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The impact of climate and antigenic evolution on
seasonal influenza virus epidemics in Australia
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Although seasonal influenza viruses circulate globally, prevention and treatment occur at the

level of regions, cities, and communities. At these scales, the timing, duration and magnitude

of epidemics vary substantially, but the underlying causes of this variation are poorly

understood. Here, based on analyses of a 15-year city-level dataset of 18,250 laboratory-

confirmed and antigenically-characterised influenza virus infections from Australia, we

investigate the effects of previously hypothesised environmental and virological drivers of

influenza epidemics. We find that anomalous fluctuations in temperature and humidity do not

predict local epidemic onset timings. We also find that virus antigenic change has no con-

sistent effect on epidemic size. In contrast, epidemic onset time and heterosubtypic com-

petition have substantial effects on epidemic size and composition. Our findings suggest that

the relationship between influenza population immunity and epidemiology is more complex

than previously supposed and that the strong influence of short-term processes may hinder

long-term epidemiological forecasts.
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Seasonal influenza virus epidemics are a substantial source of
disease burden and result in ~650,000 deaths each year1.
Four co-circulating subtypes/lineages of influenza viruses

currently cause disease in humans: A/H3N2 (A/H3), A/H1N1
(currently A/H1pdm09, previously A/H1seasonal (A/H1sea)), B/
Victoria/2/87-like (B/Vic) and B/Yamagata/16/88-like (B/Yam)
viruses. The timing, duration and size of local influenza virus
epidemics can vary substantially from year to year2,3, but the
underlying causes of this variation are poorly understood. Better
understanding of the factors that govern epidemic onset and
magnitude could allow for accurate and timely epidemiological
forecasts4 and more efficient allocation of public health
resources5.

In temperate regions of the Northern and Southern Hemi-
spheres, influenza virus activity is most common in winter
months, but the mechanistic basis of this seasonality remains
unclear. Experimental studies demonstrated that reductions in
temperature and absolute humidity enhance viral stability and
aerosol transmission6–8. However, epidemics in tropical and
subtropical regions often occur during periods of high tempera-
ture and humidity9.

Climatic fluctuations have been implicated as triggers for
influenza epidemics in temperate regions. A study of state-level
epidemiological data from the United States found that influenza
epidemics sometimes follow 2-week periods of anomalously low
absolute humidity10. Subsequent studies of epidemiological
activity have found similar results using prefecture-level data
from Japan11, city-level data from the New York Metropolitan
Area12 and region-level data from France13.

Influenza virus evolutionary dynamics are another theorised
driver of influenza virus epidemiology. Within each type and
subtype of seasonal influenza virus, new major antigenic variants
arise every 3–8 years14,15. New variants partially escape the
immunity induced by prior infections and vaccinations, rendering
a higher fraction of individuals susceptible to infection. Epide-
miological theory predicts that epidemics caused by a new anti-
genic variant should therefore be larger than epidemics of
previously circulated variants16,17.

Antigenic change could also produce earlier and more spatio-
temporally synchronous epidemics. When more individuals are
susceptible, fewer transmission chains go stochastically extinct, so
each new introduction of a virus into a population has a higher
chance of causing an epidemic. Consistent with this, studies have
suggested that antigenic change is associated with earlier epi-
demics in Israel18, and with more synchronous epidemics among
cities in the United States19–21, Japan22 and Australia23.

Studies of environmental and virological drivers of influenza
virus epidemiology, including the studies referenced above, have
been limited by three factors: (1) the reliance on influenza-like
illness (ILI) data, (2) the aggregation of ILI or virologically con-
firmed data over large geographical scales (state/province/coun-
try) and (3) where virologically confirmed data are available, the
use of data without subtype and antigenic variant-level resolution.

ILI data frequently include a wide variety of respiratory
infections24, and limited laboratory characterisation obscures
influenza virus type/subtype- and antigenic variant-specific pat-
terns. These patterns become superimposed upon each other due
to aggregation of ILI or virologically confirmed data to ecological
scales (state/province/country) that sum over multiple local epi-
demics (county/city/town), which can individually vary sub-
stantially in timing, magnitude and influenza virus composition.
Altogether, these sources of obfuscation make it difficult to dis-
entangle local-level, antigenic variant-specific patterns, and cri-
tically investigate the impact of virus antigenic change.

Here, we use a 15-year data set of 18,250 typed, subtyped and
antigenically characterised seasonal influenza viruses from the

five most populous cities in Australia to investigate the impact of
environmental and virological factors on the timing and magni-
tude of city-level influenza virus epidemics. We find that climatic
fluctuations and virus antigenic change have no consistent effects
on epidemic onset timing or size, while epidemic onset timing
itself and heterosubtypic competition have substantial impacts on
epidemic size and virus subtype composition. The lack of con-
sistent effect of easily measured climatic and virus antigenic
properties, and seeming dominance of noisy short-term trans-
mission processes likely diminishes the feasibility of meaningful
long-term influenza epidemic forecasting at local scales.

