independent biological replicates) were analyzed per condition. For 2 h in 0%, 2397 cells were analyzed. For 2 h in 6%,
2363 cells were analyzed. For 24 h in 0%, 1770 cells were analyzed. For 24 h in 6%, 1917 cells were analyzed. Scale bar represents 5 µm. Bars represent
average ± SD. Statistical significance was assessed using a two-tailed unpaired t-test with Welch’s correction. **P < 0.01, ***P < 0.001. Specifically, for 2 h,
p= 0.0013 and for 24 h, p < 0.0001. c Inhibition of proteasome activity reduces growth in 6% ethanol. Tenfold serial dilutions of WT strain VK111 (start
OD600nm= 0.1) were spotted on YPD plates containing 0 or 6% ethanol with or without 100 µMMG-132. YPD plates are shown after 2 days of incubation;
YPD ethanol plates are shown after 3 days of incubation. Source data for this figure are provided as a Source Data file.
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prevents replication–transcription conflicts and genome
instability. Although we currently do not know whether ethanol
also triggers Mrc1 phosphorylation, our data provide another
argument for Mrc1 being a key factor in controlling genome
stability in different stresses.

Replication forks lacking Mrc1 progress more slowly and have
been reported to lead to DNA damage30,57,58,62. PCNA/Pol30
becomes ubiquitinated in the presence of stalled replication forks
and DNA damage, and this ubiquitination triggers recruitment of
error-prone polymerases64,65. Error-prone polymerases are
indeed required for the ethanol-associated increase in mutation

rate and mutating the ubiquitination site in PCNA/Pol30 abol-
ishes the mutation increase observed under ethanol conditions.
Hence, our study provides a plausible mechanistic explanation for
the observed mutation rate increase in ethanol-exposed cells.
Consistent with a previous report that DNA synthesis by error-
prone polymerases does not require checkpoint signaling72, we do
not observe checkpoint activation by ethanol.

Increasing mutation rates can lead to increased genetic varia-
bility, which has been proposed to be beneficial in some cases, as
the increased mutation rate might increase the chances of evol-
ving better adapted mutants. However, the selective pressures
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imaged using fluorescence microscopy. N= 241, 374, and 123 for 0% ethanol, 6% ethanol, and MMS, respectively. Data represent average fluorescence
intensity; error bars represent 95% confidence intervals. Statistical significance was assessed using a two-tailed unpaired t-test with Welch’s correction.
***P < 0.001. Specifically, p-value < 0.0001. AU, arbitrary units. c Cell cycle progression is slower in ethanol-exposed cells. Wild‐type cells were arrested in
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peak corresponds to cells in the G2/M phase. d, e Replication fork progression is perturbed by ethanol. Fork speed, measured after pulse incorporation of
EdU and DNA combing, was analyzed in asynchronous cell cultures (strain PP2226) exposed for 2 h to 0 or 6% ethanol. For each condition, at least 329
tracts coming from 3 independent replicates were analyzed. N= 329 and 637 for 0 and 6% ethanol, respectively. The scatter dot plot depicts the
distribution of EdU track lengths. Medians are shown by a red line and are indicated as data labels (red). Statistical significance was assessed using a two-
tailed Mann–Whitney unpaired non-parametric t-test. ***P < 0.001. Specifically, p-value < 0.0001. e Examples of the DNA fibers (green) containing EdU
tracks (red). EdU tracks are highlighted in white below each fiber. Source data for this figure are provided as a Source Data file.
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causing SIM and the implications of SIM for evolutionary
dynamics are hotly debated73–75. Some researchers consider SIM
an adaptive strategy, that effectively increases the supply of
mutations needed to overcome adaptive hurdles; whereas others
consider it as an unavoidable byproduct of specific mechanisms
and proteins, including error-prone polymerases, which are
induced or recruited under stress. Most non-neutral mutations
are deleterious and so it is still debated whether there could be an
evolutionary advantage to temporarily increasing mutation rates.

