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The chromatin remodeling enzyme Chd4 regulates
genome architecture in the mouse brain
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The development and function of the brain require tight control of gene expression. Genome

architecture is thought to play a critical regulatory role in gene expression, but the

mechanisms governing genome architecture in the brain in vivo remain poorly understood.

Here, we report that conditional knockout of the chromatin remodeling enzyme Chd4 in

granule neurons of the mouse cerebellum increases accessibility of gene regulatory sites

genome-wide in vivo. Conditional knockout of Chd4 promotes recruitment of the archi-

tectural protein complex cohesin preferentially to gene enhancers in granule neurons in vivo.

Importantly, in vivo profiling of genome architecture reveals that conditional knockout of

Chd4 strengthens interactions among developmentally repressed contact domains as well as

genomic loops in a manner that tightly correlates with increased accessibility, enhancer

activity, and cohesin occupancy at these sites. Collectively, our findings define a role for

chromatin remodeling in the control of genome architecture organization in the

mammalian brain.
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Precise control of gene expression is required for the estab-
lishment and refinement of neural circuits1,2. Regulation of
chromatin organization through DNA methylation, post-

translational modifications of histone proteins, and nucleosome
remodeling represents a fundamental facet of gene expression
control3–6. Among these mechanisms, nucleosome remodeling,
which comprises changes in nucleosome spacing, density, or
subunit composition, remains perhaps the most poorly
understood7,8.

Chromatin remodeling enzymes, which mediate nucleosome
remodeling, have been of wide interest. Mutations of chromatin
remodeling enzymes often cause neurodevelopmental disorders
of cognition including autism spectrum disorders and intellectual
disability9, suggesting a critical role for these proteins in neuronal
connectivity and plasticity. Recent studies have highlighted cru-
cial roles for the chromatin remodeling enzyme Chd4, also
mutated in syndromic intellectual disability10–12, in the devel-
opment and plasticity of the brain9. Depletion of Chd4, a core
member of the nucleosome remodeling and deacetylase (NuRD)
complex13–15, disrupts neuronal connectivity in mice16–18. Con-
sequently, conditional knockout of Chd4 in cerebellar granule
neurons impairs sensorimotor neural coding and cerebellar-
dependent learning18. At a cellular level, Chd4 drives granule
neuron/Purkinje cell synapse formation and the maturation of
granule neuron dendrites via distinct mechanisms16,18. At a
molecular level, Chd4 decommissions the promoters of devel-
opmentally regulated genes via alterations of histone tail mod-
ifications and thereby drives granule neuron/Purkinje cell synapse
formation16. By contrast, Chd4 triggers deposition of the histone
variant H2A.z at promoters of neuronal activity genes, leading to
acute shutoff of activity genes and consequent pruning of granule
neuron dendrites18. Importantly, in addition to binding gene
promoters, Chd4 binds widely to enhancer regulatory elements in
the brain18. Because enhancers play crucial roles in the regulation
of gene expression and genome biology19, the finding that Chd4
occupies gene enhancers raises the fundamental question on
Chd4 function and mechanisms in the regulation of enhancers in
the brain. However, the role of Chd4 in the control of gene
enhancers in the brain remains poorly understood.

In recent years, three-dimensional genome architecture has
been recognized to robustly influence spatially the regulatory
effects of enhancers on gene expression. Genome architecture
features several elements including the local enrichment of con-
tacts across a contiguous genomic region into contact domains or
topologically associating domains (TADs) and the coalescence of
non-contiguous genomic regions into loops6,20,21. Loop domains
may form upon extrusion of DNA by the protein complex
cohesin up to loop anchor points. The transcription factor Ctcf
often occupies boundaries of loop domains, preventing contacts
across loop boundaries6,22–24. Importantly, loops also bring
together other genomic regions such as gene promoters and
enhancers19. In contrast, compartmental domains are devoid of
loops at their boundaries and may form through homotypic
interactions among genomic regions with similar epigenomic
status6. The composite of these local interactions emerges as
higher order structures termed compartments6,25.

Genome architecture is dynamic during neuronal differentia-
tion26, suggesting regulation of genome architecture may play a
critical role in brain development. Mutations of cohesin complex
proteins cause syndromic intellectual disability27, further corro-
borating a key function for genome architecture regulation in
brain development. However, the mechanisms that control gen-
ome architecture in the brain remain largely unexplored. In yeast,
the Rsc chromatin remodeling complex interacts with cohesin
and the cohesin loading complex28. In murine embryonic stem
cells, the Iswi family remodeler Snf2h promotes Ctcf binding to

the genome, and thus regulates formation of contact domains29.
These studies raise the fundamental question of whether chro-
matin remodeling enzymes might participate in the organization
of genome architecture in the brain.

Here, we uncover a function for the chromatin remodeling
enzyme Chd4 in the organization of genome architecture in the
mouse brain in vivo. Conditional knockout of Chd4 in granule
neurons of the mouse cerebellum increases the accessibility of
gene promoters and enhancers genome-wide in vivo. Remarkably,
conditional knockout of Chd4 promotes recruitment of the
architectural protein complex cohesin to gene enhancers in
granule neurons in vivo. Importantly, analyses of genome archi-
tecture in vivo demonstrate that conditional knockout of
Chd4 strengthens interactions among developmentally repressed
contact domains as well as genomic loops, consistent with
changes in the epigenetic and gene expression status of regions
underlying these architectural features. In sum, our findings
define a role for chromatin remodeling in the organization of
genome architecture in the developing brain.

Results
Chd4 regulates genomic accessibility and cohesin binding. To
characterize the nucleosome remodeling activity of Chd4 in the
brain, we assessed the effect of conditional knockout of Chd4 in
granule neurons of the mouse cerebellum on genomic accessibility
using DNaseI-hypersensitivity sequencing (DNaseI-seq)16,18.
Because granule neurons outnumber all other neurons in the
cerebellum30, they represent an ideal system for characterizing
epigenetic and transcriptional mechanisms in the brain
in vivo9,16,18,31. DNaseI-seq analyses from the cerebellum of
postnatal day 22 (P22) control and conditional Chd4 knockout
mice revealed a widespread increase in genomic accessibility upon
Chd4 depletion (Fig. 1a–c, Supplementary Fig. 1A–C). Notably,
accessibility was decreased at a minority of sites following Chd4
loss (Fig. 1b). Importantly, Chd4 occupied active promoters,
marked by acetylated histone H3K27, and active enhancers,
marked by acetylated histone H3K27 and monomethylated histone
H3K4, which displayed increased accessibility upon conditional
knockout of Chd4 (Fig. 1d, Supplementary Fig. 1A–D). Examples
of such sites included the promoter of the Zfp956 gene and
enhancer downstream of the Aldob gene (Fig. 1a, Supplementary
Fig. 1A, B)16,18. Chd4 protein remains expressed in the cerebellum
of conditional Chd4 knockout mice within Purkinje neurons,
inhibitory neurons, and a subset of granule neurons in which the
Gabra6 promoter does not induce Cre expression18, likely
explaining the residual Chd4 ChIP-seq signal in the cerebellum of
conditional Chd4 knockout mice (Fig. 1d, Supplementary
Fig. 1A–D). Corroborating our results of increased genomic
accessibility upon Chd4 loss in granule neurons, recent data sug-
gest Chd4 may reduce nucleosome accessibility in murine
embryonic stem cells and immature B cells32–35. Taken together,
these data demonstrate that Chd4 suppresses genomic accessibility
in the mammalian brain.

