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Metallic nanocrystals with low angle grain
boundary for controllable plastic reversibility
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Advanced nanodevices require reliable nanocomponents where mechanically-induced irre-

versible structural damage should be largely prevented. However, a practical methodology to

improve the plastic reversibility of nanosized metals remains challenging. Here, we propose a

grain boundary (GB) engineering protocol to realize controllable plastic reversibility in

metallic nanocrystals. Both in situ nanomechanical testing and atomistic simulations

demonstrate that custom-designed low-angle GBs with controlled misorientation can endow

metallic bicrystals with endurable cyclic deformability via GB migration. Such fully reversible

plasticity is predominantly governed by the conservative motion of Shockley partial dis-

location pairs, which fundamentally suppress damage accumulation and preserve the

structural stability. This reversible deformation is retained in a broad class of face-centred

cubic metals with low stacking fault energies when tuning the GB structure, external geo-

metry and loading conditions over a wide range. These findings shed light on practical

advances in promoting cyclic deformability of metallic nanomaterials.
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Nanoscale materials are widely anticipated to be used as
building blocks for advanced wearable devices1,2, flexible
electronics3,4 and micro/nanoelectromechanical systems

(MEMS/NEMS)5,6 due to their unparallel physical and mechan-
ical properties. Both experimental and theoretical studies in the
past two decades have revealed a wealth of unique mechanical
responses, such as size-dependent strengthening7, ultrahigh
strength8, superplasticity9 and anelasticity10. However, much less
research has been focused on the deformation reversibility in
nanosized materials, which is of general significance to the
functionality and reliability of integrated nanocomponents in
flexible/wearable devices. In contrast to the elasticity-dominated
responses of semiconductor nanomaterials11, metallic nanoma-
terials commonly experience non-conservative defect activities
associated with frequent heterogeneous surface nucleation12. The
resultant irreversible shear localization and structural degrada-
tion13 notoriously compromise their service reliability14,15.
Hence, the structural stability and damage resistance of metallic
nanocomponents need to be precisely engineered to fundamen-
tally retard the cumulative degradation16. Nevertheless, the
development of a practical methodology to realize plastic rever-
sibility in nanoscale metals without damage accumulation
remains a challenge.

Although several approaches for realizing recoverable plasticity
have already been demonstrated in metallic nanomaterials,
including twinning/phase transformation-induced lattice reor-
ientation17–19 and penta-twin-dominated dislocation retraction20,
these deformation mechanisms are highly orientation- and
material-dependent. Moreover, asymmetrical twinning/detwin-
ning shear21 and the associated huge surface kinks19 inevitably
lead to deformation instability and irreversible structural damage
in metallic nanocrystals, which compromises their long-time
plastic deformability. Additional investigations suggest that grain
boundary (GB)-mediated deformation may contribute to the
recovery of plastic strain in nanostructured metals22–24. Likewise,
in bulk polycrystalline metals, high densities of internal interfaces,
such as GBs25 and nanoscale twin boundaries (TBs)26, have been
widely adopted to alleviate damage accumulation in loading
cycles. In particular, low angle GBs (LAGBs) allowing slip
transmission endow bulk metals with enhanced crack
resistance27.

Inspired by the success of interface engineering in bulk
materials26,27, here, we propose an approach of GB design in
metallic nanocrystals to achieve controllable plastic reversibility.
Through integrated state-of-the-art in situ nanomechanical test-
ing and molecular dynamics (MD) simulation, we demonstrate
that face-centred cubic (FCC) metallic nanocrystals with custom-
designed LAGBs can accommodate exceptional reversible plasti-
city with negligible damage accumulation. The extraordinary
plastic reversibility is governed by the collective motion of dis-
sociated GB dislocations that readily overtake any non-
conservative defect activities. This energetically favoured con-
servative GB migration leads to the reversible deformation of
metallic nanocrystals with a variety of intrinsic GB structures and
external geometries under different loading conditions. These
findings hold implications for interface engineering of metallic
nanomaterials towards controllable reversible deformability, fur-
ther boosting the optimal design of reliable nanocomponents
from the bottom up.