S. cerevisiae has proven a useful model system for higher
eukaryotes. Although caution is needed, it is tempting to correlate

our observations in yeast with observations in humans. Ethanol is
listed as a class I carcinogen by the World Health Organization
and yearly around 800,000 cases of cancer are linked to patient
alcohol consumption76. Although epidemiological data clearly
demonstrated a link between ethanol intake and tumor forma-
tion, the precise mutagenic mechanism of ethanol in humans is
poorly studied. Interestingly, several mutational signatures have
recently been identified in esophageal squamous cell carcinoma, a
cancer with a clear link to ethanol exposure. Multiple signatures
correlate with the patient’s alcohol consumption, although only
one could be explained by acetaldehyde77. This again highlights
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that other mechanisms, apart from ethanol conversion to acet-
aldehyde, may underlie alcohol-related carcinogenesis. Although
the exact involvement of acetaldehyde in ethanol-associated
genome instability warrants further investigation, our findings
suggest a new model for ethanol-related genome instability
(Fig. 9). Ethanol affects highly conserved proteins and processes
as follows: (i) Mrc1 is an evolutionary highly conserved replisome
component, called Claspin in higher eukaryotes. Claspin is also
required for normal DNA replication and replisome stability78;
(ii) proteotoxic stress induces INQ-like structures in HeLa cells60;
(iii) dysfunctional replication forks and replication stress have
been linked to increased genome instability in tumors26; and (iv)
error-prone polymerase-associated mutations have been found in
alcohol-associated tumors17. Taken together, these similarities
make it tempting to speculate that ethanol could affect similar
processes in mammalian cells.

Our data links error-prone polymerases to alcohol-related
mutations in S. cerevisiae. Interestingly, a recent study reported
error-prone polymerase-associated mutational spectra in alcohol-
related tumors17. In the latter case, tumor samples displayed a
mutational spectrum characteristic for PolH (encoded by RAD30
in S. cerevisiae), whereas our data implicate PolZ as the primary
source of alcohol-related mutations in S. cerevisiae.

Understanding the precise mutagenic effects of ethanol in yeast
may open up new routes to evaluating and reducing the health
risks of ethanol in humans.

Methods
Strains used in this study. Strains used in this work were derived from a pro-
totrophic haploid S288c, unless otherwise indicated. A full list of strains used, with
their complete genotype, can be found in Supplementary Table 2. Primers used for
strain construction and verification were ordered from IDT or TAG Copenhagen;
primer sequences are listed in Supplementary Table 3.

Deletion strains were generated by amplifying the HygB cassette (pCB1) or the
KaNMX cassette (pUG6) from plasmids using primers (Supplementary Table 3),
which contained at least 40 bp sequence homologous to target DNA. The PCR
product was then used for directed integration of the cassette and replacement of
the target locus. Yeast transformation was carried out using the LiAc procedure.
Transformants were verified by PCR using specific primers (Supplementary
Table 3). To obtain mutants showing increased ADH2 or MRC1 expression, we
integrated a modified TEF1 promoter directly upstream of the respective ORF. To
introduce mutations in POL30 and SSD1, we used a CRISPR-Cas9 based protocol,
see below. Strains expressing FLAG-tagged Rev1, Rev3, and Rev7 from their
endogenous loci were constructed by amplifying a 3xFLAG::HIS3 cassette from
plasmid pBP81 using primers with 40 bp 5′ homology arms to facilitate integration

immediately before the STOP codon of the gene. Constructs were verified by
sequencing.

Plasmids. A full list of plasmids used can be found in Supplementary Table 4.

Media. Media used in this study consisted of 1% yeast extract, 2% peptone, and 2%
glucose (YPD). Plates of these media were made with 1.5% agar for standard
growth conditions. YPD containing Hygromycin B (Invitrogen) (200 mg/L), G418
(Formedium) (200 mg/L), or ClonNat (100 mg/L) were used for selection of yeast
transformants. Synthetic complete media consisted of 6.7 g/L Yeast Nitrogen Base
with ammonium sulfate and without amino acids, 1.77 g/L CSM-Ura (For-
medium), 50 mg/L uracil (Sigma), and 2% glucose. Canavanine plates consisted of
6.7 g/L Yeast Nitrogen Base with ammonium sulfate and without amino acids,
0.74 g/L CSM-Arg (Formedium), 60 mg/liter L-canavanine (Sigma-Aldrich), 1.5%
agar, and 2% glucose. FOA plates consisted of 0.67% Yeast Nitrogen Base with
ammonium sulfate and without amino acids, 0.2% CSM-Ura (Formedium), 50 mg/
L uracil (Sigma-Aldrich), 1 g/L FOA (Formedium), 1.5% agar, and 2% glucose.
Ethanol and methanol were purchased from VWR in their highest purity; iso-
propanol was purchased from Sigma-Aldrich.