We next characterized how the regulation of genomic
accessibility by Chd4 might influence the activity state of
promoters and enhancers in the mouse cerebellum in vivo. In
analyses of chromatin immunoprecipitation followed by sequen-
cing (ChIP-seq), using levels of H3K27 acetylation as a surrogate
of regulatory site activity16,36, changes in promoter activity failed
to correlate effectively with increased accessibility at these sites
upon Chd4 loss in the cerebellum (Fig. 1e, Supplementary Fig. 1B,
C, 1E). Strikingly, however, we found that enhancer activity
increased robustly at sites of increased accessibility in the
cerebellum upon Chd4 depletion (Fig. 1a, e, Supplementary
Fig. 1E). We further assessed the effect of Chd4 on enhancer
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activity by measuring the transcriptional activity of enhancers in
the brain. We performed total RNA-seq from the cell nucleus in
the cerebellum from control and conditional Chd4 knockout
mice. Analysis of enhancer RNAs (eRNAs) genome-wide revealed
that the change in accessibility at enhancers correlated with
changes in eRNA expression in the cerebellum from conditional
Chd4 knockout mice (Fig. 1f). Taken together, these results
suggest that Chd4 regulation of genomic accessibility selectively
influences enhancer site activity in the brain.

Besides histone tail modifications, enhancers represent key sites
for binding of DNA regulatory proteins including the ring-like
genome architecture protein complex cohesin19,37. We asked
whether Chd4 regulation of genomic accessibility might control
cohesin binding to enhancers. In ChIP-seq analyses using an
antibody to the cohesin complex protein Smc1, we found that
Smc1 occupancy robustly increased at enhancer sites with
increased accessibility in the cerebellum in conditional Chd4
knockout mice (Fig. 1a, g, Supplementary Fig. 1C, 1E). These data
suggest that Chd4 regulates both accessibility and cohesin binding
at enhancers in the brain.

Chd4 regulates features of genome architecture in the brain.
The finding that Chd4 strongly influences genomic accessibility,
enhancer activity, and cohesin binding at enhancers led us to
determine whether Chd4 regulates genome architecture in the
brain. We therefore performed in situ chromosome conformation
capture with high-throughput sequencing (Hi-C)21 in the cere-
bellum of control and conditional Chd4 knockout mice. We
identified over 1.7 billion genomic contacts in these analyses from
three biological replicates per condition to attain 6 kb resolution
contact matrices (Supplementary Fig. 2A, B). Biological replicates

were highly concordant, so all replicates were pooled for further
analysis (Supplementary Fig. 2C). Sequencing to this depth
revealed distinct features of genome-wide contacts including
compartmentalization, contact domains, and loops in the cere-
bellum (Supplementary Fig. 2D, E).

To determine the role of Chd4 in the organization of contact
domains, we first characterized these domains in the mouse
cerebellum. Using the algorithm Arrowhead21, we identified
7,796 contact domains in the cerebellum of control and
conditional Chd4 knockout mice (Supplementary Fig. 3A). To
assess if Chd4 might distinctly affect loop and compartmental
domains, we segregated these domains further into those
harboring genomic loops at domain borders, i.e. loop domain,
and those without border loops, i.e. compartmental domain.
Using the algorithm HiCCUPS21, we identified 11,525 loops in
the cerebellum of control and conditional Chd4 knockout mice
(Supplementary Fig. 3B), demarcating 2,752 loop domains and
5,044 compartmental domains (Supplementary Fig. 3C–E).

We next assessed the effect of conditional Chd4 knockout on
contact domain interactions in conjunction with effects on
genomic accessibility, H3K27 acetylation, and cohesin binding.
Alterations of genomic interactions within contact domains
correlated with changes in epigenomic features at enhancers
within these domains. For example, interactions within a contact
domain on chromosome 13 increased in frequency in the
cerebellum upon conditional Chd4 knockout in a manner that
correlated with increased genomic accessibility, H3K27 acetyla-
tion, and cohesin binding among enhancers within this domain
(Fig. 2a, Supplementary Fig. 3F). On a genome-wide level,
changes in genomic accessibility in contact domains also
correlated with changes in contact domain interaction frequency
upon conditional Chd4 knockout (Fig. 2b, c). Likewise, changes
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Fig. 1 Chd4 preferentially modulates enhancer activation and cohesin binding. a Genome-browser snapshot of a region containing the Aldob gene locus
on chromosome 4 displaying the ChIP-seq profiles of Chd4, H3K4me1, H3K27ac and Smc1 as well as DNaseI-seq and nuclear RNA-seq from the control
and Chd4 cKO cerebellum. Light blue denotes an enhancer upstream of the Aldob gene. Numbers indicate the Log2 change in signal in the Chd4 cKO
cerebellum, including that of eRNA. b MA density plot of DHS sites called as significant (FDR < 0.05) by DESeq2. c Boxplot of DnaseI change between the
Chd4 cKO and control cerebellum at (left) promoters and (right) enhancers with increased (n= 19,389 promoters; n= 67,245 enhancers), unchanged
(n= 15,141 promoters; n= 44,661 enhancers), and decreased (n= 828 promoters, n= 27,750 enhancers) accessibility. d Aggregate plot of Chd4 density
in the control and Chd4 cKO cerebellum at (left) promoters and (right) enhancers with increased accessibility. Mean ± SEM. e Boxplot of H3K27ac change
between the Chd4 cKO and control cerebellum at (left) promoters and (right) enhancers with increased (n= 19,389 promoters; n= 67,245 enhancers),
unchanged (n= 15,141 promoters; n= 44,661 enhancers), and decreased (n= 828 promoters, n= 27,750 enhancers) accessibility. f Boxplot of eRNA
change between the Chd4 cKO and control cerebellum at enhancers with increased (n= 2969), unchanged (n= 1455), and decreased (n= 526)
accessibility. g Boxplot of Smc1 change between the Chd4 cKO and control cerebellum at (left) promoters and (right) enhancers with increased (n=
19,389 promoters; n= 67,245 enhancers), unchanged (n= 15,141 promoters; n= 44,661 enhancers), and decreased (n= 828 promoters, n= 27,750
enhancers) accessibility. P-values for all comparisons in this figure were calculated by the two-sided Kruskal–Wallis H-test for independent samples with
Dunn’s post hoc T-test and corrected for multiple comparisons by the Bonferroni–Hochberg procedure. p < 0.001.
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of contact domain interaction frequency upon conditional Chd4
knockout correlated with alterations in H3K27 acetylation and
cohesin binding within these domains (Fig. 2d, e). The effects of
conditional Chd4 knockout on contact domain interaction
frequency were similar in both loop and compartmental domains
(Supplementary Fig. 3G–I) and in domains called using the

independent domain-calling algorithm TADtree (Supplementary
Fig. 3J)38. In control analyses, contact domain interaction
frequency upon conditional Chd4 knockout poorly correlated
with changes in H2A.Z in these domains (Supplementary Fig. 3K),
which is predominantly altered at promoters upon conditional
Chd4 knockout18. Additionally, the changes in contact domain
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interaction frequency were independent of changes in boundary
insulation (Supplementary Fig. 3L). Taken together, our data
suggest that Chd4 regulates genomic interactions within contact
domains in a manner that correlates tightly with Chd4 control of
genomic accessibility and cohesin binding at enhancer sites in the
brain.

