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A framework for on-implant spike sorting based on
salient feature selection
MohammadAli Shaeri 1,2 & Amir M. Sodagar 1✉

On-implant spike sorting methods employ static feature extraction/selection techniques to

minimize the hardware cost. Here we propose a novel framework for real-time spike sorting

based on dynamic selection of features. We select salient features that maximize the

geometric-mean of between-class distances as well as the associated homogeneity index

effectively to best discriminate spikes for classification. Wave-shape classification is per-

formed based on a multi-label window discrimination approach. An external module calcu-

lates the salient features and discrimination windows through optimizing a replica of the on-

implant operation, and then configures the on-implant spike sorter for real-time online

operation. Hardware implementation of the on-implant online spike sorter for 512 channels of

concurrent extra-cellular neural signals is reported, with an average classification accuracy of

~88%. Compared with other similar methods, our method shows reduction in classification

error by a factor of ~2, and also reduction in the required memory space by a factor of ~5.

https://doi.org/10.1038/s41467-020-17031-9 OPEN

1 Department of EECS, Lassonde School of Engineering, York University, Toronto, ON, Canada. 2 School of Cognitive Sciences (SCS), IPM-Institute for
Research in Fundamental Sciences, Tehran, Iran. ✉email: sodagar@eecs.yorku.ca

NATURE COMMUNICATIONS |         (2020) 11:3278 | https://doi.org/10.1038/s41467-020-17031-9 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17031-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17031-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17031-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17031-9&domain=pdf
http://orcid.org/0000-0002-6922-0453
http://orcid.org/0000-0002-6922-0453
http://orcid.org/0000-0002-6922-0453
http://orcid.org/0000-0002-6922-0453
http://orcid.org/0000-0002-6922-0453
http://orcid.org/0000-0002-0552-0203
http://orcid.org/0000-0002-0552-0203
http://orcid.org/0000-0002-0552-0203
http://orcid.org/0000-0002-0552-0203
http://orcid.org/0000-0002-0552-0203
mailto:sodagar@eecs.yorku.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications


In the realization of brain implants and neural prostheses, one
of the main challenges is to increase the number of recording
channels. This is mainly because of the significant increase in

the need for power consumption, data telemetry bandwidth, and
also enlarged physical dimension of the neural recording implant.
On-implant spike sorting is one of the possible steps towards
overcoming such challenges by efficient data reduction.

Generally, spike sorting can be performed through the fol-
lowing general steps: (i) filtering the raw neural signal (from 0.3
to 6 kHz)1 to preserve only the useful frequency content of
neural spikes, (ii) detection of spike events upon the firing of
neurons, (iii) extraction of spike wave-shapes from the filtered
neural signal (for details of our spike detection and extraction
method, refer to our previous work2), (iv) temporal alignment
of the spike wave-shapes, to avoid additional hardware cost, in
this work spike wave-shapes are aligned to the detection (first
threshold-crossing) points, (v) mapping of the extracted spike
wave-shapes into a feature space, known as feature extraction,
this step is to enhance the discrimination between spikes and
noise, and also between different spike classes (also referred to
as between-class variability), (vi) selection of a minimal subset
of features, known as feature selection, in order to reduce the
dimensions of the data being processed, and (vii) classification
or clustering of the wave-shapes into different spike classes as
isolated units.

From the standpoint of computational load (and consequently
hardware complexity), most of the traditional spike sorting
algorithms are too heavy to be implemented on neural recording
implants. To efficiently realize spike sorting on such implants,
one solution is to reduce the dimension of the data being
recorded. For on-implant online spike sorting, peak values and
timings3–11, and zero-crossing points12 have been selected as
simple and informative geometric features to sort spike classes.
Furthermore, to enhance the discrimination between different
spike classes, hardware-efficient mathematical transforms such as
derivative transforms3–5,7,10,13–15 and four-level Haar wavelet
transform8,9 have also been used for feature extraction on brain
implants. To make the spike sorting procedure complete, on-
implant classification of spike wave-shapes has been realized
using distance-based classification16–18 and oblique decision tree
classification methods8,9.

