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A big data approach to improving the vehicle
emission inventory in China
Fanyuan Deng 1, Zhaofeng Lv 1, Lijuan Qi 1, Xiaotong Wang 1, Mengshuang Shi 1 & Huan Liu 1✉

Estimating truck emissions accurately would benefit atmospheric research and public health

protection. Here, we developed a full-sample enumeration approach TrackATruck to bridge

low-frequency but full-size vehicles driving big data to high-resolution emission inventories.

Based on 19 billion trajectories, we show how big the emission difference could be using

different approaches: 99% variation coefficients on regional total (including 31% emissions

from non-local trucks), and ± as large as 15 times on individual counties. Even if total amounts

are set the same, the emissions on primary cargo routes were underestimated in the former

by a multiple of 2–10 using aggregated approaches. Time allocation proxies are generated,

indicating the importance of day-to-day estimation because the variation reached 26-fold.

Low emission zone policy reduced emissions in the zone, but raised emissions in upwind

areas in Beijing's case. Comprehensive measures should be considered, e.g. the demand-side

optimization.
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The accurate estimation of anthropogenic emissions is the
foundation for understanding the interaction between
human activities and the atmosphere. Traffic-related

sources contributed 23% of CO2 emissions1 and 31% of NOx

emissions2 globally and up to 45% of PM2.5 concentrations in
China’s megacities3–5, resulting in air pollution, global warming
and ecological deterioration6,7. Furthermore, the variation in
traffic emission is significant in both the temporal and spatial
dimensions, bringing environmental effects of varying and even
opposite degrees. For example, both ozone formation and loss
were reported due to vehicle emissions in different environ-
ments8–10. Therefore, improving the quality of the traffic emis-
sion inventory requires not only accurate estimation of the total
emissions but also accurate characterization of their temporal and
spatial distribution.

High-quality statistical vehicle activity data and emission fac-
tors usually ensure the accuracy of the total amount, but it is
more challenging to obtain a detailed distribution11. Taking light-
duty vehicles (LDVs) as an example, by continuously improving
the accuracy of emission factors and using data such as urban
registered holdings and local gasoline sales to constrain the total
activity level, the uncertainty regarding the total LDV emissions
can be controlled to ~20%12. However, heavy-duty truck (HDT)
trips are long-haul and frequently cross municipal boundaries, so
the total amount cannot be represented by local vehicle regis-
tration or fuel sales. This uncertainty is particularly significant in
countries that are rapidly advancing HDT emissions control.
China, Russia, South Korea, India, Turkey and Argentina have
updated HDT emissions standards two or three times in the past
10 years13, and so the update cycle on these standards has thus
been shorter than the life cycle of HDT14. Therefore, the HDT
fleet in these countries contains at least three emission levels (e.g.,
China has China III, China IV and China V). Some regions, for
example, Tokyo, Saitama and Kanagawa in Japan; Mumbai,
Kolkata and Chennai in India; and California in the United
States, enforce stricter emissions regulations than neighbouring
areas. For these regions, the fleet composition of HDT is different
than that of other places. In China, Beijing implemented the
China III emission standards four years earlier than other pro-
vinces. In the following years, Beijing’s China III HDT ratio for
local HDT was three times higher than that in neighbouring
provinces15. In summary, due to the rapid updating of emission
standards and advanced implementation policies, China’s HDT
emissions are highly heterogeneous. Thus, the total uncertainty
regarding the HDT emission inventory is still large16,17, and the
distribution caused by HDT movements continues to be difficult
to evaluate. Therefore, this study focuses on this characteristic of
HDTs and improves the total emissions quantity and distribution
data by improving the activity data; the accuracy of emission
factors is not within the scope of this study.

The key to improving the accuracy of the HDT activity dataset
is converting the aggregate proxies into single descriptions of all
samples. Full-sample enumeration has been used in shipping
emission inventory development, e.g., the STEAM model18,19, but
not in vehicle emission estimation. Ships frequently cross-bor-
ders, and the areas of pollutant emission are often not coincident
with areas where ships are registered. Therefore, it is necessary to
trace the ship emission one by one. In contrast, on-road vehicles
usually run in a certain range, so the statistics based on the
regional on-road vehicle population can basically reflect the
emissions, especially for passenger cars. The cross-border degree
of freight trucks is between ships and passenger cars. Most vehicle
emission studies are based on the reported VKTs or driving
behaviours of hundreds or thousands of samples20,21. However, if
we compare the sample size to the vehicle population, the pro-
portion of samples is usually less than 1%. Expansion from some

samples to all samples introduces inestimable errors. Even though
for some countries or areas, top-down inventories might use
VKTs from vehicle registration data for all registered trucks in a
city or province, the cross-boundary movements of trucks will
introduce large errors in the actual local VKTs because the dis-
tribution of VKTs in multiple regions is unknown. In addition,
although the aggregated proxies can reflect the historical reg-
ularity of vehicle activity, they are not as able to reveal the impact
of irregular changes, e.g., new traffic policies. Since 2017, Beijing
has successively implemented policies such as the introduction of
a low emission zone (LEZ)22 for HDTs, the elimination of China
III HDTs23, and the reduction in on-road bulk cargo transpor-
tation. These policies have directly limited the number of HDT
activities on roads, which may have caused significant changes in
HDT emissions in a short period that cannot be reflected by
aggregate proxies.