Results
Australia laboratory-confirmed influenza. We aggregated
18,250 laboratory-confirmed and antigenically characterised cases
of seasonal influenza viruses from 2000 to 2015 by 2-week (14-
day) periods, creating a set of subtype- and antigenic variant-
specific time series for the five most populous cities in Australia:
Sydney (~5.5 million people), Melbourne (~5.0 million), Brisbane
(~2.4 million people), Perth (~2.3 million) and Adelaide (~1.4
million) (Fig. 1). We excluded all virus cases from the 2009 season
from all analyses because the 2009 A/H1N1 virus pandemic was
atypical compared with seasonal epidemics and likely to be driven
by different processes, affecting both epidemic dynamics and data
collection of A/H1pdm09, as well as the other subtypes. Using a
Poisson count detection method (see ‘Methods’), we identified
periods of sustained, above-baseline levels of epidemic activity for
each antigenic variant in each city. To facilitate comparisons
among cities, we calculated the laboratory-confirmed incidence
per 106 individuals using the annual estimated resident popula-
tion values of each city25.

Epidemic magnitude and the most common virus subtype
varied substantially among cities (Fig. 1). For example, during the
2002 season, A/H3 and B/Vic viruses were the most common
strains in both Brisbane and Sydney. Absolute A/H3 virus
incidence in Brisbane was much higher than in Sydney (186 vs
38.0 cases per 106 individuals), as was absolute B/Vic incidence
(40.3 vs 22.7 cases per 106 individuals). But B/Vic had a
substantially higher relative incidence in Sydney than in Brisbane
(37% of all cases, vs only 18%). In some seasons, a virus antigenic
variant caused a major epidemic in one or more cities, but failed
to produce any observable above-baseline activity in another city.
For example, in 2006, the A/Wisconsin/67/2005 (H3N2) virus
variant caused epidemics in Brisbane, Perth and Melbourne,
while above-baseline levels of activity were completely absent in
Adelaide.

Effect of climatic factors. Epidemic onset timing varied sub-
stantially within and among cities and virus subtypes (Supple-
mentary Fig. 1). Previously, Shaman et al.10 showed that the 2-
week period preceding the onset of state-level ILI epidemics in the
United States was often marked by unusually low temperatures
(T) or absolute humidities (AH). Fluctuations in these climatic
factors from the historic averages expected for that specific day of
the year (T′ and AH′, respectively) were anomalously large and
negative when compared against a bootstrapped distribution of
random samples from the historical records of observed daily
climatic fluctuations recorded over wintertime (defined as 1
October–28 February). Following the same bootstrap-sampling
method (see ‘Methods’) and aggregating epidemics across all five
Australian cities, there were no statistically significant differences
(all P > 0.05, see Supplementary Table 1) between the boot-
strapped distribution of random samples of typical wintertime
fluctuations (1 April–31 August for Australia) and the observed
fluctuations in anomalous temperature and absolute humidity
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over the 2-, 4- and 6-week periods immediately prior to the onset
of the earliest epidemics from 2000 to 2015 (excluding 2009, 15
years × 5 cities= 75 epidemics in total) (Fig. 2). Individual city-
by-city analyses (Supplementary Fig. 2 and Supplementary
Table 2) showed that there was substantial local variation but no
consistent patterns. Epidemic onset times coincided with both
high and low temperature and absolute humidity periods, and
there were no statistically significant patterns in four of the five
cities.

Even if anomalous fluctuations in temperature and humidity
do not necessarily affect epidemic onset, climatic factors could
have an impact on virus transmission7 and overall epidemic size:
for example, influenza mortality in New York Metropolitan Area
was shown to be negatively associated with temperature and
humidity12. Overall, epidemic incidence should depend strongly
on the initial exponential growth phase of the epidemic, where
transmission may be facilitated by favourable climatic conditions.
We therefore investigated the impact of mean temperature and
mean absolute humidity during each epidemic, as well as just the
period from epidemic onset to the peak, on that epidemic’s size.
For both time periods considered, epidemic incidence was not
associated with mean absolute humidity (Supplementary Fig. 3).
We found that epidemic incidence was weakly negatively
associated with the mean temperature during the epidemic and
the period from start to the peak, but this relationship appears to
be primarily driven by two instances, where small epidemics
occurred during the early and warmer part of the season; on
balance, the highly variable epidemic sizes observed over a range
of climatic conditions, suggest that climatic factors have limited
and noisy effects (Supplementary Fig. 3).

A recent study by Geoghegan et al.23 estimated epidemic onset
timings for influenza A virus epidemics in Australian postcodes
for the seasons from 2007 to 2016. Despite the lack of subtype-
level resolution, their data set is substantially larger (450,000
entries) than the one used here, and offers an opportunity to
compare findings. We repeated our anomalous temperature and

absolute humidity analyses on the Geoghegan et al.23 data set. As
with our original data set, there were no consistent statistically
significant relationships between climate anomalies and epidemic
onset (Supplementary Discussion, Supplementary Tables 3, 4,
Supplementary Figs. 4 and 5).

Other climatic factors have been proposed as drivers of
influenza dynamics, notably relative humidity and rainfall6,9. We
repeated the above analyses for relative humidity and rainfall.
There were some city-level associations, but no consistent pattern
and no pattern when aggregating across cities. Epidemic onset
was not associated with statistically significant fluctuations in
anomalous relative humidity and rainfall.

