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Structural basis of host protein hijacking in human
T-cell leukemia virus integration
Veer Bhatt 1,2,9, Ke Shi2,3,4,9, Daniel J. Salamango2,3,4,9, Nicholas H. Moeller2,3,4, Krishan K. Pandey5,

Sibes Bera5, Heather O. Bohl 2,3,4, Fredy Kurniawan2,3,4, Kayo Orellana2,3,4, Wei Zhang2,4,6,7,

Duane P. Grandgenett5, Reuben S. Harris 2,3,4,8, Anna C. Sundborger-Lunna 1,2✉ & Hideki Aihara 2,3,4✉

Integration of the reverse-transcribed viral DNA into host chromosomes is a critical step in

the life-cycle of retroviruses, including an oncogenic delta(δ)-retrovirus human T-cell leu-

kemia virus type-1 (HTLV-1). Retroviral integrase forms a higher order nucleoprotein

assembly (intasome) to catalyze the integration reaction, in which the roles of host factors

remain poorly understood. Here, we use cryo-electron microscopy to visualize the HTLV-1

intasome at 3.7-Å resolution. The structure together with functional analyses reveal that the

B56γ (B’γ) subunit of an essential host enzyme, protein phosphatase 2 A (PP2A), is repur-

posed as an integral component of the intasome to mediate HTLV-1 integration. Our studies

reveal a key host-virus interaction underlying the replication of an important human pathogen

and highlight divergent integration strategies of retroviruses.
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Over 10 million people worldwide are infected with human
T-cell leukemia virus type-1 (HTLV-1), an oncogenic
delta(δ)-retrovirus related to HIV-11,2. HTLV-1 infection

causes an aggressive CD4+ T-cell malignancy known as adult
T-cell leukemia/lymphoma (ATL) after a latency period up
to several decades3,4. HTLV-1 infection can also cause a
chronic inflammatory disease of the spinal cord known as
HTLV-1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP)5,6. However, despite the importance of HTLV-1 as
the causative agent of these diseases, there is no therapeutic
intervention against HTLV-1 infection or its diseases. A critical
step and the hallmark of retroviral infection is the integration of a
reverse-transcribed viral genome into host chromosomal DNA7.
Integration is carried out by the virally encoded integrase (IN)
enzyme, which forms a higher-order nucleoprotein assembly
(intasome) and catalyzes the 3′-end resection of a linear reverse-
transcribed viral DNA and the subsequent direct attack on a
target cellular DNA backbone by the nascent viral DNA 3′-OH
termini8–10. Due to its essential role in the viral lifecycle, HIV-1
IN is the target of several clinically used antiviral drugs (INSTIs:
IN strand-transfer inhibitors) that selectively inhibit the latter
strand-transfer step and also inhibit INs from other retroviruses,
including HTLV-17,11–13.

Structural studies have revealed a remarkable diversity of ret-
roviral IN–DNA complex assemblies, ranging from tetrameric IN
for a spumavirus prototype foamy virus (PFV)12,14, octameric IN
for an alpha-retrovirus Rous sarcoma virus (RSV)15,16 and a beta-
retrovirus mouse mammary tumor virus (MMTV)17, to even
hexadecameric IN for a lentivirus maedi-visna virus (MVV)18

(Supplementary Fig. 1a, c, d). IN from another lentivirus, and an
important retroviral human pathogen, HIV-1, has been reported to
form a heterogeneous mixture of tetrameric to dodecameric com-
plexes19. In addition to this structural diversity, INs from different
genera of retroviruses bind to distinct host co-factors20–23, and
allosteric IN inhibitors (ALLINs) that target the HIV-1 IN-LEDGF/
p75 interface are being developed as novel antivirals for their
capacity to modulate IN multimerization and inhibit late replica-
tion steps24–27. Recent studies have identified a host serine/threo-
nine phosphatase PP2A comprising the B56 regulatory subunit as
the functional binding partner for IN from deltaretroviruses
including HTLV-128. However, structural information is lacking
for a deltaretroviral intasome, and it is unknown how the unique
co-factor PP2A stimulates the concerted integration activity or
regulates the integration-site selection of deltaretroviral INs. In this
study, we use cryo-electron microscopy (cryo-EM), virus infectivity
assays, and biochemical analyses to show that PP2A-B56γ is an
integral component of the HTLV-1 intasome that plays an
important role in HTLV-1 infection.