Results
Reversible migration of LAGB in shear cycles. Prior to the
nanomechanical testing, Au bicrystals with controlled GB mis-
orientations were fabricated by in situ welding of two nanoscale
single crystals inside a transmission electron microscope (TEM,

see “Methods” for details). Figure 1a shows an example of an as-
prepared Au bicrystal with a diameter of 16.2 nm and a mis-
orientation (θ) of 13.5° between the lattices of the top and bottom
grains. A 1�10½ � tilt LAGB (delineated by the yellow dotted line in
Fig. 1a) is located close to the top of the nanocrystal. Closer
examination shows that the GB consists of orderly aligned dis-
locations with a Burgers vector of 1/2 01�1½ � (Fig. 1j), which
accommodate the misorientation between the adjoining crystals.
The average distance between these GB dislocations is measured
to be 1.05 nm (roughly 3–5 times of the interatomic distance),
consistent with the theoretical prediction based on the linear
relation between the reciprocal of dislocation spacing (D) and GB
misorientation (θ ~ b/D)28. These GB dislocations are aligned in a
staggered manner, indicating stress relaxation of the as-fabricated
GB in the Au bicrystal.

Reversible shear loading was horizontally applied to the Au
bicrystal (with the top grain fixed to the bulk, see the inset in
Fig. 1k) to explore the deformation behaviour of the Au bicrystal.
With leftward shear, the LAGB gradually migrated downward
(Fig. 1b). After a migration distance of ~10 nm, the LAGB
reached the bottom of the bicrystal (Fig. 1c). Subsequently,
reversed shear loading was imposed, activating upward migration
of the LAGB (Fig. 1d). After a full cycle of shear loading, the
LAGB completely returned to its initial position (Fig. 1e).
Notably, the external geometry of the deformed bicrystal is
nearly identical to its original structure, suggesting a fully
reversible deformation of the Au nanocrystal with the LAGB.
We noted an inconspicuous change in the atomic configuration
of the LAGB, which was probably induced by the nonuniform
distribution of shear stress near the GB. To further validate the
migration reversibility of the LAGB (Fig. 1f–h), we subjected the
same nanocrystal to additional shear loading cycles. After five
cycles, the original structure of the nanocrystal was well retained
(Supplementary Movie 1), except for a slight surface variation due
to the localized surface diffusion (see the differences between the
surface configurations in Fig. 1a, i)29. In each cycle, the migration
of the LAGB was conservative (i.e., without defect nucleation or
annihilation) and fully reversible, indicating good structural
stability upon cycling. Such a unique deformation mechanism
contributed to a maximum reversible shear strain of 0.25 (i.e., the
lateral displacement of the bottom grain divided by the uniform
gauge length of the bicrystal). The migration distances of the
LAGB in each cycle are plotted as a function of the shear
displacement to quantify the migration reversibility (Fig. 1k).
Apparently, all migration loops of the LAGB show identical GB
migration-shear displacement coupling, which rationalizes the
exceptional structural stability throughout the loading cycles. The
average shear coupling factor β (defined as the ratio between the
shear displacement and the migration distance of the LAGB) was
measured as 0.27, consistent with the value estimated based
purely on the geometry of the LAGB (β ~ θ).

Atomistic mechanism of reversible GB migration. The dynamic
evolution of the 13.5° 1�10½ � LAGB was further characterized to
uncover the detailed migration mechanism upon fully reversed
shear loading (Fig. 2). Atomistic observations show that the
reversible migration of the LAGB was dominated by the collective
movement of dissociated GB dislocations throughout the shear
loading cycles (Fig. 2a–c). Neither lattice dislocation nucleation
nor defect annihilation associated with the GB or free surface was
captured in our experiments, in stark contrast to the extensive
dislocation activities commonly observed in the deformation of
metallic single crystals with similar sizes13,19. Before loading, the
orderly aligned GB dislocations showed negligible dissociation, as
reflected by the corresponding geometrical phase analysis (GPA,
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see inset of Fig. 2a). Upon deformation, the GB dislocations
tended to dissociate into pairs of Shockley partial dislocations,
(i.e., Aδ+ δC) on the coherent (111) slip planes of the top and
bottom grains (Fig. 2b and Supplementary Fig. 1), as confirmed
by the extended atomic configurations in the high resolution