Results
System description. In this work, we propose an automated
method for online spike sorting dedicated to high-density, high-
speed brain implants. The proposed method needs to be simple,
agile, and reconfigurable, and at the same time should be physi-
cally implemented in compliance with physical and electrical
limitations of brain implants. Computational load of the existing
spike sorting procedures usually entails technical challenges such
as hardware complexity, power consumption, and computation
speed. The technique we propose overcomes these challenges by
shifting the computational load from the implant to the external
side of the system where complexity of the algorithm and its
hardware implementation is not as important.

Traditionally, fully implantable neural recording systems
comprise an implantable module and an external module
communicating with each other via a wireless link. As depicted
in Fig. 1, the miniaturized implantable module records intracor-
tical neuronal activities on multiple channels using a penetrating
microelectrode array. The implantable module is in charge of the
recording of neuronal activities. The external module, in general,
communicates with the implantable module through bidirectional
wireless communication. It receives the recorded information
from the implant, stores the recorded data, performs signal

processing tasks, and possibly sends data/configuration informa-
tion back to the implant.

The proposed spike sorting framework. A conceptual block
diagram of the system, on which the proposed method is realized
is shown in Fig. 2a. In this scheme, the implantable module
records neuronal activities, runs digital signal processing proce-
dures, and finally performs online unsupervised spike sorting.
The external module is in charge of the calculation of the para-
meters using which the on-implant online spike sorter (OSS) is
configured and calibrated.

To significantly reduce computational and hardware complex-
ity on the implant, the proposed spike sorting method is divided
into two phases: an offline initial training phase implemented on
the external module, and the main online spike sorting phase
realized on the implant. In the real time and with area- and
power-efficient hardware on the implantable module, what
remains on the implant is a compact, low-power, and agile
OSS, which is configured using the results of the offline training
phase received from the external module. The key value of the
proposed spike sorting technique is in its potential to allow for a
power- and area-efficient hardware implementation that operates
in the real time on a high-density neural recording implant. Prior
to the start of the operation of the on-implant OSS, first, the
system telemeters neuronal activities (spikes) on all the channels
to the external module through wireless connection. An
unsupervised offline spike clustering block (based on the
silhouette statistic19–21 and k-means clustering algorithm21) on
the external module then labels the spikes received from
implantable module. As shown in Fig. 2b, a shadow spike sorter
on the external module (which includes an identical model of the
on-implant OSS) receives both the spikes and the associated
labels, and is optimized to perform the proposed spike sorting
algorithm. The OSS model parameters are then sent to the
implantable module in order to configure the on-implant OSS.
After configuration, the on-implant OSS will be able to perform
spike sorting on the live stream of the neural signals being
recorded.

Salient feature selection. As will be discussed later in this paper,
existing spike sorting techniques commonly use specific geo-
metric features for spike wave-shape isolation. Although such
features offer the advantage of straightforward mathematical

Implantable
module

External
module

Fig. 1 Illustration of a brain-implantable system, including an implantable
module and an external module communicating with each other through
wireless connection. In general, the implantable module is configured by
the external module through wireless connection. It may also wirelessly
receive electric power from the outside. The implantable module comprises
a microelectrode array for extracellular recording of neuronal activities, and
the electronic circuitry supporting its function. The electronic part usually
includes a neural signal preconditioning block, which pre-amplifies the
signals sensed by the electrode array, filters out the out-of-band frequency
components, and finally digitizes the signals using per-channel or time-
shared analog-to-digital converters. After digitization and some signal
processing tasks, the recorded signals are telemetered through a wireless
link to the external module.
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formulation and rather simple hardware implementation, they do
not necessarily guarantee maximal discrimination between spike
classes. The proposed online spike sorting technique is based on
finding a minimal set of geometric features, hereafter referred to
as salient features, that maximize the discrimination between
spike classes. Each and every spike class is discriminated from all
other spike classes (multi-label classification22) using a subset of
salient features in the salient feature space.