Results
Structure determination of the HTLV-1 intasome. To address
the knowledge gap described above, we determined the structure
of the HTLV-1 intasome using cryo-EM and single particle
analysis at 3.7-Å resolution (Supplementary Figs. 2 and 3;
Table 1). We assembled a stable complex including HTLV-1 IN, a
fragment of human B56γ spanning residues 11–38029, and a
branched DNA molecule containing the viral U5 long terminal
repeat (LTR) sequence30,31 and a target DNA, mimicking the
product of the concerted strand-transfer reactions. We found the
presence of B56γ to be essential for a stable HTLV-1 IN–DNA
complex formation, consistent with its reported strong stimula-
tory effect on deltaretroviral concerted integration reactions
under certain biochemical conditions11,28. SDS-PAGE analysis
confirmed that B56γ(11–380) is part of the size-exclusion chro-
matography (SEC)-isolated HTLV-1 intasome. The molecular

mass of the HTLV-1 intasome, or the strand-transfer complex
(STC) thus formed, was estimated to be 345 and 305 kDa in
solution by SEC-coupled multiangle light scattering (SEC-MALS)
and mass photometry analyses, respectively (Supplementary
Fig. 2). In accordance with these observations, the cryo-EM
density map shows a complex with the total mass of 320 kDa,
including an IN tetramer bound to a strand-transfer product
DNA and two molecules of B56γ (Fig. 1).

IN tetramer in the HTLV-1 intasome. HTLV-1 intasome has a
twofold symmetric structure that shares the conserved intasome
core (CIC)10 with the intasome assemblies of other genera of
retroviruses. The IN tetramer consists of two inner catalytic and
two outer non-catalytic subunits. Each inner IN comprises reci-
procally swapped N-terminal domain (NTD) bound over the viral
DNA major groove, a NTD-CCD linker that contacts both viral
DNA ends, the catalytic core domain (CCD) engaging the viral/
target DNA junction in the minor groove, and the C-terminal
domain (CTD) that fits between the NTD and CCD of the same
molecule in cis (Fig. 1b; Supplementary Figs. 4b and 5a–c). Both
NTD-CCD and CCD–CTD linkers of the inner catalytic IN run
across the synaptic interface, arranged antiparallel to each other
and interacting with the 5′ overhang of viral DNA non-
transferred strand (Fig. 2b). CTD of the non-catalytic outer INs
further contribute to the extensive viral DNA interaction, brid-
ging between the two viral DNAs attached to opposing strands of
the target DNA (Fig. 1a, c, f, Supplementary Figure 5e). The target
DNA shows a kink at each of the viral/target DNA junctions 6 bp
apart, resulting in a total bending of ~80° away from the intasome
core (Fig. 1d). The configuration of viral and target DNA mole-
cules is similar to that observed in RSV intasome15, which shares
a 6-bp spacing between the strand-transfer points. This similarity
includes a zigzagged trajectory of the target DNA with an offset of
the helical axes in the direction perpendicular to that of the
overall bending (Fig. 1b, e; Supplementary Fig. 1).

PP2A-B56γ–IN interaction. Two molecules of the deltaretrovirus-
specific host co-factor B56γ are bound symmetrically to the core of
the HTLV-1 intasome flanking the viral DNAs, as though to cradle
the IN tetramer (Fig. 1a, c). Both inner and outer subunits of an IN
dimer on each side of the intasome fit in the concave surface of
B56γ (Fig. 2; Supplementary Fig. 5d). CCD and CTD of the outer
non-catalytic IN are bound toward either end of the banana boat-
shaped B56γ monomer29 (Fig. 2b), while the inter-domain linker
between CCD and CTD takes a U-shaped conformation and makes
an anchoring interaction in the central peptide-binding cleft of
B56γ (Fig. 2a, c). The 211LQPIPE216 sequence from the CCD–CTD
linker, previously shown to be critical for the binding of HTLV-1 IN
to PP2A-B5632, docks into a highly conserved binding pocket
known to bind the “LxxIxE” short linear motif found in a number
of host proteins regulated by PP2A32–34. Residues after the sharp U-
turn, 219SLSNK223, interact with charged amino acids on the B56γ
surface, including Arg197 (Fig. 2c; Supplementary Fig. 6). The
CCD–CTD linker of the inner catalytic IN also traverses across the
B56γ surface, running normal to the axes of the pseudo-HEAT
repeat α-helices (Fig. 2b). Consistent with the observed mode of
interaction between B56γ and IN, we found that the CCD–CTD 2-
domain fragment of HTLV-1 is necessary and sufficient for forming
a stable complex with B56γ isolable by SEC, and this interaction is
abolished by mutating 211LQPIPE216 to 211AQPAPA216 (Supple-
mentary Fig. 7). B56γ appears to stabilize each IN dimer, help
organize the CCD–CTD linkers, and position CTDs for viral DNA
interactions. The distinct conformations of the HTLV-1 IN
CCD–CTD linkers mediating B56γ interaction contrast those of the
much longer CCD–CTD linker of PFV IN12,14, extended
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conformations of the short CCD–CTD linkers of RSV IN15,35,36