This study proposes an approach called TrackATruck that
has better capabilities in terms of vehicle-to-vehicle emissions
evaluation. Using the TrackATruck approach with over 200 billion
HDT signals from the BeiDou Navigation Satellite System (BDS)24,
an emission inventory is established that has higher temporal
and spatial resolution and lower uncertainty in the
Beijing–Tianjin–Hebei (BTH) region of North China. Significant
discrepancies were found between the traditional HDT emission
allocation and the actual HDT emission distribution. Thus, uni-
versal time allocation parameters (proxies) of HDT emissions are
refined based on the emission patterns. The effects of typical poli-
cies on HDT emissions control are evaluated. It’s found that the
control of low emission zone has led to detours which caused the
emissions increase in other regions.

Results
Emission inventory in the BTH region. In this study, a Track-
ATruck emission model was established using low-precision, full-
size vehicle travels big data to estimate fine-grain vehicle emis-
sions (see Methods). The HDT emission inventory calculated by
this method can reflect the influences of real-time driving con-
ditions on every single HDT and the overall emissions. Based on
the 200 billion BDS signals of HDTs, a high-resolution emission
inventory was established for the BTH region using the Track-
ATruck model (Fig. 1). The BTH region, with an area of 218,000
km2 located in North China, has more than 100 million residents,
the Chinese capital and three large ports. Therefore, this region
has high demand for freight transportation. The annual PM2.5

emission of HDTs in the BTH region were 3739Mg in 2017 and
3869Mg in 2018, reflecting an increase of 3.5% (Fig. 1a). The
annual NOx emission of HDTs were 136,540Mg in 2017 and
155,107 Mg in 2018, representing an increase of 13.6%.
Approximately 31% of NOx emissions were from non-local HDTs
in 2017 and 2018. The day-to-day variation in HDT emissions in
this region is very substantial (Fig. 1b). In 2018, the minimum
NOx emission of HDTs was 20.56 Mg day−1 on 16th Feb. (the
first day of the Lunar New Year festival), and the maximum NOx

emission of HDTs was 552.31Mg day−1 on 29th Sept, for a 26-
fold difference. The China IV HDT is the primary subsector
accounting for an average of approximately 53% of total PM2.5

emissions and 55% of total NOx emissions over a two-year span.
High-resolution gridded HDT emissions data in the BTH region
were also presented (Fig. 1c). The HDT emissions were highly
concentrated on a small number of intercity roads throughout the
BTH region. The NOx emission intensity of HDTs on these roads
was generally above 5Mg grid−1 year−1. For example, sections of
the 6th Ring Road, 5th Ring Road, highways from Beijing to
Tianjin, and highways from Beijing to Zhangjiakou had high
emission intensities (subgraph in Fig. 1c). The HDT emissions in
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the western mountains of BTH were significantly lower than
those in the eastern plains.

Performance assessment of the TrackATruck model. A model
validation was conducted considering two aspects. The individual
vehicle result validation is introduced in the Methods section as a
validation of the method itself. Here, to comprehensively evaluate
the performance of the model, both the total amount and the
spatial allocation were analysed or compared with those of other
inventories. Recent studies with the top-down method have
suggested that the PM2.5 emission of HDTs in BTH are in the
range of 2303 to 15,200Mg year−1 in 2014–201525,26, while those
estimated by this study is approximately 3804Mg year−1 (two-
year average). The difference between previous studies and this
study is from −39% to 299%, with a coefficient of variation about
99%. This very large difference comes from the total VKT, fleet
composition and emission factors used. Although the single-truck
VKT is recorded by an odometer, it is difficult to determine how
much of the driving occurred in the BTH region, which may lead
to overestimation. On the other hand, omitting the emissions
from non-local HDTs driving into the BTH region will result in
underestimation of the emissions. Thus, the total VKT is sig-
nificantly different between these studies. Here, using truck-by-
truck big data, this study advances the calculation of the total
VKT, the proportion of local/non-local HDT, and the fleet
composition (e.g., the proportion of old trucks). Our results show
that local HDTs contributed only 69% of emissions for both
PM2.5 and NOx over a span of two years in the region (Fig. 1a).

Several studies in Beijing used traffic-volume data to estimate
the total on-road HDT emissions. Due to the uncertainty in
distinguishing vehicle technology categories from traffic observa-
tions, the values calculated by different studies for HDTs can

differ by three orders of magnitude (2.81 Mg year−1 of PM2.5 to
1189Mg year−1 of PM2.5)27,28. In addition, some studies claimed
that they used traffic-volume data to calculate high-resolution
emissions inventories, but only the distribution, not the total
annual HDT emissions, was provided29,30. The PM2.5 emissions
of Beijing’s HDTs calculated in this study were 218.76 Mg year−1

(two-year average). Compared with the traffic-volume-based
approach, our approach is feasible for both a large area and the
city centre. In addition, the vehicle technology category (e.g.,
China III or IV) usually leads to a large difference in emissions,
which cannot be directly identified in the traffic-volume data.
This information for each individual vehicle is kept until the
emission aggregation stage of the TrackATruck approach; hence,
a high-resolution and detailed emission composition can be
provided.