As a measure for the extent of the overall separation of the class
of interest (#i) from all other classes, saliency of that class (ςi) is
hereby defined in such a way that it expresses both its
discrimination from all other classes and the extent of the
homogeneity of the distribution of all other classes (with respect to
class #i). To quantify the saliency of class #i, the former is
measured by the geometric mean of the associated distances, and
the latter is quantified as the ratio of the geometric mean to the
arithmetic mean of the same distances. It should be added that
according to the definition presented in Beauchemin et al.23 and
Woodhouse et al.24, the signal space is considered homogeneous
with respect to a certain class if that class is equally separated
from each and every other class in the signal space. In the
simplest scenario, where the feature space is one-dimensional, the

saliency of class #i (ςi) is, therefore, formulated as

ςi ¼
QNc

j¼1ðj≠iÞðdijÞPj

� �2

PNc
j¼1ðj≠iÞPj ´ dij

; ð1Þ

where i is the index of the class of interest, dij is the class #i and #j
discrimination index (refer to “Methods”), Pj is the relative
probability of class #j, and Nc is the total number of classes.

In general, the concept of class saliency can be extended to a K-
dimensional space. For the kth feature (k= 1, 2, . . . , K), σi[k] is
defined to express the saliency of class #i from all other classes
(refer to “Methods”). From among all the features in the K-
dimensional feature space, the most salient feature (MSF), k1i , is
introduced here as the feature that distinguishes class #i from all
other classes with the highest possible class saliency. This is,
indeed, the first member of the salient feature set, determined by
spanning the entire (K-dimensional) feature space. Index of the
MSF for the class #i is, therefore, expressed as

k1i ¼ argmax
κ2f1;2;::Kg

ςi½κ�f g; ð2Þ

Selected from among the remaining K-1 features in the feature
space, the second MSF (2nd MSF), k2i , is the most uncorrelated
feature to the MSF (k1i ) that best isolates class #i from the rest of
the signal space. The 2nd MSF is mathematically determined as

k2i ¼ argmax
κ2f1;2;::Kg

ςi½κ� ´ 1� ρiðκ; 1Þ
� �� �

; ð3Þ

where ρi(κ, 1) indicates the correlation between the κth feature in
the feature space and the 1st member of the salient feature set, i.e.,
the MSF (k1i ). The term 1− ρi(κ, 1) in Eq. (3) is to ensure that the
information redundancy in the salient feature space is eliminated
or at least reduced. In general, the process of selecting L features
of the highest saliency (i.e., forming an L-dimensional salient
feature space for a given spike class, as formulated in “Methods”)
is referred to as the salient feature selection (SFS) process. In a
given spike sorting problem, the value of L is determined by the
user as a result of a tradeoff between hardware cost and the
achieved classification accuracy (CA).

Figure 3a illustrates a spike classification problem with three
isolated units, mean values of which are shown using red, green,
and blue solid lines (μ1, μ2, and μ3, respectively). Here, each spike
sample is taken as a feature. Hence, assuming that a neural spike
is expressed using K samples, the main feature space consists of K
feature dimensions. The SFS method is now used for the
generation of a salient feature set, by selecting the samples that
best discriminate each spike from other spikes. The MSFs
(samples) shown with circles on each spike class are indeed the
ones that provide the highest saliency. Figure 3b–d present the
details of the SFS process in the case of this neural spike
classification problem, in which the horizontal axis is the “Feature
Index (k)”. The geometric means and homogeneities of dij’s
associated with the three spike classes are shown, respectively in
Fig. 3b, c based on which class saliencies are calculated and
plotted in Fig. 3d. According to the subplots shown, saliency of a
unit with respect to the others (ςi) peaks when the product of the
geometric mean and the homogeneity associated with that unit is
reasonably large.