and MMTV IN17, and a crossed α-helical bundle structure assumed
by the lentiviral IN CCD–CTD linkers18,19,37.

B56γ is important for HTLV-1 integration in cells. Our
structural data suggest that B56γ, which is a constitutively nuclear
member of the PP2A B-subunit family, may play a key role in
HTLV-1 integration as a scaffolding component or a regulator of
the intasome assembly. To test whether B56γ is required for
HTLV-1 integration in human cells, we performed HTLV-1
infectivity assays in the presence or absence of B56γ or the closely
related cytoplasmic family member B56α (75% identity and 88%
similarity within the core domain). As a control, HIV-1 infectivity
was assessed in parallel to determine the requirement for B56γ in
general retroviral genome integration. To perform HTLV-1 and
HIV-1 infectivity assays, we used reverse-intron containing
reporter vectors that only generate fluorescence upon successful
integration of the viral genome into target cells38 (Fig. 3a). Based
on our structural data and subcellular localization, we predicted
that shRNA-mediated knockdown of B56γ, but not B56α, would
significantly impair HTLV-1 infectivity while HIV-1 infectivity
would remain unchanged. As we predicted, HIV-1 infectivity
showed no differences in control or knockdown cells; however,
HTLV-1 infectivity was significantly impaired in cells stably
expressing shRNA against B56γ, but not B56α (Fig. 3b). Of note,
efficient and selective depletion of the targeted transcript in these
shRNA-expressing cell lines was confirmed previously, and it was
shown that neither B56γ nor B56α knockdown has discernable
effect on the cell cycle39.

To independently probe the requirement for B56γ in HTLV-1
integration, we assessed infectivity in cells overexpressing either
wild-type B56γ or mutant variants that we predicted to have
compromised interaction with HTLV-IN. As expected, all cell

lines overexpressing the indicated B56 variants had a minimal
impact on HIV-1 infectivity (Fig. 3c). Interestingly, cells
expressing either B56γ R197A or L194A/R197A had a significant
impact on HTLV-1 infectivity, while the L194A variant alone had
no effect (Fig. 3c). These findings are consistent with our
structural data (Fig. 2c; Supplementary Fig. 6) and previous
biochemical observations28 that indicated that Arg197 plays a
more important role in HTLV-IN binding to B56γ than Leu194.
The dominant-negative effect of overexpressing the R197A
variant of B56γ could be because of its residual interaction with
IN and resulting interference with intasome formation. An
alternative scenario is that HTLV-1 integration in cells actually
requires the heterotrimeric PP2A holoenzyme containing B56γ
(see “Discussion” below and Fig. 4) and that overexpressing the
defective B56γ depleted the pool of PP2A holoenzyme containing
the wild-type B56γ capable of supporting IN function.

We further examined the impact of B56γ on HTLV-1
integration by using a previously characterized high-affinity
peptide inhibitor that has been shown to suppress Ebola virus
infection by competitively inhibiting the nucleoprotein binding to
B56 proteins40. Co-expression of a plasmid containing four copies
of the LxxIxE peptide motif with HTLV-1 producing plasmids
resulted in a significant decrease in HTLV-1 infectivity, while
HIV-1 infectivity only displayed a modest decrease (Fig. 3d).
However, when four copies of the control inhibitor (AxxAxA)
were expressed, we observed no discernable effect on HTLV-1 or
HIV-1 infectivity. Taken together, these results support our
structural data that B56γ is an important component of the
HTLV-1 intasome.