Effect of antigenic change. We next examined the effect of
antigenic evolution on epidemic dynamics. Between 2000 and
2015, 7A/H3, 3A/H1sea, 1A/H1pdm09, 3 B/Vic and 5 B/Yam
virus antigenic variants circulated in Australia. All A/H1pdm09
virus epidemics from 2009 to 2015 were excluded for this set of
analyses for two reasons. First, we could not accurately estimate
the size of the 2009 pandemic. Second, there was no subsequent,
detectable antigenic change observed for A/H1pdm09 viruses
during the study period. We normalised epidemic sizes (see
‘Methods') to enable comparisons between cities. Stratifying by
subtype/lineage, we compared the size of the first epidemic caused
by an antigenic variant against the sizes of epidemics of the same
antigenic variant in subsequent years (Wilcoxon two-sample test,
Fig. 3). Contrary to the predictions of previous theoretical
studies16,17, newly emerged antigenic variants caused epidemics,
both larger and smaller than city-specific mean epidemic sizes,
and there was no evidence of a consistent effect of antigenic
change on epidemic size.

We also compared the timing of the first epidemic caused by an
antigenic variant against the timings of subsequent epidemics
(Supplementary Fig. 6) to test the hypothesis that new variants
cause earlier epidemics. The range of onset timings was very
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Fig. 1 Number of laboratory-confirmed seasonal influenza virus infections from 2000 to 2015 for the five largest cities in Australia. Cases are
aggregated by 2-week periods, stratified by city and coloured by subtype/lineage.
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broad, with epidemics starting from very early to late into the
season, and there were no statistically significant differences in
epidemic onset timing between new and extant variant epidemics.

To investigate the impact of antigenic change on the
spatiotemporal synchrony of epidemics, we examined the timing
of epidemic activity across cities for years when a new major
antigenic variant circulated in all five cities. New antigenic
variants often failed to initiate epidemics across all five cities in a
given year. We compared the synchrony of epidemics (defined as
the reciprocal of the variance in epidemic onset timings) in the
season in which an antigenic variant first emerges to the
synchrony in subsequent seasons. There were no statistically
significant differences in epidemic synchrony associated with
antigenic novelty (Supplementary Fig. 7).

To check the robustness of this result, we repeated these
analyses using estimated-onset timings from Geoghegan et al.23.
There was again no discernible effect of antigenic change on the
timing or synchrony of epidemics (Supplementary Discussion).

Effect of prior immunity. After an antigenic variant causes an
epidemic in a city for the first time, the accumulated population
immunity to that variant should lead to smaller subsequent epi-
demics, and eventually render further epidemics of that variant
less likely. For each epidemic caused by a given antigenic variant,
we investigated the relationship between that epidemic’s size and
the cumulative number of cases caused by that antigenic variant
in preceding seasons. To account for differences in population

size and surveillance intensity among cities, we normalised epi-
demic and cumulative case counts by the city-specific mean
epidemic size. Antigenic variants that emerged prior to the start
of the study period, such as A/Moscow/10/99 (A/H3) and A/New
Caledonia/20/99 (A/H1sea) and all A/H1pdm09 epidemics from
2009 to 2015 were excluded from this analysis, since it was not
possible to calculate cumulative case counts for them. Specific B/
Yam antigenic variants rarely caused more than one epidemic in a
given city, but specific antigenic variants of A/H3 and B/Vic
viruses caused repeated epidemics in the same city. For A/H3 and
B/Vic viruses, epidemic size and cumulative prior incidence were
not correlated (Pearson’s correlation test, Fig. 4).

The accumulation of population immunity should also reduce
the probability of successful epidemic initiation, making epi-
demics, regardless of size, less likely to start after an antigenic
variant has already caused an epidemic in that city. For B/Vic and
A/H1sea viruses, binary logistic regression showed non-
significant associations between the cumulative incidence over
prior seasons and the probability of successful epidemic initiation
(all OR < 1; all P > 0.05, Supplementary Fig. 8 and Supplementary
Table 5). This partially resulted from the small number of A/
H1sea epidemics during the study period, most of which were
caused by newly emerged antigenic variants. However, B/Yam
and H3 viruses showed significant negative relationships between
cumulative prior incidence and epidemic probability, suggesting
that prior incidence may have a substantial impact on the
probability of successful epidemic initiation.
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Aggregating across subtypes. There may be subtype/lineage-
specific differences in the effect of antigenic change and prior
immunity. Notably, B/Yam antigenic variants typically cause only
one epidemic per city. We repeated these analyses with epidemics
aggregated together, across all subtypes and cities to increase
statistical power (see the project Github repository for the
analyses and code). As before, there were no statistically sig-
nificant differences in the magnitude of epidemics between the