To evaluate and validate the success of the proposed concept of
saliency in order to form an efficient feature set (i.e., the salient
feature set), we use the Bayes classifier to complete the spike
classification process. We are to show that there is a strong
correlation between the saliency of the features used for
classification and the CA achieved. The scatter plot in Fig. 4a
presents the saliencies (calculated based on Eq. (6) in “Methods”)
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Fig. 2 Functional diagram for the implementation of the proposed online
spike sorting approach on an implantable neural recording system. a The
Implantable Module contains an online spike sorting module that needs to
be configured by a shadow spike sorter block on the external module. In the
training phase, the offline spike clustering block on the external side of the
system receives a long-enough recording on all the channels, and performs
unsupervised spike sorting in order to identify all the units (spike classes) in
the brain area under recording. Outcome of this offline spike clustering is
the identified spike classes and the associated labels, which are used to
optimize a model of the proposed method (the shadow spike sorter). b The
shadow spike sorter block is indeed a model of the salient feature selection
method followed by window discrimination (SFS + WD), which is
optimized using the spike class information it receives from the offline spike
clustering block. After optimization, settings and functional parameters of
the shadow spike sorter are used to configure the main online spike sorter
on the implant.
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versus the Bayes CA for the three classes shown in Fig. 3a. It can
be obviously seen in this figure that the chance level of each class
(illustrated by dotted lines) contributes to the associated accuracy
of classification. However, this contribution can be somehow
misleading when evaluating and comparing classification accura-
cies for classes of different chance levels. To have a fair
comparison, we therefore eliminate the influence of the chance
level from the CA. Hence, as a modified measure, the chance-
level-independent CA (CACLI) is proposed as

CACLI ¼
CA� Chance
1� Chance

; ð4Þ

in which CA is the classification accuracy with its conventional
definition, and Chance is the chance level associated with each
class. The same comparison after the elimination of the chance
level from the classification accuracies of the clusters is presented
in Fig. 4b. The distribution of the data points in this plot is an
indication of a meaningful statistical correlation (correlation
coefficient ≈0.8) between the log-saliency of features and the
CACLI they result. Therefore, it can be concluded that the saliency
metric proposed in this work is an efficient criterion for the
selection of a subset of features for successful classification.

Window discrimination. For online on-implant spike sorting in
this work, we use a window discrimination (WD) method in the
salient feature space. The WD method benefits from efficient
hardware implementation, which is of crucial importance in the
design of brain-implantable microsystems. In order to classify
each and every unit, one discrimination window is assigned to
each class in the associated salient feature space. Specifications of
the four borders of each window are determined in the offline
phase, and are subsequently stored in the on-implant spike sorter
for online spike classification.

Number of dimensions in the salient feature space is an
important aspect of the feature selection method that needs to be
decided upon. In this work, a salient feature space with two
dimensions leads to satisfactory isolation of units with the
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accuracy of 87.6% or higher. For the classification problem under
study with three classes of unit activities shown in Fig. 3a, a two-
dimensional (2D) salient feature space is defined for each class of
unit activities. In this case, multi-label discrimination windows in
the associated salient feature spaces are shown in the scatter plots
of Fig. 5. In these plots (s[13] and s[19]) are the salient features
used for the classification of unit #1, and (s[9] and s[15]) and
(s[12] and s[22]) are the salient features used for the classification
of unit #2 and unit #3, respectively. In these scatter plots, the
coordinates of the (upper bound and lower bound) for
the discrimination windows associated with units #1, #2, and
#3 are {(−28, 70), (−3, 103)}, {(−11, 147), (−171, 185)}, and {(54,
222), (−133, 4)}, respectively.

Performance evaluation. For all the tests presented in this sec-
tion, the open-access data set of prerecorded spike wave-shapes25

is used to generate the data required for both training and testing.
This data set were recorded by a 10 × 10 Utah array from
populations of neurons in primary visual cortex (V1) of macaque
monkeys (Macaca fascicularis) in response to natural images.
From this data set, we generated a library of ~15,000 different
spike classes. Each spike class consists of hundreds of spikes with
signal-to-noise ratios ranging from ~0.3 to ~22 (with the average
value of ~4.5). Sampling rate of the recordings is 30 k sample/s,

with the resolution of 8 bits. All the spikes extracted for classi-
fication are 48 samples long (1.6 ms). For each trial, a random
selection of ~1450 spike classes (units) are chosen. From this
“trial library”, two, three, or four units are used to train and test
each channel. For each and every channel, the spikes under each
unit are used for training and testing with a breakdown of
50–50%.