The third advantage lies in the spatial distribution of emissions
by TrackATruck, which is more in line with the actual
characteristics of cargo activities. Figure 2a shows a comparison
of the NOx emissions of HDTs of 155 counties in the BTH region
calculated by the vehicle-stock-based top-down method with
those calculated by the TrackATruck method using the same
emission factor. In 79% of counties, the emissions estimated by
top-down method are out of the range of −50% to 150%
compared to the TrackATruck results, (out of range between the
dashed lines in Fig. 2), and 4% of counties which differences are
more than 15 times. Further analysis was performed on the two
counties (Binhaixinqu and Jingxiuqu) that have the largest
differences between the two methods. It was found that based
on the top-down inventory method, the emissions of Binhaixinqu
and Jingxiuqu were 4512.71Mg year−1 and 5305.63Mg year−1,
respectively. Based on the TrackATruck method, the emissions of
Binhaixinqu and Jingxiuqu were 6835.57Mg year−1 and 276.01
Mg year−1, respectively. Comparing the high-resolution emission
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maps of Binhaixinqu and Jingxiuqu calculated by the Track-
ATruck method (Fig. 2b, c), Binhaixinqu has not only a much
larger area than Jingxiuqu but also multiple highways and a large
port (Tianjin port). In contrast, there are few major freight
corridors and no other type of transportation hub in Jingxiuqu.
From the information on the map, we believe that the emissions
calculated by the TrackATruck method can more reasonably
reflect the distribution of HDT emissions within the BTH region.

To further identify the ability of the TrackATruck method to
carry out spatial allocation, the same total emissions were
allocated into 0.01° grids by seven allocation proxy schemes used
in previous studies16,17,31, including population (M1), road
density (M2), population and road density (M3) and VKT
weighted road density (M4-1 to M4-4); see details in the
Methods. Next, we used Pearson’s correlation to evaluate the
spatial correlation between 0.01° gridded NOx emissions of the
HDTs of these schemes and the results of this study (Fig. 3a). M1
and M3 have the lowest correlation, showing that the distribution
of HDT emissions has almost no correlation with the population
density. The correlations of M2 (road density) and M4-1 to M4-4
(road-density-related allocation scheme with different weighting
factors) to the TrackATruck results are similar but all below 0.5,
indicating that none of the proxy schemes perform well. The
results show that the spatial correlations are 0.47 (M4-1) and 0.45
(M4-2) and that they are slightly higher than those of M2,
indicating that an appropriate VKT allocation weight can slightly
improve the accuracy of the spatial allocation of HDT emissions
based on the road density. M4-3 and M4-4 are the respective
optimization results of M4-1 and M4-2 obtained by Ye’s
method32 (see Methods). The spatial correlations after optimiza-
tion are not significantly improved compared to those before
optimization. The reasons for the low correlation between the
road-density-based proxy and real-world driving were further
analysed by calculating the ratio between the HDT emissions for
each 0.01° grid from this study and that from the M4-1 method
(Fig. 3b). One reason is that the proxy cannot reflect HDT activity
with various influences in the real world. The ratio of the grids
around cities and ports with more freight demand is usually

greater than 1, and the ratio of some grids is greater than 10 (e.g.,
Tianjin port, see Fig. 3c). We further checked these grids and
found that they are cargo terminals. In these grids, HDT idling or
low speed travel will continue over a longer time and cause more
emissions in a small area33. Ratios smaller than 1 appear in the
regions with high road density, which are large cities such as
Beijing, Tianjin and Shijiazhuang. Because these cities have a
policy for long-haul truck detours, the road-density-based
allocation scheme may overestimate the emissions in these
regions (Fig. 3c). The other reason is that the aggregation method
does not consider the variance in the busyness level for the same
road type. For example, Fig. 3d shows that the two highways
(Tanggang and Qinbin highways) have significantly different
ratios, which indicates that due to the higher HDT traffic volume,
the emissions of Qinbin highway in this study are significantly
higher than that of Tanggang highway; however, in the M4-1
method, the VKT allocated values in these two highways are
similar, and the emissions are not obviously different. Overall,
our results show that even with the same total HDT emissions,
the distribution on some primary cargo routes/terminals can be
underestimated by 2–10 times in proxy-based emission inven-
tories, while emissions on other routes are overestimated.