TEM image and evident strain dipoles in the corresponding GPA
map (see insets). The dissociated nature of the GB greatly
facilitated the continual and correlated gliding of GB dislocations
inside the bicrystal, contributing to the fully reversible migration
of this LAGB (Fig. 2c).
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MD simulations of a cylindrical bicrystal sample with a 13.5°
1�10½ � LAGB can further rationalize the underlying GB dislocation
dynamics that govern the reversible deformation of the Au
bicrystal during shear loading cycles (Fig. 2d and Supplementary
Figs. 2, 3). The size of the simulated sample is the same as that of
the real bicrystal in the experiment. The simulation results
confirm the instant dissociation of pre-existing GB dislocations
upon loading (Fig. 2e), suggesting that the dissociated GB
configuration is energetically favourable and relatively stable
during the GB motion. Upon the reversible deformation, these
Shockley partial dislocation pairs (with a stacking fault ribbon,
Supplementary Fig. 4) glided smoothly in both grains and
promptly reversed their trajectory upon switching the shear
direction, consistent with the experimental observation. It is
evident that the number of GB dislocations in the LAGB
remained constant throughout the loading cycles, confirming the
conservative deformation behaviour of the LAGB. This phenom-
enon may arise from the geometrical requirement of GB
dislocations to maintain the misorientation and the large resolved
normal stress (on the slip planes) that impedes diffusive climb of
GB dislocations. With these GB dislocations as pre-existing
plastic carriers, non-conservative deformation induced by
massive lattice dislocation activities (including the nucleation,
motion and annihilation) was greatly suppressed. Owing to the
slightly non-uniform distribution of the localized shear stress
inside the nanocrystal, the GB dislocations may not necessarily
dissociate to the same extent (see dislocations 1 and 2 in Fig. 2b).
Such unique deformation behaviour of the LAGB endows the
metallic bicrystal with exceptional plastic reversibility yet
fundamentally-absent damage accumulation (Fig. 2e and Supple-
mentary Movies 2 and 3). To verify this deformation paradigm on
a long-term basis, the Au bicrystal was further deformed for more
than 500 shear cycles in our MD simulation (Fig. 2f, g and
Supplementary Movie 4). Both the structural stability of the
nanocrystal and the migration reversibility of the LAGB were well
retained, indicating excellent plastic reversibility of this Au
bicrystal with a characteristic LAGB.

Generality of reversible dynamics among different GBs. Both
our experiments and simulations clearly demonstrate that the
bicrystal with LAGB exhibits impressive plastic reversibility via
the highly organized motion of dissociated GB dislocations.
Figure 3a schematically illustrates the dissociation of an LAGB
in the bicrystal, where two orientation parameters, i.e., the tilt
GB misorientation (θ) and the inclination between the GB plane
and shear direction (α), are elucidated. The dissociated GB
configuration preserves the slip continuity between the lattices
of the top and bottom grains28 and enables simultaneous gliding
of GB dislocations in both grains. This configuration, to some
extent, eliminates the necessity of additional lattice defects as
deformation carriers and thereby greatly facilitates the stable
reversible deformation of the nanocrystal. Given that dissocia-
tion of GB dislocations is a common phenomenon for LAGBs,
especially in metals with low stacking fault energies30, the
reversible deformation behaviour is expected to be general in
bicrystals with different LAGBs. To substantiate the common-
ality of this reversible deformation mechanism of LAGBs,
additional in situ experiments were carried out by varying the
misorientation of the <110> tilt GB in the range of 8°–19°
(Supplementary Figs. 5–7), and the GB-mediated reversible
deformation were observed up to 8 shear loading cycles (Sup-
plementary Fig. 7). MD simulations demonstrate that similar
plastic reversibility prevails in Au bicrystals with GB mis-
orientations in the range of 8.80°–25.06° (Supplementary Fig. 8),
validating the generality of our findings.