Genome-wide interactions segregate into higher order contact
patterns that are thought to reflect broad compartmentalization
of the genome within the nucleus21,25. Because Chd4 coordinately
regulates the epigenetic and interaction states of contact domains
in the cerebellum, we next considered a role for Chd4 in contact
domain compartmentalization in the brain. We first segregated
each chromosome into 150-kb bins and assigned regions of the
chromosome into active (A) and inactive (B) compartments
based on the regional similarity in contact patterns across
genomic loci (Supplementary Figs. 2D, 3M). We next assessed the
relationship between changes in interaction frequency among
domains and their corresponding compartmentalization. Upon
visualizing compartmentalization of contact domains across the
genome, we found concordant changes in contact domain
interaction frequency and domain compartmentalization. An
example contact domain on chromosome 13 was identified in a
genome-wide bin with an eigenvalue of near zero (Fig. 2a),
indicating weak partition of the contact domain into the A or B
compartment. In the cerebellum of conditional Chd4 knockout
mice, the eigenvalue of the compartmental bin was robustly
increased (Fig. 2a), representing a shift of the contact domain into
the A compartment. Consistent with this observation, using
Pearson’s correlation matrix, the chromosome-wide interactions
of the chromosome 13 region were more correlated with
chromosome-wide interactions among A compartment regions
than those in B compartment regions in the conditional Chd4
knockout cerebellum (Fig. 2a). Analysis of contact domain
compartmentalization on a genome-wide level supported these
observations. Compartmental bins demonstrated minimal
genome-wide changes upon conditional Chd4 knockout (Supple-
mentary Fig. 3N). Surprisingly, changes in contact domain
interactions and epigenetic status strongly correlated with
changes in compartmentalization of the domain (Fig. 2f). In
other words, contact domains with increases in intra-domain
interaction frequency, genomic accessibility, H3K27 acetylation,
or cohesin occupancy became more associated with the A
compartment upon conditional Chd4 knockout (Fig. 2f). These
data show that Chd4 contributes to the compartmentalization of
contact domains within the nucleus in the brain in accordance
with the epigenetic state and domain interactions.

Chd4 regulates loop domain boundary loop strength. Because
Chd4 regulates binding of the cohesin complex, which is critical
for loop formation22,23, we next asked whether Chd4 controls
genomic looping events in the brain. Control of loop domain

boundary loops is thought to contribute to the ability of looping
to regulate contact domain interactions22–24. We found that
conditional Chd4 knockout increased the interaction frequency of
loop domain boundary loops in a manner that correlated with
changes in epigenetic features at regulatory sites at loop domain
boundaries in the mouse cerebellum. For example, a loop domain
on chromosome 10 with increased domain accessibility upon
conditional Chd4 knockout demonstrated increased interaction
frequency at the loop domain boundary loop (Fig. 3a, Supple-
mentary Fig. 4A). The increase in accessibility upon conditional
Chd4 knockout in this loop domain occurred selectively at
domain boundaries underlying the loop domain boundary loop
(Fig. 3a). Accordingly, cohesin binding also increased at both
loop anchors (Fig. 3a). Surprisingly, H3K27 acetylation minimally
changed at the loop anchors (Fig. 3a), suggesting that distinct
mechanisms might be involved in coordinating H3K27 acetyla-
tion and cohesin binding at enhancers. In other analyses, Ctcf
occupancy increased at the upstream but not downstream loop
anchor at the Chromosome 10 domain upon Chd4 depletion
(Fig. 3a). Quantitative analysis of loop domain boundary loops
genome-wide corroborated results observed at the chromosome
10 loop. The change in accessibility of a contact domain corre-
lated with that of interaction frequency at loop domain boundary
loops in the cerebellum of conditional Chd4 knockout mice
(Fig. 3b, Supplementary Fig. 4B). Additionally, the change in
accessibility of a contact domain correlated with that of cohesin
binding upon conditional Chd4 knockout at the regions under-
lying loop domain boundary loops (Fig. 3c, Supplementary
Fig. 4C). Notably, accessibility of contact domains correlated
poorly with Ctcf binding upon conditional Chd4 knockout at the
regions underlying loop domain boundary loops (Supplementary
Fig. 4D). Taken together, these data suggest that Chd4 may
regulate loop domain boundary loop interactions with alterations
of cohesin binding at loop domain boundary loops.

Chd4 coordinates intra-domain loops and gene expression.
Besides loop domain boundary loops, we next asked if Chd4
might regulate other loop types in the cerebellum. Using the
algorithm HiCCUPSDiff39, we identified 80 loops unique to the
cerebellum of control mice and 203 loops unique to the cere-
bellum of conditional Chd4 knockout mice (Supplementary
Fig. 5A, B). Surprisingly, the vast majority of loops distinct
between control and conditional Chd4 knockout mice were intra-
domain loops rather than loop domain boundary loops (Sup-
plementary Fig. 5C). Further, among domains with increased
accessibility, the interactions between intra-domain accessibility
sites increased more than those at loop domain boundary loops
upon conditional Chd4 knockout (Supplementary Fig. 5D).
Analyses of intra-domain genomic loops revealed that conditional
Chd4 knockout increased intra-domain loop interaction fre-
quency in the cerebellum in a manner that correlated with

Fig. 2 Chd4 alters contact domain interactions and compartmentalization. a (Left) Hi-C contact matrix of a contact domain on chromosome 13 and the
flanking region. Below is a genome-browser snapshot of the region corresponding to the Hi-C contact matrix displaying the ChIP-seq profiles of H3K4me1,
H3K27ac, and Smc1 as well as DNaseI-seq from the control and Chd4 cKO cerebellum. (Right) Juicebox browser snapshot of the Pearson’s correlation
matrix of a region on chromosome 13 surrounding the contact domain. Below is the eigenvalue of the corresponding region on chromosome 13 in 150 kb
bins, with the region surrounding the contact domain highlighted. b Density plot comparing the change in contact domain DNaseI-seq with the change in
Hi-C contacts within the domain in the control and Chd4 cKO cerebellum. Pearson’s r, p < 0.001. c Change in Hi-C contacts within domains with increased
(Log2FC > 0.585), unchanged (−0.585 < Log2FC < 0.585), and decreased (−0.585 < Log2FC) accessibility in the Chd4 cKO cerebellum. Points represent
average of domains in individual biological replicates (n= 3). One-way ANOVA with Tukey’s post hoc HSD test. **p < 0.01. d, e Density plot comparing the
change in contact domain (e) H3K27ac and (f) Smc1 ChIP-seq with the change in Hi-C contacts within the domain in the control and Chd4 cKO
cerebellum. Pearson’s r, p < 0.001. f Spearman’s Rho comparing the difference in eigenvalue among contact domains and the change in domain contacts or
other epigenomic features (Chd4 cKO/Ctrl).
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changes of epigenetic features of regulatory sites within the
domain. For example, conditional Chd4 knockout increased the
interaction frequency of an intra-domain enhancer-promoter
loop in a chromosome 4 contact domain in the cerebellum
(Fig. 4a, Supplementary Fig. 5E). The loop connected a region

containing the promoter of the Jun gene to a set of enhancers in
an intron of the Fggy gene (Fig. 4a). Notably, Ctcf was present at
the Jun promoter but not at intronic enhancers in the Fggy gene
(Fig. 4a). Conditional Chd4 knockout increased accessibility at
the Jun promoter with minimal changes in H3K27 acetylation or