Discussion
The observed mode of interaction with IN by PP2A-B56γ is
distinct from those previously seen for the cellular co-factors of
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retroviral IN from other genera, LEDGF/p75 for lentivirus41,42

and the BET family proteins for a gammaretrovirus murine leu-
kemia virus (MLV)43, both of which stimulate the concerted
integration activity and dictate the unique integration-site pre-
ferences of cognate IN20,24,44–46. The divergent IN–host factor
interactions parallel the diverse strategies employed by these INs,
including their different domain arrangements and oligomeric
structures10, in achieving the stable CIC structure important for
catalysis. A unique solution by deltaretroviruses is to hijack and
re-purpose the nuclear localized subunit of a host enzyme PP2A
for stabilizing the intasome assembly (Supplementary Fig. 1).
PP2A is a major regulator of cell cycle and involved in numerous
cellular signaling pathways, and as such, it is targeted or hijacked
by a number of viruses including HIV-139,40,47,48. Notably,
HTLV-1 trans-activator protein Tax has been reported to inhibit
PP2A catalytic activity to manipulate cellular signaling, thereby
achieving constitutive activation of NF-κB49. It remains to be
further investigated whether the B56-IN interaction has any
outcome that involves the PP2A phosphatase activity. Regardless,
a simple modeling exercise suggests that PP2A holoenzyme,
complete with all three subunits50,51, can fit in the HTLV-1
intasome without significant steric clashes (Fig. 4), consistent
with the reported association of PP2A holoenzyme comprising
the B56 subunits with deltaretroviral IN28. Thus, it is possible that
the large scaffold (A) or the catalytic (C) subunit of the PP2A

holoenzyme plays a role in deltaretroviral integration either
through its catalytic activity or mediating additional protein
interactions. As previously suggested, PP2A may direct HTLV-1
integration into transcriptionally active regions via its interaction
with certain chromatin-associated proteins28,52,53. The HTLV-1
intasome structure reported here provides mechanistic insights
into a critical host-pathogen interaction underlying the replica-
tion of an important human pathogen and affords a framework
for the future development of novel therapeutic interventions
against HTLV-1 infection or replication.

Methods
Protein purification. HTLV-1 IN suffers from poor solubility and is prone to
aggregation, making structural studies difficult. To overcome this problem, we
adapted the Sso7d-fusion strategy previously used successfully in the structural
studies of HIV-1 IN19. Full-length HTLV-1 IN was expressed in E. coli strain BL21
(DE3) with a 6xHis-tag and a DNA-binding defective mutant of Sso7d (W24A/
R43E) fused to its N-terminus and purified using nickel-affinity and gel-filtration
chromatography. Purified Sso7d-IN in 20 mM HEPES-NaOH (pH 7.5), 1.0 M
NaCl, 5% glycerol, 0.5 mM TCEP, was concentrated to ~20 mgml−1 by ultra-
filtration. Sso7d (W24A/R43E)-HTLV-1 IN(wt) exhibited robust concerted inte-
gration activity, which was modestly stimulated by B56γ and inhibited by
dolutegravir (Supplementary Fig. 8) and showed the expected 6-bp spacing
between the integration sites on opposing DNA strands (Supplementary Fig. 9).
For the intasome assembly, we used a catalytically inactive E156Q mutant of
HTLV-1 IN. B56γ(11–380)29 was expressed in E. coli BL21(DE3) as a 6xHis-Sumo-
fusion protein and purified as above. For intasome assembly (Supplementary
Fig. 2), the N-terminal 6xHis-Sumo tag was removed by Ulp1 protease treatment
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during purification. Purified B56γ(11–380) in 20 mM Tris-HCl pH 7.4, 0.5 M
NaCl, 5 mM β-mercaptoethanol was concentrated to ~40 mgml-1. For in vitro
protein–protein-binding studies (Supplementary Fig. 7), various HTLV-1 IN
fragments (NTD-CCD, CCD, CCD–CTD, CTD) and B56γ(11–380) were expressed
and purified as Sumo-fusion proteins and used without removing the 6xHis-Sumo
tag. The amino acid sequences of the protein constructs used in this study are
shown in Supplementary Table 1. All purified proteins were flash-frozen in liquid
nitrogen and stored at −80 °C until use.