Referring to the significance of the GB misorientations, the GB
energy and the dissociation width of GB dislocations were
quantitatively analysed by MD simulations (Fig. 3b). The GB
dissociation widths generally decrease with increasing GB
misorientation, with an evident plateau corresponding to the
relaxed state of GB dislocations in the range of 12°–20°
(Supplementary Discussion 1). Below and above this misorienta-
tion range, the GB configurations could be categorized into
unconfined and restricted stages, respectively (elucidated by the
inset GB structures). In contrast, the GB energy increased nearly
monotonically and steadily with increasing GB misorientation,
which arises from a growing density of GB dislocations and their
interactions (quantified in Supplementary Fig. 19). When the
misorientation exceeded 24°, the dislocation-type GB could not
stably exist, and non-conservative defect nucleation from either
the GB or free surface dominated the plastic deformation in shear
loading cycles (Supplementary Fig. 9). Consequently, shear
localization and damage accumulation occurred in the Au
bicrystals, compromising the plastic reversibility. Additional
MD simulations of a variety of FCC metallic bicrystals
(Supplementary Fig. 10) show similar LAGB-mediated reversible
deformability and its misorientation dependence (Fig. 3c).
Interestingly, the upper limit of misorientation for GB dissocia-
tion lies in a narrow range of 24°–28° among different metals
(indicated in Fig. 3c), suggesting that the dissociation is
controlled predominantly by the GB geometry. Consistently, the
experimental evidence shows that no observable GB dissociation
occurred in Au bicrystals with misorientations larger than 22°
(Supplementary Fig. 11). More importantly, this misorientation
dependence of GB dissociation exerts a direct influence on the GB
mobility. As shown in Fig. 3d, the GB migration rate decreased
monotonically with the increasing misorientation (θ) under a
constant shear velocity, leading to an increase of the shear
coupling factor (β).

Quantitative simulations revealed that the mechanical
responses of the Au bicrystals also showed a strong GB
misorientation dependence (Fig. 3e). During parallel reversible
shear loadings with a maximum strain amplitude of 0.5, a
dynamic asymmetry between the applied shear stresses σmax and
σmin (inducing the downward and upward GB migrations,
respectively) was unambiguously demonstrated with respect to
the GB misorientation. The resolved shear stress for slip in the
top grain increased monotonically with the misorientation
(beyond 10°), which kinetically favoured the upward migration
of the GB, as reflected by a continuously reducing σmin. In
contrast, the resolved shear stress for dislocation slip in the
bottom grain remained unchanged (due to the simulation setup),
whereas a higher slip discontinuity was intrinsically associated
with the GBs with larger misorientations, which impeded the
downward GB migration, resulting in an increasing σmax. At θ ~
19°, σmax= |σmin|, which corresponds to a symmetrical orienta-
tion of the coherent (111) slip planes in the adjacent grains with
respect to the GB. Nevertheless, this shear loading asymmetry
(characterized as normalized shear stress, R= |σmax/σmin|) does
not perfectly coincide with the theoretically predicted misorienta-
tion dependence of the normalized Schmid factor (i.e., the
reciprocal ratio of the Schmid factor for slip in the bottom and
top grains, denoted as γ= |mAC,min/mAC,max|), as illustrated in
Fig. 3f. The discrepancy between the normalized shear stress and
normalized Schmid factor may originate from the characteristic
dissociation of the GB, which introduces significant lattice
distortion near the GB and thus compromises the validity of
the theoretical predictions based on a homogeneous lattice. The
normalized shear stress gradually approaches the trend of the
normalized Schmid factor, consistent with the decreased GB
dissociation tendency at larger misorientations (Fig. 3b).
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Factors influencing the plastic reversibility. Both the experi-
mental and simulation studies underpin a robust plastic reversi-
bility during the cycling of metallic bicrystals with different
LAGBs. To rationalize this unique deformation paradigm, other
potential influencing factors, including the GB inclination,
nanocrystal diameter, aspect ratio and deformation strain rate,