S
m

c1
C

tcf
H

3K
27ac

D
N

aseI

Ctrl

Chd4 cKO

Ctrl

Chd4 cKO

1000

1000

800

800

Ctrl

Chd4 cKO

2000

2000

Ctrl

Chd4 cKO

800

800

100 kb mm10
117,500,000 117,600,000 117,700,000

S
m

c1
C

tcf
H

3K
27ac

a b

c

Chd4 cKO
Chr10: 117.39–117.76 Mb

Control
Chr10: 117.39–117.76 Mb

Loop domain
boundary loops

***
***

***

Non-promoters overlapping
loop domain boundary loops

***
***

***

D
N

aseI

Ctrl

Chd4 cKO

Ctrl

Chd4 cKO

1000

1000

800

800

Ctrl

Chd4 cKO

600

600

Ctrl

Chd4 cKO

800

800

S
m

c1
C

tcf
H

3K
27ac

D
N

aseI

Ctrl

Chd4 cKO

Ctrl

Chd4 cKO

2000

2000

1200

1200

Ctrl

Chd4 cKO

2000

2000

Ctrl

Chd4 cKO

800

800

+1.61

+0.00

+0.89

+1.66

+0.23

–0.32

+0.34

+0.29

chr10:117,675,001–117,679,953 chr10:117,675,001–117,679,953

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17065-z

6 NATURE COMMUNICATIONS |         (2020) 11:3419 | https://doi.org/10.1038/s41467-020-17065-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 3 Chd4 regulates loop domain boundary loop strength. a (Top) Hi-C contact matrix of a loop domain on chromosome 10 and the flanking region, with
a loop domain boundary loop highlighted by a white box. (Bottom) Genome-browser snapshot of the region corresponding to the Hi-C contact matrix
displaying the ChIP-seq profiles of H3K27ac, Smc1, and Ctcf as well as DNaseI-seq from the control and Chd4 cKO cerebellum. Blue denotes the the loop
anchors and regions of the insets. Numbers indicate the Log2 change in signal in the Chd4 cKO cerebellum. b Change in Hi-C contacts at loop domain
boundary loops among domains with increased (n= 613), unchanged (n= 2299), or decreased (n= 105) accessibility in the Chd4 cKO. c Change in Smc1
occupancy at non-promoter DHS underlying loop domain boundary loops among domains with increased (n= 1343), unchanged (n= 5336), or decreased
(n= 241) accessibility. P-values for all comparisons in this figure were calculated by the two-sided Kruskal–Wallis H-test for independent samples with
Dunn’s post hoc T-test and corrected for multiple comparisons by the Bonferroni–Hochberg procedure. ***p < 0.001.
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binding of cohesin and Ctcf (Fig. 4a). In contrast, conditional
Chd4 knockout increased both accessibility and cohesin binding
at the intronic enhancers in the Fggy gene in the cerebellum
(Fig. 4a). Similar epigenetic and looping changes occured at an
intra-domain enhancer-promoter loop connecting an enhancer
within the Gm13807 locus to the promoter of the Tspan18 gene
(Supplementary Fig. 5F). Genome-wide analysis of intra-domain
loops revealed that changes in interaction frequency at intra-
domain loops correlated with changes in accessibility within the
domain upon Chd4 depletion (Fig. 4b). Additionally, intra-
domain loops unique to the cerebellum of conditional Chd4
knockout mice were enriched among domains with increased
accessibility (Supplementary Fig. 5C). These analyses suggest that
Chd4 may preferentially coordinate intra-domain loops genome-
wide with alterations in domain accessibility.

To further assess the mechanism through which Chd4 might
regulate loop formation within contact domains, we assessed the
relationship between epigenetic changes and looping specifically
at intra-domain enhancer-promoter loops. Similar to all intra-
domain loops, intra-domain enhancer-promoter loop interaction
frequency correlated with changes in accessibility within a contact
domain upon Chd4 loss (Fig. 4c). Intra-domain enhancer-
promoter loops within contact domains with increased accessi-
bility displayed increased interaction frequency in the cerebellum
of conditional Chd4 knockout mice (Fig. 4d). Likewise, changes
in contact domain accessibility correlated more strongly with
changes in H3K27 acetylation and cohesin binding at enhancers
than at promoters underlying enhancer-promoter loops in the
cerebellum of conditional Chd4 knockout mice (Fig. 4e, Supple-
mentary Fig. 5G–J). Together, these data show that Chd4 may
regulate intra-domain enhancer-promoter loop interaction fre-
quency via changes in the epigenetic state and cohesin binding of
enhancers underlying these loops.

The role of Chd4 in intra-domain enhancer-promoter loops led
us to ask whether Chd4 regulates expression of genes located
within contact domains. Analysis of gene expression changes in
the cerebellum in conditional Chd4 knockout mice revealed that
increases in accessibility in a contact domain correlated with
increased expression of genes localized within the domain
(Fig. 4f)16. In addition, genes harboring intra-domain enhancer-
promoter loops in domains with increased accessibility were more
robustly upregulated in the cerebellum upon Chd4 depletion than
genes without detectable promoter-enhancer loops at the 6 kb Hi-
C resolution (Fig. 4g). Expression of genes with intra-domain
enhancer-promoter loops located in domains with unaltered or
decreased accessibility upon Chd4 loss changed similarly to those
without detectable loops (Supplementary Fig. 5K, L). Together,

these data suggest that Chd4 represses gene expression by
reducing the strength of intra-domain enhancer-promoter loops
in contact domains.

Chd4 controls the epigenomic maturation of contact domains.
Chd4 plays a critical role in the developmental regulation of gene
expression in neurons and consequent establishment of neuronal
connectivity16,18. We therefore assessed whether Chd4 controls
neuronal genome architecture in developmentally regulated
contact domains in the brain. We found that contact domains
with altered interactions in the cerebellum upon conditional
Chd4 knockout contained regulatory sites that were dynamic
during brain development. Upon visualization of contact
domains with increased accessibility and interaction frequency in
the cerebellum of conditional Chd4 knockout mice, H3K27
acetylation at enhancers across the contact domain in the cere-
bellum of wild-type mice diminished robustly from P7 to P60
(e.g. chromosome 13, Fig. 5a)40. Genome-wide analysis revealed
that the change in interaction frequency of contact domains
following conditional Chd4 knockout was correlated with
downregulation of H3K27 acetylation in the cerebellum from P7
to P60 (Fig. 5b, Supplementary Fig. 6A). These data led us to
consider a role for Chd4 in the maturation of epigenetic features
in contact domains in the cerebellum. To determine whether
Chd4 controls the timing or maturation of epigenetic features in
contact domains in the brain, we performed ChIP-seq analyses of
H3K27 acetylation at P60 in the cerebellum of control and con-
ditional Chd4 knockout mice (Fig. 5a). Remarkably, contact
domains with increased accessibility and interaction frequency
demonstrated increased H3K27 acetylation at P60 in the cere-
bellum of conditional Chd4 knockout mice (Fig. 5c, Supple-
mentary Fig. 6B, C). Additionally, the change in H3K27
acetylation at P22 remained similarly changed at P60 in the
cerebellum of conditional Chd4 knockout mice (Supplementary
Fig. 6D). These results suggest that Chd4 may gate the maturation
of epigenetic features in contact domains in the cerebellum.