CRISPR-Cas mutation of POL30 and SSD1. The 5′-phosphorylated oligonucleo-
tide sequences that served as guide sequence were ordered from IDT and are listed
in Supplementary Table 3. To create annealed guide sequence-containing primers,
100 µM of each primer was added to a PCR tube, were incubated in a thermocycler
for 5 min at 95 °C, and subsequently cooled to 16 °C, at the slowest ramp rate of the
thermocycler. Next, annealed guide sequence-containing primers were ligated into
calf intestinal phosphatase-treated, BsmBI-digested parent vector pV1382. This was
transformed into chemically competent E. coli cells. Plasmids were extracted and
verified by Sanger sequencing and restriction digest. Repair templates were gen-
erated with 60-bp oligonucleotide primers (IDT) containing 20 bp overlaps at their
3′-ends centered at the mutation point. Primers were extended by thermocycling
performed with Ex Taq (TAKARA) and double-stranded products were purified
directly from this PCR reaction using Qiaquick Gel Extraction Kit (Cat# 28706)
following the manufacturer’s instructions. Transformations were performed with
0.3–5 µg of plasmid DNA and with 1–5 µg of repair template (where applicable).
Transformation was done using the standard lithium acetate protocol, and sus-
pensions were plated on selective media. Presence of the mutation was verified by
Sanger sequencing.

Fluctuation assay. Fluctuation assays to determine mutation rates were performed
as follows: precultures were grown overnight at 30 °C in Synthetic Complete (SC)-
Arg. Cells were subsequently brought to a starting density of 5000 cells/mL in SC
glucose medium containing either 0 or 6% ethanol. Cultures (200 µl) of these cells
were grown at 30 °C in synthetic complete medium containing 2% glucose and the
indicated ethanol concentration in 96-well plates for 48 h. To prevent ethanol
evaporation, outer wells only contained medium and 96-well plates were sealed
with an adhesive seal and plastic lid, and plates were wrapped in parafilm. For each
genotype, at least 60 replicates were grown. Fifty-four cultures were then plated on
canavanine plates (containing 60 mg/L L-canavanine sulfate (Sigma-Aldrich)) for
mutant selection and incubated at 30 °C for 3 days, after which colonies were
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counted. Six cultures were diluted and plated on YPD to determine total cell
counts. Fluctuation assays using URA3 as a mutation reporter were performed
similarly, except that cultures were plated on FOA (Sigma-Aldrich) containing
plates for mutant selection and incubated at 30 °C for 2 days, after which colonies
were counted.

Colony counts on selective and non-selective plates were used to estimate
mutation rates using the rSalvador R package (v1.7)79. Likelihood ratio methods, as
implemented in rSalvador, were used to calculate 95% confidence intervals, as well

as to assess the statistical significance of differences between mutation rate
estimates.

canR mutant frequency after short ethanol exposure. Precultures were grown as
for standard fluctuation assay. Cell count of precultures was determined using
BioRad CellCounter and 105 cells per culture were used to set up the experiment.
Cells were incubated for 2 h in the presence of 0 or 6% ethanol and then plated on
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canavanine plates. Resistant colonies were counted after 3 days incubation at 30 °C
and canR mutant frequency was obtained by dividing the number of resistant
colonies by the total number of cells per culture plated.

canR mutant frequency after acetaldehyde exposure. This protocol is modified
from ref. 80. Briefly, cells were grown as for standard fluctuation assay. Pre-chilled
(−20 °C) acetaldehyde (Sigma) was added via an ice-cold plastic syringe into ice-
cold rubber-sealed glass vials containing cultures (final cell density 5000 cells/mL).
Cultures were incubated for 30 min at 4 °C, followed by a 2 h incubation at 30 °C.
Cultures were spun down, resuspended in regular SC medium, and incubated for
24 h at 30 °C before plating on canavanine plates. Resistant colonies were counted
after 3 days incubation at 30 °C and canR mutant frequency was obtained by
dividing the number of resistant colonies by the total cell count.