were systematically investigated. Figure 4a shows an additional
Au bicrystal consisting of an 18° 1�10½ � dislocation-type GB with
an average inclination (α) of 25.3°. Although the GB mis-
orientation and inclination of this nanocrystal were larger than
those of the 13.5° 1�10½ � GB (Fig. 2), reversible GB migration still
dominated the deformation in shear loading cycles. A shear strain
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as high as 0.36 was perfectly accommodated by the collective
motion of dissociated GB dislocations (Fig. 4b) without inducing
observable lattice bending or grain rotation (Supplementary
Fig. 12). The large GB inclination was proved to have negligible
influence on the reversible deformability of dislocation-type GB,
which probably originated from the invariable resolved shear
stresses on GB dislocations when adjusting the GB inclination
(see Fig. 3a). This potent nature of GB-mediated deformation
essentially maintains the plastic reversibility in differently orien-
ted metallic nanocrystals with various diameters, as manifested by
both experiments (Supplementary Fig. 13) and simulations
(Supplementary Fig. 14a, b). Figure 4c and Supplementary
Fig. 14c further indicate that the reversible migration of
dislocation-type GBs can be well retained for a wide range of
aspect ratios (L/D) (summarized in Supplementary Tables 1 and
2). Notably, for similar GB misorientation and inclination
(compared with Fig. 4a), doubling the aspect ratio of the Au
nanocrystal (from ~0.8 to ~1.4) led to no fundamental difference
in the plastic reversibility. Additionally, reversible plasticity can
be realized in Au bicrystals when tuning the aspect ratio (L/D)
between 2 and 6 (despite the lower mobility under the larger
aspect ratio), while GB motion could hardly be detected for
L/D > 6 (Supplementary Fig. 14c). Theoretical analysis suggests
that the applied shear stress inevitably induces a large bending
moment on the metallic nanocrystals with an excessively large
aspect ratio, impeding the correlated motion of GB dislocations
(see Supplementary Discussion 2). In addition, an increasing
number of surface flaws in large-aspect-ratio nanocrystals31 could
impair the inherently conservative deformations. Moreover, the
applied shear strain rate was found to have negligible influence on
the reversible migration of dislocation-type GBs (over at least two
orders of magnitudes) under the strain rates of 10−3–10−1 s−1 in
the experiments (Fig. 4d and Supplementary Movie 5) and
107–109 s−1 in the MD simulations (Supplementary Table 2),
indicating the rate-insensitive plastic reversibility. Com-
plementary MD simulations further demonstrated that the plastic
reversibility of Au bicrystals (L/D= 2) is even preserved in the
presence of surface roughness and intragranular vacancies (Sup-
plementary Fig. 15a, b). In view of the fact that LAGB migration
(θ= 16°) also proceeded via conservative dislocation motion
upon tension (Supplementary Fig. 16), we can reasonably expect a
plastic recovery of nanocrystals under reversed uniaxial loading.
It was indeed confirmed by our MD simulations that LAGB-
mediated reversible deformation dominated in metallic bicrystals
under uniaxial tension-compression cycling (Supplementary
Fig. 15c). Besides, an Au bicrystal nanowire with a large aspect
ratio of 10 exhibited a similar reversible deformation behaviour
via LAGB migration under uniaxial tension and unloading
(Supplementary Fig. 15d), indicating a broad range of validity for
the reported phenomena.

Discussion
To engineer nanoscale structures with high tolerance against
cyclic damage, we can either stay in the elastic regime11, or
develop special materials that enable reversible plastic deforma-
tion. Phase transformation17 and twinning-detwinning18 are two
common methods of realizing plastic reversibility in nanoscale
metals, which, however, are often limited by severe orientation-
dependence and lack of controllability. Here, we demonstrate a
mechanism of GB-mediated plastic reversibility that enables
reversible deformation of nanosized materials beyond their sim-
ple elastic limit, and further validate it under the influences of
multiple governing factors, as summarized in Supplementary
Tables 1 and 2. Such stable plastic reversibility via shear coupled
GB migration (over 500 shear loading cycles in MD simulations,

Fig. 2g) holds over a wide range of FCC metals (Au, Ag, Cu, Pd,
Pt, Ni) when systematically tuning the GB structures (mis-
orientation angle ranging from 8° to 24°, inclination angle),
nanocrystal geometries (aspect ratio, surface roughness) and
loading conditions (shear, tension, compression, strain rate,
temperature), etc. As schematically illustrated in Fig. 4e, the
universally dissociated GB dislocations in different FCC metals
provide principal building blocks for the reversible deformation,
which enables us to design metallic nanocrystals with controlled
reversible deformability and high damage tolerance. Thus, this
GB approach with targeted or optimal design can push the limit
of controlled plastic reversibility in metallic nanomaterials32,33.