HTLV-1 intasome preparation. A mixture containing 60 μM each of Sso7d-IN
(E156Q) and B56γ(11–380), 50 μM each of the three pre-annealed oligonucleotides
(U5-25T20, U5-nj25, Target20), 20 mM HEPES-NaOH (pH 7.5), 1.0 M NaCl,
10 mM DTT, 25% glycerol, and 10 mM MgCl2 was dialyzed at room temperature
for ~16 h against 45 mM Tris base, 45 mM boric acid, 0.1 M NaCl, 50 mM MgSO4,
25% glycerol, and 0.5 mM TCEP. The mixture after dialysis was supplemented with
150 mM NaCl and left at room temperature for ~30 min, which helped to re-
solubilize some of the precipitated IN–DNA complex. Following a brief cen-
trifugation to remove insoluble aggregates, the protein/DNA mixture was either
flash-frozen and stored for SEC-MALS analyses or injected into a Superdex200
Increase 10/300 SEC column equilibrated with the SEC buffer consisting of 20 mM
Tris-HCl (pH 8.0), 0.5 M NaCl, 1 mM MgCl2, and 0.5 mM TCEP, operating at
room temperature. The IN-B56γ-DNA complex peak (Supplementary Fig. 2a, b)
was used for EM grid preparation or mass photometry analysis. No IN–DNA
complex was formed in the absence of B56γ(11–380).

Cryo-EM imaging and data processing. A 3.5 µL aliquot of SEC-purified HTLV-1
intasome was applied to Quantifoil R1.2/1.3 grids (Electron Microscopy Sciences)
and vitrified in liquid ethane using a Mark IV Vitrobot (Thermo Fisher). Grids
were imaged in a 300 kV Titan Krios electron microscope, and a total of 3326
micrographs (image stacks) were acquired with a Falcon III direct electron detector
using EPU (Thermo Fisher) at a nominal magnification of 96,000×, corresponding
to 0.89 Å/pixel. Motion correction was carried out using MotionCor254 on dose-
weighted images, after deleting the first two frames. Contrast transfer function
(CTF) estimation was carried out using Gctf55 without dose weighting. All sub-
sequent data processing and refinement steps were carried out in RELION356

(Supplementary Fig. 3). A small subset of micrographs was used for reference-free
automated particle picking using a Laplacian of Gaussian filter, which generated a
pool of 68,996 particles. 2D classification of this data set generated templates for
automated particle picking from all micrographs and the resulting 1,184,769 par-
ticles were downscaled to 3.54 Å/pixel, and subjected to several iterative rounds of
2D classification to obtain a final pool of 181,688 good particles. These refined
particles were re-extracted at the original pixel size of 0.89 Å/pixel, subjected to
several rounds of iterative 3D classification and 3D-refinement. To improve map
quality, C2 symmetry was imposed during subsequent rounds of 3D classification
and refinement. Combining the half-data sets and flattening the solvent density
resulted in a map of 4.1-Å resolution. The mask used to flatten the solvent density
was generated in RELION356 at a threshold where one of the low-pass filtered half-
maps stopped displaying any noise outside the reconstruction using Chimera to
display the map57. CTF refinement was employed to estimate per-particle defocus
values and to refine beam tilt values. Beam-induced motion was corrected using
Bayesian methods. Polished particles were subjected to one round of 3D classifi-
cation leading to a final pool of 30,434 particles and a final round of 3D-refinement
was carried out using a solvent mask and enabling phase-randomization based
correction of Fourier shell correlation (FSC)58 curves in every iteration of the
refinement. The resolution of the final map was estimated to be 3.7 Å using the
“gold standard” (FSC= 0.143)59. Directional FSC plot (Supplementary Fig. 3l) was
generated using 3DFSC60. Local variation in resolution was estimated using
RELION356 (Fig. 1e, f).

Model building and refinement. Homology models of HTLV-1 IN structural
domains were generated using MODELLER61 and Phyre262 based on the high-
resolution crystal structures of RSV and HIV-1 IN domains35–37,63 and placed into
the cryo-EM map. The linker segments and DNA molecules were built manually in
COOT64. B56γ crystal structure29 was docked as a rigid body into the map. The
preliminary model thus obtained was refined using PHENIX65 real_space_refine
against the cryo-EM density and a standard set of geometry/stereochemistry
restraints. The resulting model closely matched an unbiased model generated de
novo by PHENIX autobuild function, with the RMSD of protein main chain atoms
of ~0.9 Å. A summary of the cryo-EM data collection/processing and model
refinement statistics is shown in Table 1. Molecular graphics images were generated
using PyMOL (www.pymol.org) or UCSF Chimera57.