Identifying mutations at CAN1 locus. The CAN1 locus was amplified using ExTaq
from genomic DNA isolated from canavanine-resistant colonies using a standard
zymolyase protocol. The resulting PCR product was subsequently sent for Sanger
sequencing by VIB Genetic Service Facility. The sequence and quality of the reads
were extracted to fastq format from the sequencing chromatogram files using
EMBOSS seqret version 6.6.0 and the ends were quality trimmed with a quality
cutoff of Q20 using fastq_quality_trimmer from the FASTX-Toolkit (version
0.0.14). The sequences from each segment were aligned using MUSCLE version
3.8.31. The aligned segments were then each aligned to the CAN1 gene from S288c
and combined in AliView version 1.18.1. The alignment was then checked and
manually curated in AliView. The reads for each individual colony were extracted
from the alignment and were joined into single sequences at overlaps. In cases of
sequence disagreement, preference was given to a base if it agreed with S288c
CAN1, otherwise IUPAC ambiguity codes were introduced. Ns were added in the
case of missing data. Each colony sequence was then compiled into a final multiple
sequence alignment. Mutations were analyzed by a perl script, which categorized
them into indels or silent/missense/nonsense mutations, and checked whether they
were transitions/transversions. All canavanine-resistant colonies carried at least
one mutation in the CAN1 gene. Sequencing data have been deposited at GenBank,
accession codes MT509124–MT509357.

Determination of viability. Cellular viability was determined using methylene blue
staining protocol. Briefly, cells were grown exactly as for performing fluctuation

assays. Cultures were diluted 1/100 in SC medium and 100 µL of a filter sterilized
0.1% (w/V) methylene blue solution (Sigma-Aldrich) was added to 100 µL of this
diluted culture. Samples were incubated at room temperature for 1 min and sub-
sequently loaded on a counting slide (KOVA Glasstic Slide 10). Cells were visua-
lized by microscopy and counted. Blue cells were considered dead and unstained
cells viable. At least three independent cultures were counted for each strain and
condition, with a minimum of 600 cells counted in total for each strain.

Enzymatic measurements of acetaldehyde levels. Acetaldehyde levels were
determined enzymatically using a Megazyme Acetaldehyde Assay kit and following
the manufacturer’s instructions (Megazyme).

HPLC measurements of acetaldehyde levels. The acetaldehyde determination
was performed as described by ref. 81. Briefly, cells were grown to exponential
phase (OD600nm= 0.2–0.3) in YPD/YPD 6% Ethanol. Approximately 1.2 mL of cell
culture was withdrawn into 6 mL of pre-cooled (−40 °C) quenching and deriva-
tization solution containing 0.9 g L−1 2,4-dinitrophenylhydrazine and 1% (v/v)
phosphoric acid in acetonitrile. After mixing and incubating for 2 h on a shaking
platform at 4 °C, samples were stored at −80 °C until further analysis. Prior to
analysis, 1 mL of defrosted and well-mixed sample was centrifuged (15,000 × g, 3
min). The supernatant was analyzed via HPLC using a WATERS
WAT086344 silica-based, reverse-phase C18 column operated at room tempera-
ture with a gradient of acetonitrile as a mobile phase. A linear gradient was gen-
erated from eluent A (30% (v/v) aqueous acetonitrile solution) and eluent B (80%
(v/v) aqueous acetonitrile solution). The mobile-phase composition was changing
from 0% to 100% of eluent B in 20 min, at a flow rate of 1 mLmin−1. A calibration
curve was prepared with standard solution of 50.9 g L−1 acetaldehyde-2,4-dini-
trophenylhydrazine in acetonitrile.

In vivo ROS measurements using H2DCFDA. Cells were grown as for standard
fluctuation assay. H2DCFDA (Sigma, stock concentration: 5 mg/mL in dimethyl-
sulfoxide) was added to each culture to a final concentration of 12.5 µg/mL and
light-protected samples were incubated for 30 min at 30 °C. Samples were divided
over three Eppendorf tubes and incubated with nothing, 6% ethanol (final con-
centration), or 100 mM H2O2 for 2 h at 30 °C. Fluorescence was subsequently
analyzed using AttuneTM NxT Acoustic Focusing cytometer. A total of 50,000 cells
was analyzed per sample and three independent cultures were analyzed for each
treatment.