Proxies for emission allocation. Compared to big-data analysis,
the top-down approach has the advantage of being easy to apply.
Therefore, we try to extract more general rules to provide para-
meters to improve the top-down emission inventory. For spatial
allocation, our analysis above shows that no simple allocation
scheme has a better correlation with big-data results. Therefore,
we do not have any recommended scheme for spatial allocation.
However, considering the importance of the time pattern in
emission inventory studies34, we update the proxies of temporal
allocation for Beijing and the BTH region (Fig. 4). Due to the
sharp decline in HDT emissions during the Chinese Lunar New
Year festival, the values of the allocated proxies in January and
February are generally lower than in other months. The ratio of
weekdays versus weekends is approximately 1:0.8, which is
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significantly smaller than the results of the California study35.
Thursday and Friday are the busiest days, while Sunday is the
lowest for freight transportation in Beijing. In Beijing, midnight is
the busiest hour based on the hourly allocation, and the values
during the night-time hours (23:00–6:00+1) of 2018 are sig-
nificantly higher than those in 2017 due to the truck control
policy applied during the daytime.

Evaluation of the Beijing LEZ policy. Here, the Beijing low
emission zone (LEZ) policy was evaluated using day-to-day HDT
data. Beijing’s LEZ policy has been implemented since 21st Sept.
2017. In Beijing’s LEZ policy, HDTs are divided into three cate-
gories: completely banned HDTs, which cannot enter the LEZ
(the area within the 6th Ring Road in Beijing) at all throughout
the day, including pre-China I, China I/II HDTs and China III
non-local HDTs; partially banned HDTs, which can enter the
LEZ only during the period from 23:00 to 06:00+1, including
China III local HDTs and China IV/V non-local HDTs; and non-
banned HDTs, which are free to enter the LEZ, including only
Beijing’s locally registered HDTs, which can meet the China IV/V
standards.

According to the policy requirements, most of the China III
HDTs are banned. Therefore, the China III HDT emissions in
Beijing dropped rapidly after the implementation of the LEZ
(Fig. 5a, b). Similarly, all non-local HDTs are subject to LEZ
controls; thus, the emissions of non-local HDTs have also been
rapidly reduced after the implementation of the LEZ, and the
daily emissions thereafter are lower than the levels before the
implementation of the policy. This study also analysed the time
series of HDT emissions of another city near Beijing but found no
similar emissions changes during the same period (e.g., Fig. 1b).

Therefore, we believe that the changes in HDT emissions are
unique to Beijing and are likely to be attributed to Beijing’s LEZ.

We compared HDT emissions in whole Beijing in the same
months before (1st Jan. to 20th Sept. 2017) and after (1st Jan. to
20th Sept. 2018) the implementation of LEZ. The NOx emissions
in the period are 6996.11 Mg in 2017 and 6729.83Mg in 2018,
and the PM2.5 emissions in the period are 179.09Mg in 2017 and
142.09 Mg in 2018. The smaller NOx emission changes (4% of
decreases) are mainly attributed that the LEZ indirectly led to the
increase in emissions of China V local HDTs. The NOx emissions
of China V HDTs increased from 959.48Mg in 2017 to 2980.02
Mg in 2018, an increase of 3.11 times. The PM2.5 emissions of
China V HDTs increased from 6.81Mg in 2017 to 18.40Mg in
2018, an increase of 2.7 times. The local China V HDTs are the
main contributors to the increased emissions in all China V
HDTs, with a share of approximately 85% for both pollutants
(NOx and PM2.5). The statistical data show that the number of
newly registered HDTs in Beijing in 2018 was 2.7 times higher
than the average of the past five years. In contrast, the numbers of
new HDTs in Tianjin and Hebei in 2018 were similar to those of
the past 5 years. This result occurs because Beijing implemented
the China V emission standard for HDTs before 201723, while
Tianjin and Hebei did not. Thus, by purchasing new HDTs in
Beijing, a freight company can have more non-banned HDTs. In
fact, the transportation demand did not decrease with the
increase in truck control. Beijing’s GDP and road freight volume
did not change significantly from 2017 to 2018. According to the
data from this study, the total VKT of all HDTs in Beijing in 2017
was 3338.79 million km, and in 2018, it was 3594.43 million km, a
gap of only 7%. Thus, it can be considered that the demand for
HDT use in Beijing did not change significantly in those 2 years.
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The LEZ prevents a certain group of HDTs from entering urban
areas, and the most likely result is that non-banned HDTs fulfil
the demand formerly provided by the banned HDTs. Overall, the
policy resulted in lower PM2.5 emissions in Beijing but not lower
NOx emissions. The NOx emission factors highly rely on the
correct usage of a selective catalyst reduction (SCR) system.
Without further reports on real-world SCR use cases, we did
not reduce the NOx emission factor for China V HDTs from
China IV36.