first and subsequent epidemics of an antigenic variant, or any
association between epidemic size and the cumulative incidence
over prior seasons. Binary logistic regression showed that the
probability of successful epidemic initiation may be moderately
reduced by the cumulative incidence over prior seasons. Our
findings were robust to the method of normalisation used to allow
for comparison between cities and subtypes/lineages (see
‘Methods').
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Effect of competition among subtypes. Competition among
virus subtypes for hosts should create a first-mover advantage for
the first subtype to sustain above-baseline epidemic activity in a
city in a given season. Subsequent epidemics of other subtypes
within that same season should therefore be reduced in size. We
considered two proxies for this kind of intersubtypic interference:
the cumulative amount of epidemic activity prior to the onset of a
subtype’s epidemic and the lag between the focal epidemic and
the season’s earliest epidemic. To allow for comparisons across
cities and subtypes, we normalised log-epidemic case counts by
subtracting off the city- and subtype-specific mean log- epidemic
case count. There was a strongly negative and statistically sig-
nificant correlation between prior epidemic activity and epidemic
size (Pearson’s correlation test, r=−0.420; P= 8.7e–5, Fig. 5).
An important caveat is that seasonality in the transmission rate
could result in epidemics that start later in a season being smaller
than those that started earlier, regardless of intersubtypic
competition.

Joint contributions of climatic and virological factors. Whilst
the magnitude of the effects of the climatological and virological
factors may be individually subtle, it could be the case that they
are only able to affect observable changes on the magnitude and
timing of epidemics when acting in concert, or that large effects in
opposing directions mask each other. We used a Bayesian mul-
tilevel regression model to identify which putative predictor
variables affected epidemic incidence, and estimate posterior
distributions for their effects on epidemic size. The model
included the following variables: antigenic change, cumulative
prior cases of the antigenic variant, mean absolute humidity
during the epidemic, activity by other subtypes earlier in the
season, epidemic start date and rainfall during the epidemic.
Mean temperature during the epidemic was omitted as a pre-
dictor, since it was highly collinear with absolute humidity;
analyses were subsequently repeated using mean temperature,
and omitting absolute humidity with no substantial changes in
the overall results.

The model suggested that epidemics that were the first of the
season or had early start dates should be modestly larger (Fig. 6).
Start date had the largest estimated effect and the clearest

posterior support for a non-trivial effect size. Posterior modes for
the mean effects of antigenic change and absolute humidity across
subtypes were near zero (Fig. 6), with tight credible intervals (95%
credible intervals: (−0.56, 0.27) for absolute humidity, (−0.50,
0.30) for antigenic change). Prior cases of an old variant given no
antigenic change (95% credible intervals (−0.26, 0.85)), prior
cases of all variants for non-first epidemics (95% credible
intervals (−0.84, 0.33)) and rainfall during the epidemic (95%
credible intervals (−0.68, 0.20)) also showed no strongly
discernible effects, though with less posterior certainty. The
model could not explain much of the variation in the data: the
median-estimated standard deviation of log epidemic size about
the expected log size is 0.77 (95% credible intervals (0.67, 0.90)).
Since exp(0.77) is ~2.15, this implies that it is not unusual to see
epidemics half or twice the expected incidence. The model
estimated that the effects were very similar across subtypes
(Supplementary Fig. 14, median-estimated SDs for the distribu-
tion of subtype-specific effect sizes about the overall mean effect
size near zero, Supplementary Fig. 15). Only the effect of whether
an epidemic was the first of the season showed meaningful
heterogeneity: the model estimated that it is somewhat weaker for
B/Vic than for other subtypes (Supplementary Fig. 14).

Discussion
Based on city-level analyses of a subtyped and antigenically
characterised influenza virus data set covering the five largest
cities in Australia, we find that climate and antigenic novelty have
limited effects on epidemic sizes. The results presented here
suggest that, at least in temperate areas, epidemics are governed
by factors other than host immunity at local scales, where global
fitness advantages for new antigenic variants may not be realised.
Conversely, competition for hosts among influenza virus types
and subtypes has strong effects on local dynamics. The first virus
subtype to establish above-baseline epidemic activity in a city and
season typically dominates.

A recent study of fine-scale influenza epidemiology in Aus-
tralia23 showed that there was substantial heterogeneity among
Australian cities in the activity of influenza A and B viruses. Our
subtyped and antigenically characterised data set allowed us to
confirm that further heterogeneity exists at the level of antigenic
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variants. In particular, specific antigenic variants often cause large
epidemics in some cities while not causing detectable activity in
others.

While prior studies found that the onset of epidemics in the
United States and France was preceded by a 2-week period of
anomalously low absolute humidity10,13, we found no evidence for
climatic effects when aggregating across the five Australian cities.
Anomalous fluctuations in temperature and absolute humidity
were sometimes positive, sometimes negative, but on average
approximately zero. Importantly, the overall effect size reported by
Shaman et al.10, after aggregating across all 48 contiguous states of
the United States, was very small (with mean AH′ being ~
−0.25 kg kg−1 or −0.21 gm−3, compared against 0 g m−3, the
mean of the null distribution of historic wintertime values). About
55–60% of epidemics were preceded by negative AH′ values: a
moderate increase upon the null hypothesis being a baseline
of 50%.