RNA sequencing and analyses. Illumina NextSeq 5000 paired-end reads (2 × 75
bp) were obtained by sequencing samples from the starting culture, and after two
and four generations of growth in filter-sterilized YPD (4% glucose) medium
containing either 0% or 6% (V/V) ethanol. All samples were taken in biological
duplicates. Details on analysis can be found in Supplementary Information. The
RNA-seq dataset generated and analyzed has been deposited in Sequence Read
Archive, as Bioproject PRJNA632734 (http://www.ncbi.nlm.nih.gov/bioproject/
632734).

Spot assays. Cultures were grown overnight to saturation in YPD. Tenfold serial
dilutions (OD600 of start dilution= 1.0) were spotted on agar plates. To test the
effect of proteasome inhibition, cultures were also spotted on agar plates containing
the proteasome inhibitor MG-132 (100 µM final concentration, Sigma-Aldrich)).
Plates were sealed with parafilm and incubated at 30 °C. YPD plates were scanned
after 2 days incubation and YPD Ethanol plates were scanned after 3 days
incubation.

Yeast live-cell imaging and fluorescence. For detecting VHL fluorescent foci,
cells containing plasmid pESC-mCherry-VHL encoding mCherry-tagged VHL
were grown on SC-uracil containing 2% raffinose as a carbon source at 30 °C54.
Saturated cultures were diluted into SC-uracil containing 3% galactose to induce
mCherry-VHL expression. After 3 h induction, cultures were split in two and one
part of the culture was incubated with 6% ethanol (final, V/V). mCherry-VHL
fluorescence was imaged after 2 and 24 h incubation using an inverted automated
Nikon TiE fluorescence microscope. The ratio of cells with aggregated foci was
calculated by dividing the number of cells with aggregated foci by the total number

Fig. 8 Replication in ethanol-exposed cells switches to error-prone polymerases. Schematic representation of genomic regions containing the early-firing
origin ARS305 and late-firing origin ARS501. Boxes indicate qPCR amplicons location at ARS305 (black box), an early-firing origin, as well as non-origin
sites −3 kb (pink box) and +3 kb (yellow box) from ARS305. Primers for the late-firing origin ARS501 are used to monitor late origin activation and
background signals. Origins are described in refs. 83,84. ChIP was performed as described in “Methods” on myc-tagged Pol2 and FLAG-tagged Rev1-3-7. G1-
arrested cells (strain ML996-2D) were released into media containing 0 or 6% ethanol for the times indicated. Values are average of three biological
replicates, with two technical repeats each; error bars represent SD. Data represent the real-time PCR signal as fold increase of the IP over the beads-only
control for Pol2 and Rev1-3-7. Statistical significance was assessed using a two-tailed unpaired t-test with Welch’s correction. *P < 0.05, **P < 0.01, ***P <
0.001. Specific p-values can be found in Supplementary Table 1. Source data for this figure are provided as a Source Data file.
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Fig. 9 Model for effect of ethanol on genome stability. Proposed model for
the mutagenic effect of ethanol. See text for more details.
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of cells. For detecting fluorescently tagged Rnr3, Sml1, Mrc1, Cmr1, and Pol30 by
microscopy, cells were inoculated in SC medium containing 100 µg/mL adenine
and grown by shaking overnight at 25 °C. Cultures were diluted to OD600= 0.2 and
grown for one cell cycle prior to microscopy.

Fluorophores were cyan fluorescent protein (clone W7), YFP (clone 10C), and
red fluorescent protein (clone yEmRFP or mCherry). Fluorophores were visualized
on a Deltavision Elite microscope (Applied Precision, Inc.) equipped with a ×100
objective lens (Olympus U-PLAN S-APO, NA 1.4), a cooled Evolve 512 EMCCD
camera (Photometrics, Japan), and an Insight solid-state illumination source
(Applied Precision, Inc.). Images were acquired using softWoRx version 7.0.0
(Applied Precision, Inc.) software and fluorescence intensities measured with
Volocity software version 5.4 (PerkinElmer).