More specifically, LEZ aims to control HDT emissions inside
the Beijing’s 6th Ring Road (Fig. 6a). Thus, the NOx emissions
inside the 6th Ring Road from non-local HDTs decreased from
2128.58Mg year−1 in 2017 to 1628.11Mg year−1 in 2018, a
decrease of 500.47Mg. However, the local HDT emissions
increased to fill the capacity gaps left by the non-local HDTs
(Fig. 6b). The NOx emissions inside the 6th Ring Road from local
HDTs increased from 2288.40Mg year−1 in 2017 to 2768.77Mg
year−1 in 2018, an increase of 480.37 Mg. In summary, HDT NOx

emissions inside the 6th Ring Road (including the 6th Ring Road
itself) are 4416.98Mg year−1 in 2017 and 4396.88Mg year−1 in
2018, the decrease of only 0.5%. PM2.5 emissions inside the 6th
Ring Road (including the 6th Ring Road itself) are 110.72Mg year−1

in 2017 and 86.39 Mg year−1 in 2018, which decreased by 22%.
According to the change of local/non-local HDT emissions, up to
96% emissions reduction benefits of non-local HDTs are offset by
the increase in the emissions of local HDTs.

For the intercity HDT emissions, the change in the spatial
distribution is due to HDTs detouring around the city due to the
LEZ (Fig. 6c). The original route goes through the 6th Ring Road

of Beijing, which is short and usually uncongested. However, due
to the LEZ restrictions, HDT drivers chose to detour through the
three cities west and south of Beijing, causing the NOx emissions
along the corresponding routes to increase significantly between
the two years (Fig. 6d). The net changes in the alternative route
and the original route were 857.72Mg and −530.07Mg,
respectively. Overall, 79% of the reduction in HDT emissions
from the original route occurred in Beijing, while an increase in
HDT emissions on the alternative route occurred in the other
three cities (Fig. 6e). The alternative routes with increased HDT
emissions were located southwest of Beijing. Historical observa-
tions show that the more severe haze in Beijing mostly occurs
under meteorological conditions dominated by a southwest
wind37–39. Therefore, although the LEZ shifted the HDT
emissions far from urban areas, the detours might lead to more
NOx emissions occurring in an adverse position and impacting
Beijing’s air quality standards. Thus, the final air pollution impact
of LEZ on Beijing’s primary air pollutant dispersion and
secondary pollutant formation is complicated and influenced by
more than inner-city HDT emissions.

Discussion
The current top-down emission inventories are mainly driven by
statistical data, which creates challenges in improving the reso-
lution, and input data are usually delayed by several months.
Here, we develop a big-data-driven approach and demonstrate
both the capability of the method and the advantages of the high-
resolution truck trajectory big data. We estimate the day-to-day
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HDT emission in the BTH region for 2017 and 2018; our results
suggest the importance of including non-local HDT emissions in
local emission inventories. Both the total emissions amount and
their distribution are better estimated with higher resolution
under this approach. Temporal profiles for monthly, daily and
hourly emissions allocation were summarized for application in a
top-down emission inventory. However, for spatial allocation, our
analysis indicates that no simple allocation scheme has good
correlation with the big-data results. The TrackATruck system
can tolerate different BDS or GPS data sampling frequencies
using the similarity calculation module.

This study offers novel insights into local policy evaluation and
suggests the need for regional joint control strategies. In Beijing,
the LEZ promotes the updating of HDT fleets within the
restricted area, but the demand for HDTs has not changed. Thus,
approximately 96% of the emission reduction benefit from
restricted HDTs was offset by an increase in unrestricted vehicles
in the restricted area. From a regional perspective, it is difficult to
achieve a win–win result on emission control through this
restriction for local and surrounding areas, as the long-haul HDT
detour caused by the LEZ may increase HDT emissions in
neighbouring cities. In Beijing, those neighbouring cities are the
upwind regions when severe air pollution occurs. Thus, when
considering the long-range transport of air pollutants, the overall
air quality benefit is still in doubt. In addition, this seesaw effect
creates a new problem of responsibility allocation for HDT
emissions control among multiple cities.

Environmental research aimed at protecting public health
needs to reflect the high concentration of pollutants in hot spots
rather than just the long-term and large-scale average. Schools,
hospitals, transportation hubs and so on are more vulnerable to
dynamic traffic emissions, but traditional environmental statistics
are clearly not enough to protect the population in these areas.
Moreover, the coverage density of traffic and environmental
monitoring networks is not sufficient to indicate the impact of
traffic emissions on each sensitive area. Therefore, it is necessary
to introduce traffic big data to build a fine-grained picture of
dynamic emissions. However, no large-scale system collects
vehicle position data every second, although it is the most suitable
data source for emission simulation, so there is a clear need for a
bridge method worldwide. Our study establishes a bridge from
low-precision but full-size vehicle travel big data to fine emis-
sions. TrackATruck can be promoted in countries and regions
where information-related technology and vehicle monitoring
systems have been developed. For example, large-scale imple-
mentation of vehicle navigation systems run by third parties or
manufacturers and other monitoring platforms could be pre-
requisites for enabling application of this model to a region. These
prerequisites exist in many countries, including the United States,
Europe, Japan, South Korea, etc. Maintaining personal privacy in
this type of data collection is a major cause of public concern, but
this problem is not insurmountable, as the current technology is
able to erase personal information in the process of collecting
data or providing data to researchers. The key is whether the
third-party platforms, vehicle manufacturers, or freight compa-
nies that own the data are willing to do such additional work, as it
is not profitable. However, if incentives or lobbying strategies
promoting environmental public welfare can be used to motivate
companies, it is possible to obtain vehicle travel big data with
personal information erased. This is exactly the process in which
this research is realized. If these big data can be used and com-
bined with the TrackATruck method, it can provide more
dynamic vehicle emissions data.