Size exclusion and light scattering. The SEC-MALS data were collected using a
Superdex200 10/300 HR SEC column (GE Healthcare), connected to Agilent 1200
high performance liquid chromatography (HPLC) system, equipped with an
autosampler. The elution from SEC was monitored by a photodiode array (PDA)
UV/VIS detector (Agilent Technologies), differential refractometer (OPTI-Lab rEx
Wyatt Technology), static and dynamic, multiangle laser light-scattering (LS)
detector (HELEOS II with QELS capability, Wyatt Technology). The SEC-UV/LS/RI

system was equilibrated with 20mM Tris-HCl (pH 8.0), 0.5M NaCl, 1 mM MgCl2,
and 1mM DTT at the flow rate of 0.5 ml min−1. Two software packages were used
for data collection and analysis; the Chemstation software (Agilent Technologies)
controlled the HPLC operation and data collection from the multi-wavelength UV/
VIS detector, while the ASTRA software (Wyatt Technology) collected data from
the refractive index (RI) detector, the light-scattering detectors, and recorded the
UV trace at 280 nm sent from the PDA detector. The weight average molar masses,
Mw, were determined across the entire elution profile in the intervals of 2 s from
static LS measurement using ASTRA software as previously described66,67. During
data analysis, a dn/dc value of 0.188 mL g−1 was used as it proved satisfactory
during analyses of protein standards analyzed before and after the samples of
interest. The IN-B56γ-DNA complex eluted with a Mw of ~ 345 kDa; there were no
changes in Mw when the complex was analyzed at a fivefold lower concentration
(Supplementary Fig. 2c). Additional information about the stoichiometry of the
protein–DNA complex was obtained from the UV/RI ratio, which is proportional to
extinction coefficient of the molecule, measured individually for the proteins alone,
DNA alone, and the complex samples. Since the UV/RI ratio for DNA was 7.5 times
higher than the value observed for proteins, the parameter is very sensitive to the
protein to DNA ratio present in the eluting complex. The observed UV/RI ratio for
the eluting complex closely matched, with 1% deviation, the value calculated for the
stoichiometry observed in the cryo-EM structure.

Plasmids and cloning for cell-based assays. The eGFP control and B56
expression vectors used in this study were cloned into the pQCXIH retroviral
expression vector as described previously39. B56γ point mutants were generated by
PCR amplification using Phusion high-fidelity DNA polymerase (NEB, Ipswich,
MA) and overlapping PCR to introduce the indicated mutations. To generate the
wild-type and alanine YFP4×Inhibitor vectors, cDNA sequences were obtained as
gBlocks from Integrated DNA Technologies (IDT) and cloned into pcDNA5TO

Table 1 Cryo-EM data collection, refinement, and validation
statistics.

HTLV-1 intasome (EMDB-21301)
(PDB: 6VOY)

Data collection and processing
Magnification 96,000×
Voltage (kV) 300
Electron exposure (e–/Å2) 30
Defocus range (μm) 1.0–2.0
Pixel size (Å) 0.8933
Symmetry imposed C2
Initial particle images (no.) 1,184,769
Final particle images (no.) 30,434
Map resolution (Å) 3.7
FSC threshold 0.143
Map resolution range (Å) 3.4–7.1
Refinement
Initial model used (PDB code) 5EJK
Model resolution (Å) 3.7
FSC threshold 0.143
Map sharpening B factor (Å2) −30
Model composition

Non-hydrogen atoms 17,558
Protein residues 1724
DNA residues 180
Ligands (Zn2+, Mg2+) 4,2

B factors (Å2)
Protein 181.09
DNA 300.68
Ligand 203.04

R.m.s. deviations
Bond lengths (Å) 0.010
Bond angles (°) 1.131

Validation
MolProbity score 2.26
Clashscore 33.53
Poor rotamers (%) 0.66

Ramachandran plot
Favored (%) 96.29
Allowed (%) 3.71
Disallowed (%) 0.00

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16963-6

6 NATURE COMMUNICATIONS |         (2020) 11:3121 | https://doi.org/10.1038/s41467-020-16963-6 | www.nature.com/naturecommunications

http://www.pymol.org
www.nature.com/naturecommunications


expression vectors using HindIII and NotI restriction enzymes. The sequences used
for generating the inhibitor vectors have been described previously40. The control
and knockdown shRNA constructs have also been described previously39. All
constructs were confirmed by restriction digestion and Sanger sequencing.