Cell cycle progression analyses. Cells were grown at 25 °C in SC medium sup-
plemented with 2% glucose and synchronized in G1 using 8 µg/ml α-factor (Bio-
tem, France) for 150 min. Cells were released in S-phase from the G1 arrest by α-
factor degradation using 75 µg/ml Pronase and 20 mM phosphate buffer. Samples
from the time-course experiments were processed with standard methods for
subsequent flow cytometry analysis. Data were acquired on a MACSQuant Ana-
lyser (Miltenyi Biotec) and analyzed with FlowJo software. Three independent
biological replicates have been performed for each cell cycle progression analysis.
Cells (10,000) were gated on PI-Height/PI-Area. Haploid and diploid strains were
used for calibration. Analysis of flow cytometry profiles was performed in FlowJo
version 10. Profiles can be found in Supplementary Fig. 10.

Protein extraction and Rad53 western blotting. Approximately 5 × 108 cells
were collected at each relevant time point and were washed with 20% tri-
chloroacetic acid to prevent proteolysis, then resuspended in 200 µl of 20% tri-
chloroacetic acid at room temperature. The same volume of glass beads was added
and cells were disrupted by vortexing for 10 min. The resulting extract was spun for
10 min at 1000 × g at room temperature and the resulting pellet resuspended in
200 µl of Laemmli buffer. Whenever the resulting extract was yellow-colored, the
minimum necessary volume of 1M Tris base (non-corrected pH) was added until
blue color was restored. Then, water was added until a final volume of 300 µl was
reached. These extracts were boiled for 10 min and clarified by centrifugation as
before; 10–15 µl of this supernatant was loaded onto a 3–8% acrylamide gradient
Invitrogen gel and migrated 70 min at 150 V to separate Rad53 isoforms, then
proteins were transferred to a nitrocellulose membrane. Detection by immuno-
blotting was accomplished with anti-Rad53 antibody, a kind gift from Dr. C.
Santocanale, used in a 1/3000 dilution. To quantify total protein, membranes were
stained with Ponceau S stain for 5 min. The membrane was destained with several
changes of water for 30 s to 1 min each. Afterwards, the blotting was photographed.

Replication fork speed measurements. Replication fork progression was quan-
titatively analyzed following 50 µM 5-ethynyl-2’-deoxyuridine (EdU) incorporation
and DNA fiber combing. For more details, see Supplementary Information. EdU
replication tracks were detected using Alexa Fluor 555 Azide (ThermoFisher) and
Click chemistry. DNA fibers were detected using mouse anti-ssDNA (DSHB,
http://dshb.biology.uiowa.edu/autoimmune-ssDNA; autoanti-ssDNA was depos-
ited to the DSHB by Voss, E.W. (DSHB Hybridoma Product autoanti-ssDNA)))82

and goat anti-mouse coupled to Alexa Fluor 647 (ThermoFisher, A21241). Anti-
bodies were used in a 1/50 dilution. 300 to 600 individual EdU tracks were counted
for each experimental condition. Statistical analyses were performed with Graph-
Pad Prism 7.

Chromatin immunoprecipitation assay. ChIP experiments were performed
essentially as described60. Briefly, cells (50 mL per time point) were collected at
OD600= 0.6–0.7 and were fixed with 1% formaldehyde (Sigma-Aldrich, catalog
number 252549) for 10 min at room temperature on a roller table. Next, glycine
was added to a final concentration of 120 mM and samples were incubated for an
additional 10 min at room temperature and then placed on ice. Cells were collected
(3 min, 1000 × g, 4 °C), washed in ice-cold HBS (25 mM Hepes pH 8.0, 140 mM
NaCl), and frozen in to FastPrep tubes (MP Biomedicals, catalog number
115076200) at −20 °C until further processing. Cell pellets were resuspended in
600 µL cold lysis buffer (25 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA pH
8.0, 1% NP40, 2 mM sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride,
and protease inhibitor cocktail (Roche, catalog number 11836153001)). Glass beads
(200 µL, 425–600 μm) were added and cells were disrupted for three cycles of 45 s
at maximum power using a Fastprep homogenizer (MP Biomedicals). The glass
beads were discarded by filtration and the chromatin collected by centrifugation at
15,000 × g for 30 min at 4 °C. Next, the pellet of cross-linked chromatin was
resuspended in 500 µL lysis buffer and sonicated in a pre-cooled waterbath at 4 °C
(Misonix Sonicator 3000, 50 cycles of 10 s at setting #3, pause 10 s between each
cycle). Finally, 300 µL of fresh lysis buffer was added to each sample before removal
of cell debris by centrifugation twice at 7000 × g (5 and 15 min, 4 °C) and transfer
to new tubes. After this step, 10 µL of each sample was mixed with 120 µL TE buffer
(20 mM Tris-HCl pH 7.5, 1 mM EDTA) containing 1% SDS to serve as INPUT
control. Remaining sample volumes were split into three new tubes containing
either 1 µL mouse monoclonal anti-Myc antibody (sc-40, 9E10, Santa Cruz