To evaluate the efficacy of the idea of salient features and the
SFS approach proposed, the results achieved in this work are
compared with the other major feature extraction/selection
methods already appeared in the literature. On-implant spike
sorting methods normally use specific features with straightfor-
ward mathematical descriptions to classify spike wave-shapes
(referred to as static methods in this work). The static techniques
used for comparison include peak-to-peak amplitude of the spike
and min-max of its derivative, hereafter referred to as spike and
derivative extrema (SDE)3, first and second derivative
extrema (FSDE)4, event-driven features (EDF)11, discrete deriva-
tives and their peak values, hereafter referred to as discrete
derivatives extrema (DDsE)7, zero-crossing features (ZCF)12,
minimum delimitation (MD)26, and the Haar-wavelet-based
frequency-band separation (FBSHT) method8,9. All these feature
extraction/selection methods (including the proposed SFS
approach) are followed by the same type of classifier for a fair
comparison. For this purpose, the Gaussian Naive Bayes
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classifier27,28 is used. This classifier only requires data statistics
(mean and variance) with no need for manual setting of
parameters. In this study, all the resulting spike sorters are
evaluated with the same data set.

The regular CA, the chance-level-independent CA (CACLI),
and the feature space dimension for all the aforementioned
feature extraction/selection methods reported earlier in the
literature of brain implants are presented in Fig. 6. Spike sorting
using the SFS method proposed in this work exhibits significantly
higher CA (89.5%) and CACLI (73.4%) than all the other methods.
It is important to note that, even with as low as 2 dimensions for
the feature space, the SFS-based spike sorter outperforms all other
sorters from the standpoint of the achieved CA. This is translated
to much less computational cost, which will lead to a significantly
more power-/area-efficient hardware when it comes to on-
implant physical implementation.

To evaluate the efficacy of the proposed feature selection
method in introducing a more appropriate subspace of features
(i.e., the salient feature space), CA of SFS followed by a Bayes
classifier is compared with that of Bayes classification on the
entire feature space (i.e., with no feature selection). This is to have
a fair judgment in the presence of all the factors contributing to
the CA, including both within-class variability (noise content of
the signal) and between-class variability (dissimilarity of class
wave-shapes). Figure 7a presents the Bayes CA in the salient
feature space versus that of the same Bayes classifier in the
original signal space. Hereafter referred to as the “CA–CA plot”,
the plot shown in Fig. 7a provides a sense of how the SFS method
can improve the resilience of spike sorting against both within-
class and between-class variabilities. The less-than-unity slope of
the regression line (0.57) in the CA–CA plot of Fig. 7a indicates
that (in addition to dimension reduction and consequently
computational complexity reduction) the proposed SFS method
makes the CA of spike sorting less sensitive to the aforemen-
tioned variabilities. Figure 7b compares the CA–CA plots of
Bayes spike sorting when different approaches are taken for
feature extraction/selection. According to this comparison, the
proposed SFS method exhibits the most resilient CA against

signal variabilities (the smallest slope) and at the same time the
highest CA.

To verify and evaluate the proposed spike sorting method, the
sequence of forming the salient feature space followed by WD for
neural spike classification is studied. The overall signal processing
results of this method (SFS+WD) is compared with two other
similar works that contain wave-shape classification. It should be
noted that even though there are several works reporting on-
implant spike sorting, the works of Karkare et al.16 and Yang
et al.9 realize “complete” on-implant spike sorting (they go all
the way to spike wave-shape classification as the very last step). In
the former, an l1-norm distance-based method is used for
spike classification, which is referred to as the l1-norm distance
template matching (l1-TM) for the classification of spike wave-
shapes. As an alternative solution, the latter proposes the oblique
decision tree (ODT) for on-implant spike sorting (Traditional
classifiers such as Bayes have a high computational cost and
therefore cannot be implemented on brain implants). Figure 8
compares the performance of the proposed method for 1- and 2-
dimensional salient feature spaces (1D SFS+WD and 2D SFS+
WD) with the other two approaches (l1-TM and FBSHT+ODT).
In both 1D and 2D spaces, the SFS+WD method proves to be
superior to the other techniques in terms of both CA and CACLI

(i.e., with or without the influence of spike chance level) with
reasonably small calculation times.