Our study also demonstrates how large the difference can be in
vehicle emissions estimation when using different approaches.
The difference of regional HDT emissions is significant between

the several studies. For county-level emissions, the difference in
individual counties by different methods can reach more than 15
times. Even if total amounts were set the same, the top-down
methods also underestimated HDT emission on primary cargo
routes/terminals by a multiple of 2–10 and overestimated those
on other routes. The day-to-day emissions revealed that certain
special events, including new control policies and holiday effects,
may cause dramatic changes in HDT emissions. Even for regions
that cannot implement the same method for various reasons, this
result is still useful as it can help them estimate the uncertainty of
air pollution sources. In addition, more than 200 cities globally
have implemented vehicle traffic control to varying degrees22.
The analysis of Beijing’s LEZ in this study can be a reference to
formulate more comprehensive vehicle emission control mea-
sures in these places.

This study has some uncertainties because of the imperfect
input data. First, the BDS big data do not cover 100% of all HDTs
at all times. Based on our QA/QC analysis (see Methods), there is
still a 30% chance of HDT data loss due to vehicles not being
equipped with the BDS or incorrect data transfer. Even for those
trucks in the database, shielded BDS signals in mountainous areas
and specific fields can lead to the underestimation of HDT
emissions in these areas. In addition, the emission factors, which
were not improved in this study, still have some uncertainty.

Methods
Data description and QA/QC. The scope of this study is HDT emissions in the
BTH region of China. The population distribution data are from the LandScan
database. The HDTs defined in this study refer to trucks with a gross weight of
more than 12 tons. The GDP, freight volume and new HDT registration of Beijing
are from the database of the National Bureau of Statistics of China (NBSC). The
source of the BDS data for this study is the Nationwide Road Freight Vehicles
Public Supervision and Service platform of SINOIOV (SINOIOV platform). HDT
BDS data in the BTH region on the SINOIOV platform were collected, and the
time range was 1st Jan. in 2017 to 31st Dec. in 2018. The main function of the
SINOIOV platform is to support the digital management of road freight trans-
portation in China. Currently, nearly 6 million trucks have been connected to the
SINOIOV platform, covering 96% of medium/HDTs used in the Chinese freight
market. However, some trucks did not report data for various reasons, e.g., policy
controls, old truck retirement and not reported to the government. Therefore, this
study further checked the coverage of HDTs by performing a QA/QC analysis on
the raw data. We counted the number of HDTs collected from the SINOIOV
platform and compared this number with the HDT registration data in NBSC. The
number of HDTs from SINOIOV versus that from the government database is
approximately 0.7:1, the difference stemming from the features of these two
databases. For the SINOIOV database, only active trucks were registered and could
report data. For the government database, both active and rarely used trucks were
included. Therefore, we believe 70% is the real ratio of HDTs registered in the
government databases that are still active. More than 80% of the trajectories had
BDS sampling frequencies higher than 1/30 Hz. Less than 0.01% of HDTs had
missing information in terms of the registration place and year, making it
impossible to judge their emissions category. Therefore, the related trajectories of
these trucks were excluded from the calculation, but they account for less than
0.01% of the total trajectory number.

TrackATruck approach for HDT emissions. TrackATruck is a bottom-up
approach that considers the individual differences in trucks and constructs a high-
resolution emission inventory. Previous studies have shown that the instantaneous
emission rate is greatly influenced by the instantaneous driving state, such as the
driving speed, acceleration, and vehicle specific power (VSP). Based on the driving
speed, acceleration, and VSP, the US EPA MOVES model40 divides the stable
driving states of a vehicle into 23 operating modes (named Opmodes in the fol-
lowing text). The Opmodes in TrackATruck were defined in the same way as in the
US EPA MOVES model. Thus, TrackATruck must build a link from low-frequency
BDS data (1/30 Hz) to the estimated Opmodes, which are commonly calculated by
1-Hz GPS data41,42. The framework used in TrackATruck is shown in Fig. 7.

In the first step, several continuous BDS signals of HDTs were treated as a
trajectory of 300–400 s. According to our analysis of the BDS sampling frequency,
the trajectory contained approximately 10 BDS signals with a sampling frequency
of 1/30 Hz. Each trajectory from the BDS signals of an HDT (referred to as the
1/30-Hz trajectory in the following text) must start from the last BDS record of the
previous trajectory.