Cell lines and culture conditions. 293T HEK cells were maintained in DMEM
(Hyclone, South Logan, UT) supplemented with 10% FBS (Gibco, Gaithersburg,
MD) and 0.5% pen/strep (50 units). 293T cells were transfected with TransIT LTI
(Mirus, Madison, WI) according to the manufacturer’s protocol. To generate stable
eGFP, B56α, and B56γ wild-type and mutant cell lines, viruses were produced from
293T cells transfected with the pQCXIH retroviral expression vectors described
above, an MLV GagPol packaging vector, and a VSV-G expression vector. Media
was harvested 48 h post transfection and frozen at −80 °C for 4–6 h, thawed and
centrifuged at 1500×g, and combined with fresh 293T cells. To generate pure cell
populations, samples were treated with hygromycin B (Sigma, 200 μg/ml) 48 h post
transduction. For generating stable shRNA knockdown/vector control lines,
293T cells were transfected with the shRNA vector, an HIV-1 Gag/Pol packaging
construct, and a VSV-G expression vector. Media was harvested 48 h post trans-
fection, and frozen at −80 °C for 4–6 h, thawed and centrifuged at 1500×g, and
combined with fresh 293T cells. Pure cell populations were generated by treating
with puromycin for 48 h to produce a pure population (Sigma, 1 μg/ml).

HIV-1 and HTLV-1 infectivity assays. A one-step transfection/infection assay was
performed in 293T cells using a 12-well culture plate. Roughly, 150,000 cells (either
non-transduced 293T cells, cells stably expressing the indicated eGFP-B56 proteins,
or cells stably expressing the indicated shRNA vector), were seeded into 12-well
plates and allowed to adhere overnight. After 24 h, cells were transfected with either
0.6 μg of an HIV-1 packaging vector, 0.15 μg of VSV-G expression vector, and
0.9 μg of reporter plasmid, or, 0.6 μg of the full-length HTLV-1 pCMV HT1-M
genome, and 0.9 μg of a reporter plasmid. The generation of these vectors has been
described previously38. To test the YFP4×Inhibitor vectors, the aforementioned
HIV/HTLV transfection protocols were followed along with 0.4 μg of either wild-
type or alanine inhibitor plasmids. Media was changed 16 h following transfection,
and the cells were harvested 5 days later, and infectivity was assessed using flow
cytometry (representative gating approaches are depicted in Supplementary
Fig. 10). The data were collected from four independent experiments, and infec-
tivity results were plotted using GraphPad Prism 6 software with error bars
representing standard error mean (SEM).

Mass photometry. Microscope coverslips (High Precision coverslips, No. 1.5, 24 ×
50 mm, ThorLabs) were cleaned by sequential washing in 100% isopropanol and
Milli-Q H2O, followed by drying with a clean air stream. Silicon gaskets (Grace bio-
labs, CultureWell™ Reusable Gaskets, CW-50R-1.0) were placed on the clean
coverslips to create wells. Immediately prior to mass photometry measurements,
protein or protein–DNA complex samples were diluted directly on the coverslip in
the SEC buffer. Each sample was measured in a new well (i.e., each well was used
once). To find focus, fresh buffer was first added into the well, the focal position
was identified and secured in place with an autofocus system based on total internal
reflection for the entire measurement. For each acquisition, 18–19 µL of buffer was
introduced into the well and, following autofocus stabilization, 2–1 μL of sample
was added then movies of 60-s duration were recorded. Data were acquired using a
OneMP mass photometer (Refeyn Ltd, Oxford, UK). Data acquisition was per-
formed using AcquireMP (Refeyn LTD, v2.0) using default settings. Mass photo-
metry movies were processed and analyzed using DiscoverMP (v1.2.4) using default
settings.