It was illustrated in Fig. 2b that the on-implant OSS
comprises two main blocks: (I) The OSS internal para-
meters block, which consists of multiple register banks (holding
the parameters received from the SSS), and (II) the OSS Engine,
which mainly comprises simple digital comparators. The
register banks in the OSS, which are shared among all the 512
channels29, include

● a bank of a total of 5 k bits to contain salient feature indices,
● a bank of a total of 14 k bits to store the upper and lower

bounds of the WDs for each and every salient feature, and
● a 3-k bit bank to hold the class identifiers associated with

salient features.

100 10

8

6

4

2

0

80

70.0

2 2

4

3

2

4

6

4

23.8
26.3

30.0

33.6 33.9

44.8

50.4

73.4
70.9

72.8
74.3 75.0

78.6
80.6

89.5

CA (%) # of features

CACLI(%)

60
B

ay
es

 C
A

 (
%

)

# 
of

 fe
at

ur
es

40

20

0
MD ZCF FSDE SDE DDsE EDF FBSHT SFS

Fig. 6 Number of features, CA, and CACLI for SFS and previously reported feature extraction/selection methods when followed by a Gaussian
Naive Bayes classifier for all spike classes (N= 1472 independent spike classes including 125,120 test wave-shapes; data are presented as mean
values ±SEM). The proposed salient feature strategy (with only 2 features) results in significantly higher classification accuracy, both with and without
chance level removal, compared with other existing feature extraction/selection methods (with four features in the most successful cases).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17031-9

6 NATURE COMMUNICATIONS |         (2020) 11:3278 | https://doi.org/10.1038/s41467-020-17031-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The OSS engine is realized using merely a 5-bit comparator and
two 7-bit comparators, which are properly time-shared among all
the channels for WD tasks.

Compared with the works of Karkare et al.16 and Yang et al.9, the
memory space required to implement the on-implant OSS
proposed in this work is 5 times and 68 times smaller, respectively.
In total, the on-implant O.S.S in this work is implemented using
1869 transistors per channel and takes a chip area of 0.0066 mm2

ch: in a
130-nm CMOS process. This is while the former work16 and the
latter work9 occupy 0.077 mm2

ch: and 0.023 mm2

ch: in 65 and 130 nm
CMOS technologies, respectively.

Discussion
On-implant spike sorting methods normally use specific features
with straightforward mathematical description to classify spike
wave-shapes. Examples of such features are minima and maxima
of the spike amplitude and their timing3,11, maximum slopes
(either positive or negative)3–5,7,11, and zero-crossing times12.
Even though those features correspond to critical points and
important information of the spikes, but they are not necessarily
the best possible features for spike wave-shape descrimination.

In this paper, we introduced a novel framework for on-implant
spike sorting. The goal is to improve the CA and also reduce the
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Fig. 7 CA–CA plots. a Bayes CA in salient feature space vs. Bayes CA without dimension reduction. b Regression lines for the feature extraction methods
reported in Fig. 6. Given the fact that all the feature extraction/selection methods are followed by the same classifier, the CA–CA plot in b provides a fair
basis for the comparison of the proposed salient feature strategy with other feature extraction/selection approaches. The top-most regression line in this
plot belongs to the proposed approach. Exhibiting the highest possible classification accuracy (CAFE∣CA= 100%) and at the same time the lowest slope
among all approaches is an indication of the absolute superiority of the proposed salient feature selection idea over all other existing approaches in the
presence of all sources of uncertainty (i.e., class similarity and between-class variability).
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hardware cost. The proposed framework comprises the SFS
method and WD for spike classification. The main aim of the SFS
method is to efficiently reduce the dimension of data repre-
sentation. The SFS method searches for the features that best
distinguish each and every spike class from the rest of the spike
classes in the signal space. It is guaranteed by definition that such
features (referred to as “salient features”) result in spike sorting in
such a way that the geometric mean of between-class distances is
maximized in the most homogeneous way. It is shown in this
work that a set of such features can result in meaningfully higher
classification accuracies compared with other spike sorting
approaches existing in the literature (~2 × reduction of classifi-
cation error). The WD technique is used for multi-label classifi-
cation of spike wave-shapes in the salient feature space. Taking
advantage of both SFS and WD in a multi-label structure, online
spike sorting is realized with higher CA at a significantly lower
hardware cost (~5 × reduction in the required memory), com-
pared with other similar works reported.