We next considered a role for Chd4 in the maturation of
genomic compartments in the cerebellum. We found that contact
domains that became more strongly associated with the A
compartment upon conditional Chd4 knockout contained
regulatory sites that were developmentally inactivated (Supple-
mentary Fig. 6E). Conversely, contact domains that became more
strongly associated with the B compartment upon conditional
Chd4 knockout contained regulatory sites that were developmen-
tally activated (Supplementary Fig. 6E). Together, these data
suggest that Chd4 controls the maturation of the epigenetic and
architectural status of the genome in the brain.

Fig. 4 Chd4 coordinates intra-domain loop strength and gene expression. a (Top) Hi-C contact matrix of a loop domain on chromosome 4 and the
flanking region, with an intra-domain enhancer-promoter (E–P) loop highlighted by a white box. (Bottom) Genome-browser snapshot of the region
corresponding to the Hi-C contact matrix displaying the ChIP-seq profiles of H3K27ac, Smc1, and Ctcf as well as DNaseI-seq from the control and Chd4
cKO cerebellum. Blue denotes the the loop anchors and regions of the insets. Numbers indicate the Log2 change in signal in the Chd4 cKO cerebellum,
including that of mRNA for Jun. b, c Hi-C contacts at intra-domain (b) or intra-domain E–P (c) loops among domains with increased (n= 938 intra-domain;
n= 116 intra-domain E–P), unchanged (n= 4928 intra-domain; n= 953 intra-domain E–P), or decreased (n= 133 intra-domain; n= 26 intra-domain E–P)
accessibility in the Chd4 cKO. Two-sided Kruskal–Wallis H-test for independent samples with Dunn’s post hoc T-test and corrected for multiple
comparisons by the Bonferroni–Hochberg procedure. ***p < 0.001. d Aggregate peak analysis of enhancer-promoter loops in domains with increased
accessibility in the Chd4 cKO cerebellum. P2LL, peak-to-lower-left. e Change in (left) H3K27ac and (right) Smc1 at enhancers underlying intra-domain E–P
loops among domains with increased (n= 183), unchanged (n= 1682), or decreased (n= 45) accessibility. Two-sided Kruskal–Wallis H-test for
independent samples with Dunn’s post hoc T-test and corrected for multiple comparisons by the Bonferroni–Hochberg procedure. ***p < 0.001. f Change in
mRNA of genes in domains with increased (n= 3,202), unchanged (n= 12,649), or decreased (n= 311) accessibility in the Chd4 cKO. Two-sided
Kruskal–Wallis H-test for independent samples with Dunn’s post hoc T-test and corrected for multiple comparisons by the Bonferroni–Hochberg
procedure. ***p < 0.001. g Change in mRNA of genes at intra-domain E–P loops (green, n= 145) or underlying no detectable loop (brown, n= 3057) in
domains with increased accessibility in the Chd4 cKO. Two-sided Mann–Whitney U. ***p < 0.001.
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Discussion
In this study, we have discovered a role for Chd4 in the organi-
zation of genome architecture in the mammalian brain (see
model in Fig. 6). Conditional knockout of Chd4 in granule
neurons of the mouse cerebellum increases the accessibility of
gene enhancers and promoters genome-wide in vivo. Remarkably,
conditional Chd4 knockout promotes recruitment of the archi-
tectural protein cohesin selectively to gene enhancers in granule
neurons in vivo. Importantly, profiling of genome architecture
in vivo demonstrates that conditional knockout of
Chd4 strengthens interactions among developmentally repressed
contact domains and genomic loops in a manner that correlates
with changes in the epigenetic and gene expression status of
regions underlying these architectural features. In sum, our
findings define a role for chromatin remodeling in the organi-
zation of genome architecture in the brain in vivo.

Our findings have broad implications in our understanding of
the role of chromatin remodeling enzymes in the control of the
epigenome and genome architecture. In this study, we have dis-
covered roles for Chd4 in the control of gene enhancers in the
brain in vivo. A fundamental question that remains to be
addressed in genome biology is how chromatin remodeling
enzymes might impact the distinct actions of promoters and
enhancers in the control of gene expression. We have found that
Chd4 reduces accessibility genome-wide at both enhancers and
promoters in the brain in vivo. However, changes in accessibility
at promoters and enhancers may trigger distinct epigenomic
consequences at these sites. Chd4 decommissions the promoters
of a select set of developmentally regulated genes by regulating
histone tail modification16; and Chd4 stimulates deposition of the

histone variant H2A.z at promoters of neuronal activity genes
and thereby triggers their dynamic acute shutoff18. By contrast,
here we have uncovered that Chd4 strikingly represses enhancers
and inhibits recruitment of the genome architectural protein
complex cohesin at a genome-wide level in the brain in vivo. In
future studies, it will be important to determine the mechanisms
by which Chd4 differentially regulates gene enhancers and
promoters.

Our study also reveals that chromatin remodeling may influ-
ence genome architecture in the brain. Chd4 suppresses inter-
actions within contact domains in the developing brain, such that
these domains shift compartmentalization in the nucleus upon
conditional Chd4 knockout. Chd4 may conceivably weaken
genomic interactions within these domains via restriction of
cohesin binding at enhancers within contact domains. In future
studies, it will be important to determine how Chd4 inhibits
cohesin binding at gene enhancers. Because the cohesin loading
complex Nipbl binds to active enhancers in the developing cor-
tex41, it will be interesting to determine whether Chd4 regulates
Nipbl function at enhancers. Alternatively, Chd4 might alter the
binding of a transcription factor that in turn controls cohesin
occupancy at gene enhancers32. It will be additionally important
to determine whether Chd4 controls looping strength directly
through altered enhancer activity or as a consequence of
enhancer-driven changes in gene expression. Directed looping of
enhancers to gene promoters can upregulate gene expression42,43.
By contrast, enhancer activity might coordinate promoter activity
independently of genomic looping44.

The control of genome architecture may be fundamental to the
development of the brain. Widespread changes in contact

200 kb mm10
28,500,000

b c

a

20

P7

P60

P60 Ctrl

P60 Chd4 cKO

250

250

75

75
H

3K
27ac

Gm40841

2610307P16Rik

Mir6368 Gm34639

Fig. 5 Chd4 loss impairs the maturation of epigenomic features in contact domains. a Genome-browser snapshot of a contact domain on chromosome
13 as in Fig. 2a displaying the ChIP-seq profiles of H3K27ac in the P7 and P60 cerebellum. Also displayed is the ChIP-seq profile of H3K27ac in the
cerebellum of control and Chd4 cKO mice at P60. Blue denotes the extent of the contact domain. b, c Density plot comparing the change in Hi-C contacts
within a domain with the (b) change in H3K27ac in the cerebellum between P7 and P60 and (c) change in H3K27ac in the cerebellum of control and Chd4
cKO mice at P60. Pearson’s r, p < 0.001.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17065-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3419 | https://doi.org/10.1038/s41467-020-17065-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


domain, loop, and compartmental interactions accompany neu-
ronal differentiation in vivo26, suggesting that the activity of
regulatory sites may be critical to the developmental maturation
of genome architecture. Conditional knockout of Chd4 in the
brain in vivo increases interactions within developmentally
repressed contact domains, reflected further in the shift in com-
partmentalization of these domains into the active compartment.
The control of genome architecture by Chd4 may thus play a
crucial role in maturation of the epigenome of neurons in the
brain. These findings are particularly relevant to our under-
standing of neurodevelopmental disorders of cognition. Muta-
tions of Chd4 and other chromatin remodeling enzymes as well
as of proteins closely associated with genome architecture
including the cohesin complex cause neurodevelopmental dis-
orders of cognition such as intellectual disability and autism10–

12,27,45–54. Interestingly, truncating mutations in the cohesin
loading complex protein Nipbl cause severe clinical features27,
suggesting that failure to load cohesin may be critical to brain

development. Conversely, conditional Chd4 knockout leads to an
increase in cohesin binding to enhancers en masse, suggesting
that balanced level of cohesin occupancy on the genome and
hence level of genomic interactions may be critical to brain
development. Dysregulation of genome architecture may thus
constitute a key mechanism by which mutations in chromatin
regulators lead to neurodevelopmental disorders of cognition
including autism spectrum disorders and intellectual disability.