Shaman et al.10 also found regional differences in the asso-
ciations between fluctuations in absolute humidity and epidemic
onset. Strong associations were found in the Southeastern United
States but not in Western states. In Australia, there does not
appear to be an aggregate effect at the country level, and there
were no consistent patterns at the level of individual cities
(Supplementary Fig. 2 and Supplementary Table 2). The small
effect sizes and lack of consistency in climatic patterns across
regions and cities in the United States and Australia may reflect
the fact that climatic factors alone are unlikely to account for the
differences in the patterns of influenza seasonality between tem-
perate and tropical regions26.

Seasonal epidemic waves in the United States appear to begin
in the Southern states, which have warmer and more humid
climates21,27, casting some doubt on the role of low humidity as a
trigger for influenza epidemics. Rather than acting as specific
triggers, it is plausible that climatic factors are acting on longer
timescales than the anomalous fluctuations reported by Shaman
et al.10 to more generally enhance transmission and increase
incidence28. However, in Australia, epidemic size does not appear
to be strongly associated with the mean temperature or absolute
humidity over the epidemic period.

Given the interest in influenza virus as a model system for
phylodynamics of a pathogen that consists of multiple co-existing

antigenic variants29, there is interest in understanding how
competition between these related variants, typified by cross-
immunity, shapes epidemiological dynamics. Studies have hypo-
thesised that antigenic change should result in larger16,30–32 and
earlier18 local epidemics, which exhibit greater spatiotemporal
synchrony at the national level19–23. The sequential replacement
of old antigenic variants by new ones is indicative that anti-
genicity and population immunity are important for the global-
level phylodynamics of influenza viruses. In contrast, at the local
level, we find for A/H3 and B/Vic viruses that neither antigenic
change nor the accumulation of antigenic variant-specific
immunity are strong drivers of epidemic size, though accumu-
lating variant-specific immunity may moderately reduce the
probability of successful epidemic initiation.

It is striking that individual antigenic variants of A/H3 and B/
Vic viruses are capable of re-invading the same city multiple
times over consecutive years, despite a lack of substantial anti-
genic change. A/H1pdm09 viruses had previously been shown to
cause repeat epidemics without antigenic change33,34, but our
study establishes that this occurs for multiple types and subtypes
of human influenza. One possible explanation for the lack of
evidence for the year-on-year depletion of susceptible hosts is that
influenza virus infection often fails to confer strain-specific and
effective immunity. In some individuals, antigenic seniority and
existing immunity against previously encountered antigenic var-
iants may suppress novel strain-specific antibody responses,
leading to only modest specific protection against reinfection35,36.
Similarly, vaccine trials suggest that multiple exposures can be
required in order for children to become seropositive sufficiently
to protect themselves37. Potentially, multiple natural infections
may also be needed to confer protective immunity38, particularly
in children39, who effectively form a non-depleting pool of
susceptibles.

There may also be substantial and previously unaccounted
heterogeneity in individual susceptibility towards the same virus
strain. The notion that population-level strain-specific immunity
to influenza viruses is monolithic may be an artefact of the single-
infection ferret models typically used to estimate antibody-
mediated protection. In humans, there is substantial individual-
to-individual variation in the antigenicity of amino acid escape
mutations for influenza haemagglutinin40. Such heterogeneity
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Fig. 6 Joint contributions of climatic and virological factors on epidemic incidence. The mean effects across all subtypes were estimated using the
Bayesian multilevel model. Predictors were mean-centred and scaled, so effect sizes are shown on a common scale.
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between individuals stems from their varied exposure histories to
different influenza viruses. Unfortunately, age records for our
data set were too incomplete to allow us to study age-specific
heterogeneities in demographics, and attack rates between cities,
and whether such patterns change over seasons.

Spatial and social connectivity structures among hosts in a city
may also limit the spread of epidemics. Heterogeneous contact
patterns between hosts can have a substantial impact on the
resulting epidemiological dynamics41,42. Epidemics may be
inherently frail processes: relatively minor human behavioural or
environmental perturbations could prematurely terminate epi-
demics before they exhaust the pool of susceptible hosts, pre-
serving a substantial number of susceptibles, and permitting
subsequent epidemics of the same antigenic variant.

While our data set is substantially smaller (>450,000 vs 18,250
cases) than the one analysed by Geoghegan et al.23, and is thus
more likely to be affected by noise in epidemic and surveillance
processes, the differences between our findings and theirs high-
light the importance of subtyping and antigenic characterisation,
particularly for drawing conclusions about the effects of antigenic
change. Geoghegan et al.23 had cautiously suggested, given only
virus-type data, that the 2009, 2012 and 2014 influenza A virus
epidemics in Australia exhibited greater spatiotemporal syn-
chrony potentially due to the emergence of the novel A/
H1pdm09 subtype in 2009 and novel A/H3 antigenic variants in
2012 and 2014. However, with further subtype resolution and
antigenic characterisation, we find that the majority of influenza
A activity in Adelaide and Melbourne in 2014 was attributable to
A/H1pdm09, rather than the (antigenically novel) A/H3; in fact,
there was no above-baseline A/H3 activity in Perth. The fact that
different virus subtypes caused these apparently synchronous
epidemics implies that the epidemic synchrony described by
Geoghegan et al.23 was not due to the antigenic evolution or
regional spread of a single virus strain.