In vitro integration assay. The concerted integration activity of Sso7d(W24A/
R43E)-HTLV-1 IN(wt) was tested using a 3′-OH recessed viral DNA substrate 25 R
containing the HTLV-1 U5 LTR sequence, prepared by annealing two HPLC-
purified oligonucleotides 5′-Cy5-CCAGGAGAGAAATTTAGTACACA-3′ and
5′-ACTGTGTACTAAATTTCTCTCCTGG-3’ (IDT). The reaction mix initially
included 0.5 μM viral DNA substrate and 1.5 μM IN in 25 mM HEPES (pH 7.0),
100mM NaCl, 10mM MgCl2, 10 µM ZnCl2, 10 mM dithiothreitol (DTT), and 10%
(v/v) dimethyl sulfoxide (DMSO). After an initial preincubation at 14 °C for 15 min,
the supercoiled target DNA, pBSKZeo (2.7 kb)46, was added to a final concentration
of 8 nM, and strand transfer was carried out at 37 °C for 45min. The reactions were
stopped by adding EDTA to a final concentration of 25mM, and samples were
deproteinized with 0.5% SDS, 1 mg/ml proteinase K for 1 hr at 37 °C. Strand-
transfer products were separated on a 1.5% agarose gel and visualized by scanning
for Cy5 fluorescence on Typhoon 9500 Laser Scanner (GE Healthcare Life Sciences).
The gel was stained with SYBR Gold (Invitrogen) and analyzed by a Typhoon
9500 scanner to visualize the target DNA (shown on the left and right, respectively,
in Supplementary Fig. 8).

HTLV-1 integration-site sequencing. The viral DNA–target junctions of the
concerted integration products generated in vitro by Sso7d(W24A/R43E)-HTLV-1
IN(wt) were sequenced. The strand-transfer reactions were carried out as above,
except with HTLV-1 U5 LTR DNA (39 CatRE: 5′- CCGTGCGAATTCGGATCC
AGGAGAGAAATTTAGTACACA-3′ and 41 Non-CatRE: 5′- ACTGTGTACTAA

ATTTCTCTCCTGGATCCGAATTCGCACGG-3′) for 20 min at 37 °C. The con-
certed products were isolated from a 0.8% agarose gel and purified by electroelu-
tion. The products were treated with phi29 DNA polymerase (New England
Biolabs) in the presence of 500 μM dNTPs followed by Klenow polymerase (Pro-
mega) treatment. The blunt-ended products were ligated into Zero Blunt PCR
vector (Invitrogen), and the resulting DNA was used to transform TOP10F cells
(Invitrogen). Recombinant clones were screened by restriction enzyme digestion
using EcoRI and HindIII to confirm the presence of concerted products. In total, 24
clones having the correct size concerted products were sequenced using custom
primers (KKPBlunt244: 5′-GGTGACGCGTTAGAATACTCAAGC-3′, and
ccd665-R: 5′-GCCCCGGCGTGTCAATAATATC-3′) to analyze the LTR-target
junction and host site duplications. The majority of the clones (22 out of 24) had
the expected target DNA sequence duplication size of 6-bp. Sequence logos
(Supplementary Fig. 9) were generated from 21 unique clones using WebLogo68

and show similar integration target sequence preference to those previously
reported for HTLV-1 IN69,70. Two clones had deletions of 116-bp and 1026-bp,
which could be due to multiple integration into a single target DNA.

Protein-binding analyses. Various fragments of HTLV-1 IN, fused to Sumo
(yeast Smt3) on their N-terminus, were injected into a Superdex200 10/300 SEC
column either by itself or after being mixed with an equimolar amount of Sumo-
fused B56γ(11–380). The column was operated at 4 °C with a flow rate of 0.4 ml
min−1, and the elution buffer contained 20 mM Tris-HCl (pH 8.0), 0.5 M NaCl,
1 mM MgCl2, and 0.5 mM TCEP. In total, 83.5 nanomoles of each protein or
complex were brought up to a standardized volume of 242 μL with the running
buffer, prior to each sample injection. Protein complex formation was assessed
by monitoring the elution profiles and analyzing the collected fractions by SDS-
PAGE.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Atomic coordinates and the cryo-EM density map have been deposited in the Protein
Data Bank and the Electron Microscopy Data Bank (EMDB) under accession code 6VOY
and EMD-21301, respectively. All other data are available from the authors upon request.
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