Methods
Animal husbandry. Control (Chd4f/f) and Chd4 cKO (Chd4f/f; GABRA6-Cre+/−)
mice16,18,55 were housed under pathogen-free conditions. Experiments were per-
formed in accordance with protocols approved by the Animal Studies Committee
at Washington University in St. Louis School of Medicine and National Institutes
of Health guidelines.

Antibodies. Smc1 5 µg/100 µL lysate (Bethyl A300-055A), Ctcf 3 µg/200 µL lysate
(Millipore 07-729), H3K27ac 0.1 µL/500 µL lysate (Abcam ab4729), and H3K4me1
3 µL/500 µL (Active Motif 39297) antibodies were used in this study.

Reduced accessibility,
H3K27ac, transcription,

and cohesin binding

Reduced accessibility

Enhancers Promoters

Developmentally repressed contact domain

+Chd4

+Chd4 +Chd4

Reduced domain contacts,
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Fig. 6 Chd4 in the control of enhancer function and genome architecture. (Top) Conditional knockout of Chd4 (purple) in granule neurons of the mouse
cerebellum increases the accessibility of gene enhancers (pink) and promoters (mint) genome-wide in vivo. Conditional Chd4 knockout promotes
acetylation of histone H3K27 (yellow pentagons), transcription of enhancer RNAs (green lines), and cohesin complex (blue) binding specifically at gene
enhancers. (Bottom) Profiling of genome architecture in vivo shows that conditional knockout of Chd4 strengthens domain contacts, looping at loop
domain boundaries and between promoters (green) and enhancers (pink), A compartmentalization (orange), and gene expression (green lines) among
developmentally repressed contact domains.
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DNaseI-seq. DNaseI-seq was performed as previously described56. The cerebellum
was dissected and homogenized in dissection buffer (20 mM MOPS, 40 mM NaCl,
90 mM KCl, 2 mM EDTA, 0.5 mM EGTA, 0.5 mM Spermidine, 0.2 mM Spermine)
then passed through a 70um filter. Tissue lysates were then mixed into 2M sucrose
(final 1.74M) and centrifuged at 23krpm in an SW40T rotor (Beckman Coulter) at
4 °C for 1 h. Nuclear pellets were then resuspended in digestion buffer (750 mM
NaCl, 60 mM CaCl2) to a concentration of 10 million nuclei/mL. Five million
nuclei were pre-warmed at 37 °C for 1 min then treated with DNaseI (20U) at 37 °C
for 3 min. The reaction was stopped by addition of stop buffer (final 25 mM Tris-
HCl pH 7.5, 50 mM NaCl, 0.05% SDS, 50 mM EDTA, 0.5 mM spermidine, 0.15
mM spermine, proteinase K [NEB]) then incubated at 55 °C for 1 h. The reaction
was then treated with RnaseA at 37 °C for 30 min. Samples were gently mixed with
phenol-chloroform then centrifuged to obtain the supernatant. The supernatant
was mixed with NaCl (final 798 mM) and fractionated using a sucrose cushion (10,
20, 30, 40% [w/v]) by centrifugation at 25krpm in an SW40T rotor at 4 °C for 24 h.
Fractions with less than 500 bp DNA fragments were purified using a PCR pur-
ification kit (Qiagen) and sequenced on an Illumina HiSeq 2000 (Genome Tech-
nology Access Center at Washington University). Two biological replicates of sex-
matched littermates per condition were used for DNaseI-seq experiments.

ChIP-seq. ChIP-seq was performed as previously described with minor mod-
ifications18. For Ctcf ChIP-seq, the cerebellum was dissected and homogenized in a
1.01% formaldehyde solution (4.5 mM HEPES-KOH pH 7.9, 9.1 mM NaCl, 0.09
mM EDTA, 0.05 mM EGTA, 0.9X PBS) while rotating for 15 min at room tem-
perature (RT). The formaldehyde was quenched with the addition of Tris and
glycine (final 113 mM glycine, 0.91 mM Tris-HCl) while rotating for 5 min at
RT. The cell pellet was washed with cold 1X PBS then flash frozen and stored at
−80 °C.

For Smc1 ChIP-seq, the cerebellum was dissected and homogenized in a 2 mM
disuccinimidyl glutarate (DSG; ThermoFisher) dissolved in 1X PBS while rotation
for 45 min at RT. Tissue was pelleted then washed twice with 1X PBS at RT. Tissue
was then resuspended in a 1.01% formaldehyde solution (4.5 mM HEPES-KOH pH
7.9, 9.1 mM NaCl, 0.09 mM EDTA, 0.05 mM EGTA, 0.9X PBS) while rotating for
15 min at room temperature (RT). The formaldehyde was quenched with the
addition of Tris and glycine (final 113 mM glycine, 0.91 mM Tris-HCl) while
rotating for 5 min at RT. The cell pellet was washed with cold 1X PBS then flash
frozen and stored at −80 °C.

For H3K4me1 and P60 H3K27ac ChIP-seq, the cerebellum was dissected and
homogenized in a 1.01% formaldehyde solution in 1X PBS for 14 min.
Formaldehyde was quenched with glycine (130 mM) for 5 min at RT. The cell
pellet was resuspended in cold NP-40 buffer (0.1% NP-40 in 1X PBS) then filtered
through a 40 μm cell strainer. Cell pellets were then washed twice with cold NP-40
buffer then flash-frozen and stored at −80 °C.

Immunoprecipitation was performed in RIPA buffer (10 mM Tris-HCl 8.0, 140
mM NaCl, 0.1% SDS, 1% Triton-X100, 0.1% DOC, 1 mM EDTA, 0.5% EGTA) with
the respective antibody and beads. For Smc1, Dynabeads protein G (ThermoFisher
Scientific) were used; for Ctcf, Sepharose protein G beads (GE Life Sciences) were
used; for H3K27ac, Dynabeads protein G and protein A (ThermoFisher Scientific)
beads were used; for H3K4me1, Sepharose protein G and protein A (GE Life
Sciences) were used. Smc1, H3K27ac, and H3K4me1 ChIP-seq libraries were
prepared using the Swift NGS 2S Plus Library Prep Kit per kit instructions. Ctcf
ChIP-seq libraries were prepared using the NEBNext Ultra II DNA Library Prep
Kit for Illumina (NEB) per kit instructions. Smc1 libraries were sequenced on an
Illumina HiSeq 2500; Ctcf, H3K27ac, and H3K4me1 libraries were sequenced on
an Illumina NextSeq 500. Two biological replicates of sex-matched littermates per
condition (Smc1: 2F; H3K4me1: 1F, 1M; P60 H3K27ac: 2F) were used for ChIP-seq
experiments.