Apart from competition between antigenic variants, previous
epidemiological studies have hypothesised the existence of het-
erosubtypic competition where prior infection by a virus of one
subtype is negatively associated with subsequent infection by a
virus of another subtype43,44. In agreement with a previous US
study of national-level ILI activity augmented with limited virus
subtyping45, we also find evidence for a first-mover advantage
and competition to infect hosts within a city, where the subtype
or type that initiates above-baseline levels of activity first is most
likely to have the largest epidemic of that season.

There are multiple caveats to our study that merit explicit
consideration. The most important ones derive from our use of
passive surveillance data that might not accurately reflect true
underlying influenza virus activity. For example, surveillance
intensity could plausibly vary between cities and years. While
variation in surveillance efforts is evident among cities, there was
no evidence of systematic increases or decreases in the number of
laboratory-confirmed cases, or changes to surveillance practices
within each city during the study period. Despite this, the longer
duration of epidemics recorded after 2009 could be indicative of
enhanced surveillance in the post-pandemic era: to mitigate this
possibility, we repeated our analyses on the effect of antigenic
change on epidemic size, splitting between pre- and post-
pandemic eras and epidemic sizes normalising by their respec-
tive era-specific means. In either era, there was no consistent
effect of antigenic change on epidemic size, with the caveat that
splitting across eras reduced the number of observations in each
era and thus our statistical power (Supplementary Fig. 18).

The intensity of surveillance could also vary over the course of
an epidemic. For example, sentinel physicians could become
more likely to submit samples for further testing as an epidemic
unfolds, or conversely, testing could prematurely cease as facilities

become overwhelmed with samples. Despite being unable to
definitively rule out the former scenario, the latter is unlikely to
affect our data. If reporting ceased after a certain number of
samples had been tested, the distribution of epidemic sizes would
be truncated, and each epidemic would be unlikely to have an
exponentially declining tail. No such patterns exist in our data.

The intensity of surveillance could also potentially vary across
subtypes and lineages. The mean age of infection for A/H3 is
greater than influenza B46 viruses, and healthcare-seeking beha-
viour may differ between adults, parents with children and chil-
dren. Furthermore, it is commonly thought that A/H3 virus
infections result in more severe clinical presentations and greater
risk of mortality47 than influenza B viruses, potentially resulting
in differences in the likelihood of detection by a sentinel health
practitioner, though this may not be the case (see ref. 48).

Another important caveat is that while we were able to include
antigenic data in this study, these data were all derived from
haemagglutination inhibition (HI) assays. HI assays do not
measure virus antigenic changes that occur away from the
receptor-binding site, and thus likely represent an incomplete
picture of antigenic change. Reference viruses and sera used in the
haemagglutination inhibition assays can also impact the inter-
pretation of the assay readout, and the HI data used in this study
were therefore treated with caution (see ‘Methods').

In this study, we attempted to identify associations between
population susceptibility and epidemic incidence. Accurately
quantifying the former is a complex challenge, so cumulative
antigenic variant-specific epidemic incidence was used as a proxy,
but that itself is subject to the limitations listed above. Besides
natural infection, immunity can also be derived from vaccination,
the contribution and effectiveness of which could not be deter-
mined due to a lack of temporally and geographically complete
vaccination records over the study period. Regardless, we hypo-
thesise that the impact of seasonal vaccination would be limited,
particularly in the context of Australia, given the low uptake
of vaccination49. Crucially, the uptake by children, who are
important in driving local community transmission, is often
below 10%50.

While our Bayesian multilevel model estimated negligible
effects on epidemic size stemming from climatic factors and prior
cases attributed to the same antigenic variant, the estimated
credible intervals were not tight enough to rule out these effects
conclusively (Fig. 6). However, our study suggests that climatic
and antigenic factors are unlikely to be strong drivers of local
influenza epidemiological dynamics. Indeed, the effects of these
specific factors are dwarfed in magnitude by more generic epi-
demiological drivers: seasonality not directly captured by climate
(measured by start date) and competition for hosts among sub-
types (measured by whether an epidemic is the first of the season)
(Fig. 6). We also find that even with all generic and specific
factors considered, precise predictions of epidemic size remain
difficult because of substantial noise in the local epidemic process.

Our Bayesian multilevel model for epidemic size avoids
explicitly modelling underlying transmission processes, and may
fail to fully capture the nature of the relationship (linear vs
nonlinear) between transmission rates/R0 and the total cases in an
epidemic. However, based on previous virus-transmissibility
studies7, if climatic factors are strong drivers of epidemiological
dynamics, we would expect the climatic variabilities observed in
Australia to have a substantial impact on transmission rates, and
produce detectable differences in epidemic size, but this is not
the case.

Climatic drivers of seasonality and homosubtypic competition
between virus antigenic variants are thought to be strong drivers
of seasonal influenza epidemiology, but seasonal influenza virus
epidemiological dynamics in major Australian cities appear to be
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more substantially shaped by other factors, particularly the
establishment of sustained virus-transmission activity, and sub-
sequent competition among virus types and subtypes. This
implies that the time horizon for meaningful forecasting of epi-
demic subtype composition is very short (days to weeks), and
forecasting efforts aimed at longer-term predictions will require
further insights into the dynamics of virus introduction and
epidemic establishment, and into the accumulation of population
immunity to seasonal influenza viruses.