Theoretically, this superior plastic reversibility of metallic
bicrystals mainly originates from conservative motion of the
readily dissociated GB dislocations that fundamentally suppress
the irreversible damage accumulation arising from the pro-
nounced heterogeneous surface nucleation and annihilation of
partials or twins. Intrinsically, the orderly aligned dissociated GB
dislocations (i.e., Shockley partial dislocation pairs bound with a
stacking fault ribbon) accommodate the lattice misorientation
between neighbouring grains and reduce the Peierls barrier28,
enabling the smooth migration of LAGB with negligible frictional
heat. As shown in Fig. 3e, the maximum applied shear stress of
~0.2 GPa is lower than the estimated critical resolved shear stress
(0.47 GPa) for surface nucleation of a partial dislocation in Au
nanocrystals13. Therefore, the activation of LAGB migration is
energetically favoured over heterogeneous defect nucleation from
the free surface, leading to the dominance of GB migration in the
reversible deformation of metallic bicrystals. The absence of non-
conservative defect nucleation and annihilation helps preclude
shear localization34 and GB structure changes35, and the rever-
sible deformation can be well-retained, causing negligible damage
accumulation in the nanocrystal. However, when the mis-
orientation exceeds the upper limit, the very closely spaced dis-
location cores prohibit the motion of dislocations, resulting in
localized shearing36. Therefore, the GBs fail to migrate con-
tinuously and even become increasingly disordered (Supple-
mentary Fig. 9a–c). The consequent non-conservative nucleation
of lattice defects (including dislocations and stacking faults)37

from these GBs can further deteriorate the synergistic gliding of
GB dislocations, impairing the inherent reversible deformability
upon shear cycling (Supplementary Fig. 9d–g). Based on both
experimental and simulation results, the transformational mis-
orientations of a disordered GB are in the range of 26–28° among
different FCC metals. The dislocation character of GBs can stably
exist at almost twice the typical misorientation of 15° defined by
the classic description of LAGBs28, which can be ascribed to the
fact that the structure of high angle GB can transit from the
structure unit type to the dislocation type (similar to the classic
LAGB) with the decreasing sizes38. Nevertheless, the highly
organized GB motion is viable as long as the dislocations nature
within the GB is retained. Most significantly, in contrast to many
high angle GBs consisting of heterogeneous structure units37,
dislocation-type GBs can easily accommodate reversible defor-
mation, given that the as-formed Shockley partial dislocation
pairs serve as correlated and smooth carriers of plasticity in both
grains. However, below the lower misorientation limit of ~8°, the
few GB dislocations can no longer accommodate large shear
strain of the bicrystal nanowire and surface nucleation is in turn
activated (Supplementary Fig. 8a), thus compromising the
reversible deformability. Besides, the well-preserved surface
tomography and stable geometry of the bicrystals are two
extrinsic governing factors of good plastic reversibility, which
precludes irreversible damage accumulation from shear localiza-
tion19 and necking13 by eliminating heterogeneous defect
nucleation. Further investigations suggest that this GB-mediated

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16869-3

6 NATURE COMMUNICATIONS |         (2020) 11:3100 | https://doi.org/10.1038/s41467-020-16869-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


plastic reversibility is comparatively insensitive to surface
imperfections, such as surface steps or terraces (Figs. 1, 4 and
Supplementary Fig. 15), where non-uniform stress distributions
often occur. As a result, the synergy of all above factors, including
the dissociated GB structure, energetically favoured conservative
GB migration and well-preserved nanocrystal geometry, allows
for stable plastic reversibility without tangible damage accumu-
lation, endowing the metallic nanocrystals with potentially
exceptional cyclic deformability.

In conclusion, we have proposed a GB engineering approach to
realize reversible deformability in metallic nanocrystals over a
wide range of set-up orientations and loading conditions. The
well-documented dislocation-type GBs are the engineering ele-
ments that could be implanted into nanocrystals where the
misorientation of these custom-designed GBs serve as the tool to
control the amplitude and strain rate of reversible deformation.
Notably, the nanocrystal geometry (e.g., aspect ratio) should be
coupled with the GB structure for the optimal design of metallic
bicrystals (Fig. 4e). A maximum shear strain of ~β(θ) can be
stably retained under long-time loading cycles, based on both
experimental and simulation results (Figs. 1, 2). We further
demonstrate that such GB-dominated reversible deformation
mechanism can be generally applicable to FCC metallic nano-
crystals (Fig. 3c and Supplementary Fig. 10) with low stacking
fault energies. As an outlook, similar plastic reversibility is likely
to retain for other types of GBs, e.g., <100> tilt LAGBs, given the
characteristic GB structure of 1/2 <110> dislocation arrays39.
Moreover, this reversible deformation mechanism can be exten-
ded into multi-grain systems, where the migration of upper and
bottom GBs is generally consistent with that in bicrystals (Sup-
plementary Fig. 17). From the nanotechnology perspective, the
realization of custom-designed GB can benefit from the widely
adopted controlled epitaxial growth technique40,41, by which
high-quality metallic bicrystals with continuous variation in
boundary orientation can be readily fabricated, e.g., 90° <110>
and 48° <111> tilt GBs. We also need to note that nanocrystalline
metals typically possess much more complex GB structures and
the plastic deformation is usually controlled by the coordinated
deformation of numerous grains and the associated different
types of GBs, which deserves systematic investigation in future
work. These findings provide a feasible strategy to tune the cyclic
deformability of metallic nanomaterials from the bottom up,
which enables us to design reliable metallic nanocomponents for
high-performance nanodevices. The precisely controlled plastic
reversibility mediated by LAGBs in metallic nanocrystals also has
certain implications for stable energy conversion/dissipation and
mechanical damping in NEMS and flexible devices.