Nuclear RNA-seq. The cerebellum was dissected, washed with cold 1X PBS, then
homogenized in cold lysis buffer (25 mM HEPES pH 7.4, 140 mM NaCl, 0.1% NP-
40, 1.5 mM MgCl2) with 200 U/mL RNase Inhibitor (New England Biolabs). Nuclei
were then filtered with a 40 μm cell strainer then pelleted by gentle centrifugation.
Nuclear pellets were washed with cold lysis buffer then resuspended in 1 mL Trizol
(Invitrogen). RNA was then purified per Trizol reagent instructions. rRNA was
depleted from RNA samples using the NEBNext rRNA Depletion Kit (NEB) per kit
instructions. RNA-seq libraries were generated using NEBNext Ultra Directional
RNA Library Prep Kit for Illumina (NEB) per kit instructions. DNA was sequenced
on the NextSeq 500 (Center for Genome Sciences at Washington University). Four
biological replicates of sex-matched littermates per condition (2 F, 2 M) were used
for nuclear RNA-seq experiments.

Hi-C. Hi-C was performed as previously described with minor modifications56. The
cerebellum was dissected and homogenized in a 1.01% formaldehyde solution (4.5
mM HEPES-KOH pH 7.9, 9.1 mM NaCl, 0.09 mM EDTA, 0.05 mM EGTA, 0.9X
PBS) while rotating for 15 min at room temperature (RT). The formaldehyde was
quenched with the addition of Tris and glycine (final 113 mM glycine, 0.91 mM
Tris-HCl) while rotating for 5 min at RT. The cell pellet was washed with cold 1X
PBS then flash frozen and stored at −80 °C.

Flash-frozen tissue pellets were thawed on ice then resuspended in 15 mL cold
lysis buffer (10 mM Tris-HCl pH 8, 10 mM NaCl, 0.2% IGEPAL-630 with
proteinase inhibitors) and incubated on ice for 15 min. Tissue was then
homogenized, passed through a 70 μm nylon filter, pelleted, then washed with lysis
buffer to purify nuclei. Nuclei were then resuspended in 2.5 mL 0.5% SDS and
incubated at 62 °C for 10 min to permeabilize nuclei. 100-250k nuclei from this
suspension (25 μL) of this nuclear suspension was then quenched with a Triton-
X100 solution (final 1% Triton-X100, 1.2% Cutsmart buffer [NEB]) and incubated
at 37 °C for 15 min. Nuclei were then treated with MboI (50U; NEB) and spun at
300 rpm at 37 °C for 4 h, followed by incubation at 65 °C for 20 min to inactivate
the enzyme.

DNA blunting was performed by incubating nuclei with Biotin-14-dATP and
other dNTPs (final 30 μM) with Klenow (20U; NEB) at 300 rpm at 37 °C for 4 h.
Proximity ligation was performed by incubating nuclei in a ligation buffer (final 1X
T4 DNA ligase buffer [NEB], 0.1 mg/mL Bovine Serum Albumin [BSA], 1%
Triton-X100) with T4 DNA Ligase (4000U) at 300 rpm at 16 °C overnight. Nuclei
were then pelleted and resuspended in 1X Cutsmart buffer (NEB). SDS (final 0.8%),
NaCl (final 217 mM), and proteinase K (3.2U; NEB) were then added and spun at
1200 rpm at 55 °C for 1 h, then at 1200 rpm at 65 °C for >12 h. RnaseA (0.02 mg;
ThermoFisher Scientific) was then added and incubated at 37 °C for 1 h. DNA was
purified by phenol-chloroform purification followed by ethanol precipitation in the
presence of glycogen. Biotin was removed from free ends in a dATP solution (100
μM dATP, 1X Buffer 2.1 [NEB]) with 1 U/μg DNA T4 DNA Polymerase (NEB) at
20 °C for 4 h. DNA was then purified using a Monarch PCR & DNA Cleanup
Kit (NEB).

Purified DNA was sonicated to 300 bp using a Covaris E220 instrument.
Sonication tubes were washed with an additional volume of TE to capture DNA
stuck to side of tubes. Right-sided size selection was performed using
SPRIselect beads.

Biotin-labeled DNA was captured using Dynabeads MyONE Streptavidin T1
(ThermoFisher). Beads were then resuspended in 40 μL Low-EDTA TE (Swift
Biosciences) and used in the Swift NGS 2 S Plus Library Prep Kit (Swift
Biosciences) with minor modifications. For all washes, beads were resuspended in
2X TBW (10 mM Tris-HCl pH 8, 1 mM EDTA, 2M NaCl, 0.05% Tween-20),
incubated for 5 min at RT, then washed twice with 1X TBW. Beads were then
resuspended in the appropriate volume of enzyme master mix (Swift Biosciences)
for each step. Prior to amplification, DNA was eluted from beads by incubation in
Low-EDTA TE at 98 °C for 10 min. DNA was then amplified using 14 cycles of
PCR according to kit instructions. Following amplification, cDNA was sequenced
on the NextSeq 500 (Center for Genome Sciences at Washington University).
Three biological replicates of sex-matched littermates per condition (3 M) were
used for Hi-C experiments.

Data analysis. DNaseI-seq and ChIP-seq reads were aligned to mm10 using
Bowtie2 (v2.2.5)57. Conversion of sam to bam files was performed using Samtools
(v1.3)58. DNaseI-seq reads per kilobase per million (rpkm) was quantified using
Deeptools (v2.4.2) bamCoverage with no extension59. ChIP-seq rpkm was quan-
tified using Deeptools bamCompare assuming a 300 bp fragment size (−e 300)
with reads centered (--centerReads) and input subtracted. For P22 formaldehyde-
treated ChIP-seq samples, inputs16,18 were concatenated and used as a single input.
Signal was then divided by the binsize to generate DNaseI- or ChIP-seq reads per
million (rpm). To generate genomic tracks for viewing on the UCSC genome
browser, DNaseI-seq biological replicates were concatenated using Samtools then
quantified as described above60. ChIP-seq reads were concatenated using Samtools,
then rpkm was quantified using Deeptools bamCoverage assuming a 300 bp
fragment size (−e 300) with reads centered (--centerReads). Tracks are represented
using a two-pixel smoothing window. Individual biological replicates were com-
pared using Deeptools multiBigwigSummary and plotCorrelation on Galaxy
(v3.3.0.0.0) with 10 kb bins and the Spearman correlation method. Clustering was
performed with Seaborn (v0.9.0) clustermap using default settings.

Nuclear RNA-seq sequences were adapter-trimmed using Cutadapt (v1.16)61

and subjected to quality control using PRINSEQ (v0.20.4)62 and aligned to mouse
genome mm10 using STAR (v2.5.3a)63. Sequencing performance was assessed for
total number of aligned reads, total number of uniquely aligned reads, genes and
transcripts detected, ribosomal fraction, known junction saturation, and reads
distribution over known gene models with Picard Tools (v2.19.0) (http://
broadinstitute.github.io/picard/), qualimap (v2.2.1)64, RSeQC (v2.6.2)65.