Methods
Australian surveillance data. Influenza viruses from Australia were collected by
the WHO Collaborating Centre (WHOCC) for Reference and Research on Influ-
enza in Melbourne, Australia. The Melbourne WHOCC receives a subset of
influenza-positive clinical samples collected by various sentinel surveillance sys-
tems across Australia throughout the year. The samples in this study were typed,
subtyped and antigenically characterised by haemagglutination inhibition assay to
the vaccine reference vaccine strain in use at the time of sample collection.

The data set consists of 18,250 influenza-positive cases, collected between 2000
and 2015 in the city of Brisbane, the city of Perth, the state of South Australia, the
city of Sydney and the state of Victoria. The breakdown at the subtype/lineage level
is as follows: A/H3 (7661), A/H1sea (1410), A/H1pdm09 (3987), B/Vic (3021) and
B/Yam (2171). All of these correspond specifically to individual cities, except for
the data from Victoria and South Australia. As of June 2015, 75 and 78% of the
inhabitants of the states of Victoria and South Australia resided in the cities of
Melbourne and Adelaide, respectively. We therefore treated the Victoria and South
Australia data as representative of city-level patterns in those two major cities.

All epidemic activity of all subtypes for the 2009 season was excluded from all
analyses because of the 2009 A/H1N1 pandemic. Unsurprisingly, patterns of virus
circulation during the pandemic were anomalous compared with typical seasonal
influenza virus epidemics, and potentially distortive of the patterns we sought to
characterise.

Estimation of epidemic timing. The exact timing of interseasonal periods of
sporadic activity and epidemic onset for each subtype is highly variable between
years, even for individual cities, so it is necessary to determine the onset and end of
each epidemic independently for each antigenic variant, season and city.

For each individual antigenic variant-specific time series, we used a Poisson
count detection algorithm implemented in the Surveillance package in R51,52 to
distinguish periods of sustained epidemic activity from a background of sporadic
interseasonal activity. We assume that the start of the calendar year falls sometime
within the interseasonal period, which is justified by the scarce number of cases
observed during this time of the year, and the fact that it is summertime in
Australia. Making no further assumptions on the exact duration and timing for the
interseasonal period or epidemic onset, starting at the beginning of the year,
successive 2-week periods yt are evaluated using the number of cases in each of the
n-preceding 2-week periods yt�n; yt�nþ1; ¼ ; yt�2; yt�1

� �
as reference values for

sporadic activity. These reference values are used to predict a threshold value yα: if
the observed number of cases yt exceeds the threshold yα, the focal 2-week period is
marked as the 2-week period of epidemic onset.

The Poisson count model assumes that the reference values yt are identically
and independently Poisson distributed with a mean of λ (Eq. (1)). λ itself has a
Gamma distribution as a prior (Eq. (2)). From Eqs. (1) and (2), the posterior
predictive distribution is a negative binomial distribution (Eq. (3)).

yi � PoðλÞ ð1Þ

λ � Gaðα; βÞ ð2Þ

zjyt�n; yt�nþ1; ¼ ; yt�2; yt�1 � NegBin αþ
Xn

i¼1

yi;
βþ n

βþ nþ 1

 !

ð3Þ

The threshold value yα can then be calculated using quantile parameter α, where
yα is the smallest value that satisfies Eq. (4).

p y ≤ yαð Þ≥ 1� α ð4Þ
We used the same algorithm to identify the end of an epidemic. Starting at the

end of the year, successive 2-week periods, in the backward direction, are evaluated
using the number of cases in each of the n following the 2-week period as reference
values ytþ1; ytþ2; ¼ ; ytþn�1; ytþn

� �
.

During interseasonal periods, where there were often many 2-week periods
reporting no cases, an isolated 2-week period with sporadic activity can be
misconstrued as the onset of an epidemic. To reduce the impact of outliers in the
time series and increase specificity of the detection algorithm, we first applied the
4253H, twice nonlinear data-smoothing algorithm53, which is a compound
smoother consisting of multiple running medians.

We tested a variety of n- and α-parameter values, and chose n= 3 and α= 0.12
for the analyses presented in the text as a good compromise between sensitivity and

specificity in the identification of all of the epidemics within the time series and
their individual onset and end timings, which were confirmed by visual inspection.
The results of these analyses are also robust to alternative parameter values and
corresponding changes to the sensitivity and specificity of the Poisson count
detection algorithm (see Supplementary Discussion for sensitivity analyses).

Aggregation of cases by 2-week periods was deemed necessary, to smoothen the
time series in light of the relatively low number of cases within the data set; this
relatively long timescale could however potentially obscure fluctuations in weather
that occur at shorter scales. Whilst weekly time series were appreciably noisier, we
found a high degree of correspondence in the estimated epidemic onset and end
timings with values calculated from data aggregated by 2-week periods: indeed, our
results were robust to aggregation by week (see Supplementary Discussion for
sensitivity analyses).