Methods
In situ TEM nanofabrication and nanomechanical testing. In situ nanofabri-
cation and fully reversible shear loading of Au bicrystals with different <110> GBs
were conducted using a PicoFemto® TEM electrical holder from Zeptools Co.
inside a FEI Titan Cs-corrected TEM. Prior to the shear loading, defect-free Au
bicrystals were fabricated via an in situ welding technique. First, two bulk Au rods
(99.99 wt.%, Alfa Aesar Inc.) with a diameter of 0.25 mm were cut by a ProsKit
wire cutter to obtain clean fracture surfaces with numerous single crystalline
nanoscale tips; then, the fractured Au rods were loaded onto the static and probe
sides of the TEM electrical holder. Afterwards, the Au probe was actuated by a
built-in piezo manipulator (behind the probe) so that it could approach the rod on
the static side of the holder. Upon contact, the nanoscale tips on both sides were
welded together in situ inside the TEM by pre-applying a voltage potential of
approximately −2 V at the probe side. A defect-free Au bicrystal with a tilt GB was
thus fabricated by taking advantage of the orientation differences between the
single crystalline nanoscale tips on opposite sides. In this way, a broad class of GB
structures can be fabricated by carefully selecting the orientations and sizes of the
nanoscale single crystals on both sides.

During in situ shear loading experiments, the Au probe was precisely controlled
to alternately move leftward/rightward to impose reversible shear loading at a
constant velocity of ~0.005 nm s−1, which gave rise to an estimated strain rate at

the level of ~10−3 s−1. For each GB, a near-identical reversible migration amplitude
was imposed among all shear cycles by carefully controlling the shear distance (i.e.,
lateral motion of the probe). In all experiments, the TEM was operated at 300 kV
with low beam intensity to minimize the potential beam effects on the deformation
mechanisms; in situ experiments were recorded by a Gatan 994 charge-coupled
device (CCD) camera at a rate of ~0.3 s per frame.

Molecular dynamics simulations. MD simulations were carried out on Au
bicrystals with a total of ~31,1000 atoms using Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)42 and the embedded atom method
(EAM) potentials for Au43. A cylindrical bicrystal model with a diameter of 15
nm and a total height of 30 nm (15 nm height for each grain) was created by
constructing two separate crystals with a crystallographic misorientation of
between 8° and 30° and joining them along the axial direction. GBs with dif-
ferent misorientations were generated by tilting the top grain of the bicrystal
around the <110> axis while fixing the bottom grain. Three boundary layers of
atoms at the top and bottom of the system were fixed as rigid slabs. The
remaining dynamic atoms were allowed to adjust their positions in a Nose-
Hoover thermostat at 300 K. Free boundary conditions were applied in all three
directions. The system was relaxed for 20 ps to obtain the equilibrated GB
structure. The average GB energy under each misorientation was determined by
calculating the energy difference between the relaxed bicrystal system and the
two individual crystals before joining.

During the fully reversible deformation, a constant shear velocity of v= 1 m s−1

parallel to the boundary plane was applied on the rigid slab of the top grain. Once
the GB reached the pre-set position, the shear was reversed. The time step of the
MD simulations was 2 fs. A velocity profile with a linear gradient from 0 to 1 m s−1

was assigned to the dynamic atoms along the axial direction (Supplementary
Fig. 1). The average vertical displacement of the GB atoms was recorded as the GB
migration displacement. Ovito44 was used to visualize the bicrystal model, and the
common neighbour analysis was employed to identify the dissociation of the GBs
during the simulations. Atoms with FCC, hexagonal close-packed (HCP) and
disordered structures were marked in blue, red and cyan, respectively.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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