In the second step, the model estimates the Opmodes distribution of the 1/30-
trajectory based on the similarity between the 1/30-Hz trajectory and 1-Hz HDT
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GPS trajectory (called the 1-Hz trajectory in the following text) dataset in the
simulated Opmodes and emissions (SOME) model. The SOME model has a
database with 1-Hz GPS data, which were derived from the database given in our
previous research43–46. In this database, multiple 1-Hz trajectories were selected
based on the speed distribution of the target trajectories of the 1/30-Hz trajectory.
The condition for selection is that the mean speed of 1-Hz trajectory full-in the
upper and lower limits of the 95% confidence interval of the speed distribution of
the 1/30-Hz trajectory. Then, the SOME model uses the following equation to
calculate the distribution of Opmodes for a 1/30-Hz trajectory based on the
selected 1-Hz trajectories:

Fm;1

..

.

Fm;23

2
664

3
775 ¼ 1

n

f1;1 � � � f1;n

..

. . .
. ..

.

f23;1 � � � f23;n

2
664

3
775

Sm;1

..

.

Sm;n

2
664

3
775 ð1Þ

where m is a 1/30-Hz trajectory. Fm,1 to Fm,23 are the simulated frequencies of 23
Opmodes of m. The matrix of f1 to f23 includes the Opmode frequencies of the
matched n 1-Hz trajectories which. Sm,1 to Sm,n are the similarity weights of the
fitted n 1-Hz trajectories for the 1/30-Hz trajectory m. The following logic equation
was used to calculate the similarity weight:

Sm;n ¼

νmax�μmin
μmax�μmin

if μmin 2 νmin;1½ �

μmax�νmin
μmax�μmin

if μmax 2 �1; νmax½ �

νmax�νmin
μmax�μmin

if Rν � Rμ

μmax�μmin
νmax�νmin

if Rμ � Rν

0 if Rν 6� Rμ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2Þ

where μmax and μmin are the upper and lower limits of the 95% confidence interval
of the speed distribution of the 1/30-Hz trajectory m.νmax and νmin are the upper
and lower limits of the 95% confidence interval of the speed distribution of the 1-
Hz trajectory n. These limits were calculated by the mean and standard deviation of

the speed along the trajectory. Rμ is the set of μmax and μmin. Rν is the set of νmax

and νmin. The unit for all speed values is m s−1.
In the third step, the model calculates the emission rates of each trajectory based

on the distribution of the Opmodes and the technical parameters of the HDT.

Em;j ¼ tm ´
X23
i¼1

eri;j ´BINm;i

� �
ð3Þ

BINm;i ¼
Fm;iP23
i¼1 Fm;i

ð4Þ
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Fig. 7 The TrackATruck framework for the HDT emission calculation used in this study. Step 1 is to convert HDT BDS data to the trajectories. One
trajectory contains multiple continuous BDS data. Step 2 is to calculate the distribution of the operating modes for each trajectory, and Step 3 is to calculate
the emissions for each trajectory. The simulated operating modes and emissions model is used to simulate the distribution of the operating modes by
speed distribution of a trajectory and calculate emissions based on the emission rates of the operating modes. Step 4 is to aggregate that HDT emissions
by all HDT trajectories, combining with various maps, e.g. provincial border, to the temporal-spatial characteristics.

Table 1 Emission factors of all HDT categories.

Fuel Emission standard Emission factor (g km−1)

CO HC NOx PM2.5

Diesel Pre-China I 13.60 4.08 13.82 1.32
China I 5.79 0.90 9.59 0.62
China II 3.08 0.52 7.93 0.50
China III 2.79 0.25 7.93 0.24
China IV 2.20 0.13 5.55 0.14
China V 2.20 0.13 4.72 0.03

Gasoline Pre-China I 123.13 6.75 5.81 0.29
China I 75.79 6.76 2.98 0.16
China II 23.32 3.00 2.90 0.07
China III 10.71 1.35 1.71 0.04
China IV 4.50 0.55 0.91 0.04
China V 4.50 0.55 0.68 0.04

Others Pre-China I 18.70 3.84 21.16 0.29
China I 15.14 3.20 16.80 0.16
China II 12.11 2.86 13.06 0.07
China III 6.36 1.72 9.32 0.04
China IV 4.67 1.19 6.52 0.04
China V 4.57 1.19 3.73 0.04

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16579-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2801 | https://doi.org/10.1038/s41467-020-16579-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


where Em,j is the emissions of the 1/30-Hz trajectory m and pollutant j. tm is the
duration of the 1/30-Hz trajectory m, the unit is s. eri,j is the emission rate of
Opmode i and pollutant j, the unit is g s−1. BINm,j is the normalized frequency of
the simulated Opmode.

The emission rates of Opmodes for all HDT categories are estimated based on
the HDT emission factors from the emission inventory (EI) guidebook by the
Ministry of Ecology and Environment of the People’s Republic of China47 and the
portable emission measurement system (PEMS) data of the on-road truck
examined in our previous works45,46. The EI guidebook provides the recommended
HDT emission factors for guiding HDT emission inventories in China (Table 1).
To map the HDT emission factors to the emission rates of MOVES’s Opmodes, we
established the Opmode emission rates for a benchmark HDT model based on our
PEMS data. Next, we estimated the Opmode emission rates of other HDT models
based on the relationship of emission factors between the benchmark and other
HDT models (Table 1).