HiC-Pro (v2.10.0) was used to generate contact matrices using the mm10
mouse genome as reference66. Valid pairs determined by HiC-Pro was used as
input to generate Hi-C contact matrices at 1, 5, 10, 20, 40, 150, 500 kb and 1 million
base pair resolutions. addNorm function from Juicer (v1.5.6) was used to perform
genome-wide normalization39. Observed over expected (O/E) and Knight-Ruiz
(KR)-normalized Hi-C contacts from genomic bins were extracted using juicer-
tools (v1.8.9) dump. For visualization of contact matrices in Supplementary
Fig. 3A, E, KR-normalized Hi-C contacts were extracted from genomic bins using
juicer-tools (v1.8.9) straw then scaled to the same sequencing depth
(Supplementary Fig. 3A, E); otherwise, KR-normalized, O/E Hi-C contacts were
extracted from genomic bins using juicer-tools (v1.8.9) dump. Visualization of the
Pearson’s matrix was performed using Juicebox (v1.9.8) at 40 kb resolution39.
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The similarity of biological replicates was compared using three methods.
Unnormalized contacts across all chromosomes at 1 Mb resolution were used to
calculate the Spearman’s Rho. For HiCRep67 and HiC-Spector68 analyses, the
quality score was calculated using 3DChromatinReplicate_QC (v1.01)69. The
average correlation metric for HiCRep and HiC-Spector across all chromosomes
was depicted in the clustered heatmap. Clustering was performed with Seaborn
(v0.9.0) clustermap using default settings.

DNaseI-seq peaks were called using MACS2 (v2.1.1.20160309) at a q-value of
less than 0.01 (−q 0.01) without model building (--nomodel), an extension of 200
bp (--extsize 200), and a shift of −100bp (--shift −100)70. Peaks from control and
Chd4 cKO were then merged and called as significantly different using Diffbind
(v2.6.6) running DESeq2 (v1.20.0)71,72. H3K4me1 ChIP-seq peaks were called
using MACS2 (v2.1.1.20160309) using the broad settings (--broad) at a q-value of
less than 0.05 (−q 0.05 –broad-cutoff 0.05) without model building (--nomodel)
and an extension of 300 bp (--extsize 300). Active promoters were defined as
transcription start sites overlapping DnaseI-seq and H3K27ac peaks. Active
enhancers were defined as DnaseI-seq peaks overlapping H3K27ac and H3K4me1
peaks. Overlapping peaks were those that overlapped by at least 25% reciprocally
(-f 0.25 -r) using Bedtools (v2.25.0)73. DNaseI- and ChIP-seq signal at DHS was
quantified as the average signal among biological replicates in the 1 kb around the
TSS or center of the DRE. Examples of these values are represented in the genome-
browser snapshots.

RNA-seq reads in features were counted using HTseq (v0.6.1)74. Reads in exons
were used to quantify gene abundance in mRNA-seq data. Enhancer RNAs
(eRNAs) were identified using bidirectional windows originating from DnaseI-seq
peak centers that overlapped with H3K27ac- and H3K4me1-marked enhancers and
spanning 2 kb upstream on the Crick (−) strand or 2 kb downstream on the
Watson (+) strand. Windows overlapping with known coding regions and
lncRNAs (with 1 kb extension from both transcription start site and transcription
end site) were excluded from analysis. DESeq2 (v1.26.0)72 was used to estimate the
change in feature expression between conditions. Features with fewer than ten
counts were removed from all analyses.

Genomic loops were identified from control and Chd4 cKO Hi-C data
independently on the pooled set of KR-normalized contact matrices using juicer-
tools (v1.9.9) HiCCUPS at 10 kb resolution on a CPU (--cpu) using default
parameters21. Control and Chd4 cKO loops were then merged if both anchors
were within 10 kb of one another. Significantly different genomic loops between
control and Chd4 cKO Hi-C data were identified using juicer-tools
HiCCUPSDiff on the pooled set of KR-normalized contact matrices at an FDR of
less than 0.1 (−f 0.1) on a CPU (--cpu) using default parameters39. Loop
contacts were quantified as the O/E, KR-normalized signal in the region defined
by the loop anchor boundaries.

Contact domains were identified from control and Chd4 cKO Hi-C data
independently on the pooled set of KR-normalized contact matrices using juicer-
tools (v1.9.9) Arrowhead at 10 kb resolution using default parameters21. Control
and Chd4 cKO domains were then merged if domain borders were within 20 kb of
one another. Domains were identified as loop domains if domain boundaries were
within 25 kb of loop anchors. Otherwise, they were termed ordinary domains.
Similarly, loops were identified as domain loops if they were within 25 kb of
domain boundaries. Otherwise, they were termed ordinary loops. Domain contacts
were quantified as the O/E, KR-normalized signal in the region defined by the
domain boundaries. DNaseI- and ChIP-seq signal within domains was quantified
using the average signal of all DHS within the domain. Insulation scores for
domain boundaries were calculated as the negative log-ratio of contacts that violate
insulation compared to all contacts in the length of the domain on both sides of the
boundary75. TADs in Supplementary Fig. 3J were identified using TADtree38 as
previously described76 using KR-normalized contact matrices at 40 kb resolution
with gamma = 200, M= 1, p= 3, q= 12, N= 500, and range = 1:500. TADs were
only considered if present in at least 30% of all runs.

The eigenvalue was calculated from control and Chd4 cKO Hi-C data
independently on the pooled set of KR-normalized contact matrices using juicer-
tools (v1.9.9) eigenvector at 150 kb resolution on each individual chromosome. The
sign of the eigenvector for each condition was then oriented so that positive value
bins were correlated with H3K27ac signal in the bin. Contact domains were
assigned the average eigenvalue of the 150 kb bins that the domain spanned.

To compare changes in interaction frequency between loop domain boundary
loops and intra-domain DNaseI peaks found in domains with increased
accessibility, DNaseI peaks within the same domain were paired. Distance-
controlled resampling was then performed to generate one-hundred distributions
of paired DNaseI peaks such that the pairs of DNaseI peaks selected matched the
test set of loop domain boundary loop anchors in both number and distance
between pairs. An empirical p-value of 0.01 was derived from the observation that
one resampled distribution out of the one-hundred distributions analyzed showed
a median fold-change in interactions less than the test distribution. The fourty-
ninth of one-hundred resampled distributions sorted by the resampled
distributions’ medians is presented in Supplementary Fig. 5D.

All analyses were performed with Jupyter notebook (v1.0.0) running Pandas
(v0.24.2), Numpy (v1.16.2), and Scipy (v1.2.1) data analysis tools as well as
Matplotlib (v2.2.4), Matplotlib-Venn (v0.11.5), and Seaborn (v0.9.0) plotting
packages unless otherwise noted77–80. Among all boxplots, central lines represent

the median, notches represent the 95% confidence interval of the median, boxes
represent the 25th and 75th percentiles, and whiskers represent 1.5× the inter-
quartile range.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data generated in this study are available at GSE138822. All other relevant data
supporting the key findings of this study are available within the article and its Supple-
mentary Information files or from the corresponding author upon reasonable request.
Published data used in this study are at the following DOIs: P7 and P60 H3K27ac ChIP-
seq at GSE6073140; P22 Control and Chd4 cKO mRNA-seq and H3K27ac ChIP-seq at
GSE5775816; and P22 Control and Chd4 cKO Chd4, H3K27me3, H2A.Z and H3 ChIP-
seq at GSE8325318. Select source data, exact test statistics and p-values are provided in the
source data file. A reporting summary for this Article is available as a Supplementary
Information file. Source data are provided with this paper.

Code availability
Code for generating figures are available upon request. Source data are provided with
this paper.
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