Biotechnology; 1/200 dilution) or 1 µL mouse anti-FLAG, F1804, Sigma-Aldrich; 1/
200 dilution) or no antibody, and incubated rotating at 4 °C for 1 h. Next, 20 µL of
Protein G Dynabeads (10004D) pre-equilibrated in HBS buffer was added to each
tube and incubation continued rotating for 2 h at 4 °C to allow binding of the
antibody to the beads. All remaining washes were performed at room temperature.
Next, samples were placed on magnet and washed with 1 mL lysis buffer rotating at
4 °C for 5 min. Then, samples were washed rotating in 1 mL AT1 buffer (25 mM
HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.03% SDS (freshly added)) for 5 min.
Next, samples were washed rotating in 1 mL AT2 buffer (25 mM HEPES pH 7.5, 1
M NaCl, 1 mM EDTA) for 5 min. Then, samples were washed rotating in 1 mL
AT3 buffer (20 mM Tris-HCl pH 7.5, 1 mM EDTA, 250 mM LiCl, 0.5% NP40, 10
mM sodium deoxycholate) for 5 min. Finally, samples were washed twice rotating
in 1 mL TE buffer for 5 min. Immunoprecipitated material was eluted from the
beads in 155 µL TE buffer containing 1% SDS by heating for 10 min at 65 °C. Beads
were removed by placing on a magnet and transferring the supernatant to a new
tube. To reverse cross-linking, samples were incubated overnight at 65 °C. After
addition of 240 µL TE buffer and 20 µL proteinase K (20 mg/mL stock solution),
samples were incubated for 2 h at 37 °C. Next, DNA was extracted by adding 50 µL
5M LiCl and 450 µL phenol/chloroform, and vortexing for 10 min. Samples
were spun for 5 min at 15,000 × g and the water phase was transferred to a
new tube, where the DNA was precipitated by addition of 1 mL 96% ethanol, 5 µL
glycogen (Roche,catalog number 10901393001) and 50 µL 3M NaOAc, and
incubating overnight at −80 °C. Precipitated DNA was collected by
centrifugation for 5 min at 15,000 × g, washed with 1 mL 70% ethanol, dried for 30
min at room temperature, and finally resuspended in 50 µL ddH2O. Samples were
stored at −20 °C until use.

Real-time quantitative PCR was performed at the early-replicating ARS305,
at regions 3 kb upstream and downstream ARS305, and at late-replicating ARS501,
using a CFX96 Real-time System (BioRad). The average of six real-time PCR
measurements (three biological replicates and two technical replicates for each) and
SD is reported. Fold increase of the IP over the beads-only control was calculated66

using the formula: fold increase= 2(CTinput− C
T
IP) per 2(CTinput− C

T
beads).

Statistical analyses. Statistical significance of differences in mutation rates was
assessed using a likelihood ratio test, as implemented in the R package rSalvador.
Statistical significance of differences in mutant frequency was assessed using an
unpaired t-test with Welch’s correction. Statistical significance of differences in
Mrc1 foci was assessed using a one-tailed Fisher’s exact test. Statistical analyses
were performed with GraphPad Prism 7, with the exception of statistical analyses
of differences in mutation rates.

Additional methodology information can be found in Supplementary Methods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-sequencing dataset generated and analyzed during the current study has been
deposited in Sequence Read Archive, as Bioproject PRJNA632734 (http://www.ncbi.nlm.
nih.gov/bioproject/632734). The CAN1 sequencing data generated and analyzed during
the current study has been deposited at GenBank, accession codes
MT509124–MT509357. All data are available from the authors upon reasonable
request. Source data are provided with this paper.
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