In neural prosthetic applications, when activities of neural
populations are monitored for long periods of time (hours, days,
or weeks), although the number of units remains almost constant,
the units might appear and disappear30–32. Such changes in the
neural populations under study cause failure or at least degra-
dation in the performance of the prosthesis. To handle and
resolve such problems, the system in this work is designed to
periodically recalculate the SFS and WD parameters (through the
offline procedure already explained) and reconfigure the on-
implant OSS accordingly. This results in maintaining the classi-
fication performance in the presence of such signal variations.

Taking into consideration physical and electrical limitations such
as chip size and power consumption, a hardware prototype realizing
the proposed spike sorting method is designed to be able to classify a
total of 512 spike classes on all the 512 channels. One of the major
practical requirements for the proposed spike sorting method is the
physical size of its hardware implementation. To be mounted on the
backside of a 100-channel Utah electrode array (with the area of
~4 × 4mm233,34), the silicon chip designed to realize the proposed
method will therefore need to be smaller than ~16mm2. Physical
layout of the chip implementation of the proposed 512-channel
spike sorter in a 130-nm standard CMOS technology occupies a
silicon area of 3.36mm2 (2.124mm× 1.58 mm). Another physical
concern in the development of a brain implant is the temperature
increase it causes for the surrounding tissues. Temperature
increase of more than 1–2 °C may damage the brain tissue35–38,
and therefore introduces a strict limitation on the power dis-
sipated by the active circuitry on a brain implant. According to
ref. 35, power density of a brain implant cannot exceed the upper
limit of ~1.33 mW

mm2 in order to keep the surrounding living tissues
safe against temperature rise. Operated at a supply voltage of
1.2 V, the chip implementing the proposed spike sorting method
dissipates a total power of 905.9 μW, which gives a safe power
density of ~0.27 mW

mm2.
As reported in Fig. 8, offline training time for the proposed

512-channel spike sorter (which is indeed the time required for
the (re)configuration of the OSS) is ~5 min (0.64 s per channel).
Even though this is somewhat larger than the configuration time
reported in ref. 16, it is still significantly smaller than the much
longer time (~30 min) that advanced brain machine interfaces
typically require for (re)calibration (see refs. 30,31).

Methods
Exponential class discrimination index. As a measure for the normalized distance
between the spike class under study (#i) and each one of the other spike classes (#j),

it is proposed to use the exponential class discrimination index

dij ¼ e

jμi�μj jffiffiffiffiffiffiffiffiffiffiffiffi
Piσ

2
i
þPjσ

2
j

p
;

ð5Þ

in which (μi,μj), (σi,σj), and (Pi,Pj) are the mean values, standard deviations, and
relative probabilities of occurrences for spike classes #i and #j, respectively. Figure 9
illustrates this distance measure in the case of three spike classes in a two-
dimentional feature space.

SFS in a K-dimensional feature space. In order to come up with an optimum
spike sorting solution, for each class a subset of L MSFs (out of the total of K
features) is selected. This subset is referred to as the salient feature set for that class.
To form the L-dimensional salient feature set for class #i, first, saliency of this class
is calculated using each and every feature (ςi[k], 1 ≤ k ≤ K) as

ςi½k� ¼
QNc

j¼1ðj≠iÞðdij½k�ÞPj

� �2

PNc

j¼1ðj≠iÞPj ´ dij½k�
; ð6Þ

in which dij[k] (1 ≤ k ≤ K) is the class discrimination index when classes are dis-
criminated according to feature #k. Using the class saliency measure for each
feature, the lth member of the salient feature set for class #i is determined as

kli ¼ argmax
κ2f1;2;::Kg

ςi½κ� ´
Yl�1

h¼1

1� ρiðκ; hÞ
� �( )

; ð7Þ

where ρi(κ, h) indicates the correlation between the κth member of the main feature
space and the hth member of the salient feature set (i.e., khi ).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data set used for the current study are publicly available at http://crcns.org/data-sets/
vc/pvc-1. The Python code used for analysis is available upon reasonable request.
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