The fourth step uses statistics for the HDT emissions based on the emissions of
the HDT trajectories and map information to generate time series and maps of
HDT emissions. For each HDT trajectory, we allocate the emissions of a trajectory
to grids by the time duration.

Model validation. This study validates the second and third steps in the Track-
ATruck model with real-world measurements from five HDTs. We use the SOME
model to calculate the simulated Opmode distribution of the test trajectories and
then calculate the pollutant emissions of the trajectory by the actual and simulated
Opmode distributions, respectively. Figure 8 shows the estimated emission dis-

tributions in the test data. For NOx and PM2.5, the calculated emissions of the two
Opmodes are better correlated, and Pearson’s correlations are 0.93 and 0.87,
respectively. The slopes of the linear fits of the two results are 1.04 (NOx) and 0.95
(PM2.5), indicating that the average ratio of the two results is close to 1:1. The mean
absolute percentage error (MAPE) of the two results is 9.47% (NOx) and 16.75%
(PM2.5), indicating that the relative differences between the two results are non-
significant. Overall, there are small differences between the simulated Opmodes
and the actual Opmodes when calculating the emissions of an HDT trajectory,
which indicates that the SOME model can better estimate the emissions under the
Opmode-based model based on the speed distribution of the HDT trajectory.

Test of different aggregated proxies for spatial allocation. To compare our
high-resolution approach with top-down methods, this study allocates the same
total emissions into 0.01˚ grids by different proxy schemes. The proxy descriptions
for these aggregation methods are shown in Table 2. First, for each scheme, we
calculated the proxy’s value for each grid, e.g., the population in a 0.01° grid.
Second, for each scheme, we converted these values into the allocation weights for
each grid based on the total proxy value in the BTH region. Third, we allocated the
total HDT emissions to 0.01˚ grids based on the allocation weights for each
scheme. Finally, we calculated Pearson’s correlation of the 0.01˚ HDT emissions
between the aggregated proxy methods and the BDS big-data method of this study.
The proxy descriptions for these aggregation methods are shown in Table 2.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

x

Fig. 8 The correlations of the estimated NOx and PM2.5 emissions of HDT trajectories between the observed and simulated operating modes. Each
point represents that a HDT trajectory. The slops of the dashed lines are 1. *Source data are provided as a Source Data file.

Table 2 Descriptions of the seven HDT emissions allocation methods.

Method Proxy scheme

M1 Density of population
M2 Density of road network (road length for each type of road in each grid)
M3a Density of population and road network:

ei;g ¼ Ei ´

rgPn

g¼1
rg

´
pgPn

g¼1
pg

Pn

g¼1

rgPn

g¼1
rg

´
pgPn

g¼1
pg

 !
M4-117 Density of road network, multiplied by VKT allocation weights: Highways (52%), National roads (29%), Provincial roads (11%), Other roads (8%)
M4-216 Density of road network, multiplied by VKT allocation weights: Highways (39%), National roads (25%), Provincial roads (19%), Other roads (17%)
M4-3b Density of road network, multiplied by VKT allocation weights: Highways (58%), National roads (19%), Provincial roads (11%), Other roads (12%)
M4-4 Density of road network, multiplied by VKT allocation weights: Highways (52%), National roads (18%), Provincial roads (19%), Other roads (11%)

a ei,g is the 0.01˚ gridded HDT emissions for pollutant i and grid g. Ei is the total amount of HDT emissions for pollutant i in the BTH region. pg is the number of populations in grid g. rg is the length of the
road in grid g.
b The VKT allocation weights of M4-3 and M4-4 are the optimized results based on M4-1 and M4-2 by machine learning32.
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Data availability
The source data underlying Figs. 1a–b, 1a, 3a, 4a–f, 5a–d, 6e and 8 are provided as a
source data file.xlsx. The Opmode emission rates, test HDT information in model
validation, GDP and freight volume in Beijing, and the number of new HDTs in the BTH
region are also provided in the source data file.xlsx. The source data file.xlsx is available
online through the permanent repository under an Apache license 2.0 (https://github.
com/fanyuandeng/TrackATruck). The GDP, freight volume and new HDT registration
in Beijing and BTH region are also available online through NBSC website (http://www.
stats.gov.cn/english). The population data used in this study is available on the LandScan
website (https://landscan.ornl.gov/landscan-datasets). The road network used in this
study is provided by the National Platform for Common Geospatial Information Services
(https://www.tianditu.gov.cn), which is available after applying and obtaining
permission.

Code availability
The code of TrackATruck model validation and corresponding test data are available
online through the permanent repository under an Apache license 2.0 (https://github.
com/fanyuandeng/TrackATruck). The R package of optimized method by Ye32 is
available on CRAN of R project (https://cran.r-project.org/web/packages/Rsolnp/index.
html)48. Other R packages are also mentioned in the permanent repository.
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