We deemed an antigenic variant to have failed to cause an epidemic if, within a
season, the algorithm was unable to define an epidemic period; we confirmed all
putative failures by inspection of the raw time series. Once the epidemic period was
defined, the size of an epidemic per antigenic variant was calculated using the
estimated resident population for that particular year and city.

Normalisation of epidemic incidence. For each epidemic, the incidence of
laboratory-confirmed cases per million people was calculated from the number of raw
counts. Given the positive skew in the distribution of epidemic incidences, individual
incidence values were log-transformed. To enable comparisons within subtypes, we
needed to account for potential differences in surveillance intensity, and normalise
values between cities: we subtracted off the overall city-specific mean log-transformed
incidence from each individual value. Although the apparent heterogeneity in the
effect of antigenic change and prior immunity between subtypes suggests that data
should be stratified by subtype, we repeated our analyses with data aggregated and
normalised across subtypes in order to increase statistical power. Individual log-
transformed values for each epidemic were instead transformed by subtracting off the
overall city- and subtype-specific mean of the log-transformed values.

Virus antigenic characterisation by haemagglutination inhibition assay. For
our analyses, we defined an antigenic variant as in Smith et al.14, where an anti-
genic variant is sufficiently different from preceding variants to warrant an update
of the seasonal influenza virus vaccine. To this end, our analyses only accounted for
major antigenic changes, and did not account for the possibility of small or gradual
antigenic changes (neither of which are well studied for seasonal influenza viruses).

The haemagglutination inhibition (HI) assay data used in this study only
compared the test virus and the then current reference vaccine strain to assess
whether or not viruses had changed antigenically. However, this comparison to a
single reference point is potentially problematic, given that new Southern
Hemisphere’s influenza vaccine composition recommendations are made every
September. This is usually after the end of the influenza season in Australia, and
may lead to misidentification during antigenic characterisation of submitted
samples during the preceding season where samples containing a novel antigenic
variant may have been tested with sera raised against its predecessor variant. To
ameliorate this potential source of bias, we compared the antigenic characterisation
data against phylogenetic data. This comparison revealed two instances for A/H3
viruses where the reference strain comparison by HI was misleading regarding the
antigenic composition of an epidemic. There were a substantial number of
laboratory-confirmed cases attributable to A/H3/Fujian/411/2002-like viruses in
2004, but phylogenetic analyses of sequences dated 2004 show that the Fujian/411/
2002-like viruses had already been replaced by the novel California/7/2004 variant
viruses. Similarly, in 2005, a substantial number of samples initially identified as A/
H3 California/7/2004-like viruses were phylogenetically in the new A/Wisconsin/
67/2005 variant group.

To account for the likelihood of misidentification due to delays in updating
nomenclature, we assumed that all A/H3 cases in 2004 were California/7/2004-like,
and in 2005 were Wisconsin/67/2005-like antigenic variants. Additional analyses
were also carried out with the raw data set without these corrections (see
Supplementary Figs. 9–13 and Supplementary Table 6), and lead to no significant
or substantive differences to our findings.

Demographic data. We retrieved estimated resident populations for Adelaide,
Brisbane, Melbourne, Perth and Sydney on 30 June of each year from 2000 to 2015
from the Australian Bureau of Statistics (http://stat.abs.gov.au/).

Climate data. For each of the five cities, we compiled the mean temperature (°C)
and relative humidity (%) from TuTiempo (https://en.tutiempo.net/), and calcu-
lated the mean absolute humidity (g m−3) for each 2-week period from 1985 to
2015. For each of the 26 2-week periods of the calendar year, we calculated 31-year
mean temperature �T and absolute humidity AH values (see Eqs. (5) and (6) below).

Testing the statistical significance of anomalous absolute humidity and
temperature. Following the method presented by Shaman et al.10, we calculated
local anomalous T′ and absolute humidity AH′ values for each city, and 2-week
period of the year from 2000 to 2015. For each 2-week period, T′ and AH′ are
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defined as the deviation in observed temperature T and actual absolute humidity
AH from their 31-year mean values, �T and AH, respectively (Eqs. (5) and (6)).

T 0 ¼ T � �T ð5Þ

AH0 ¼ AH � AH ð6Þ
Following Shaman et al.10, we generated a synthetic distribution of wintertime

climatic values by bootstrap sampling. In order to maintain the sampling structure
and control for anomaly variability among the cities, 15 n-week continuous blocks
were randomly sampled from 1 April–31 August, 1985–2015 for each of the five cities.
These 75 samples were then averaged to produce a mean T′ and AH′ value. This was
repeated 100,000 times to produce a bootstrapped distribution of average values. The
statistical significance for the mean T′ and AH′ values derived from the 75 empirically
observed earliest-in-the-season epidemics was then calculated non-parametrically, by
determining the quantile for the observed values within the bootstrap distributions.
This bootstrap was repeated at the city level to see if there were geographical
differences with individual bootstrap distributions that were created for each city.

We also evaluated whether or not epidemic onset is associated with climatic
fluctuations that are anomalous for that particular time of the year. By definition,
for any given 2-week period of the year, the 31-year mean for T′ and AH′ is 0. We
used a Wilcoxon one-sample test to assess whether there were reductions in
climatic values in the observed set of T′ and AH′ values in each of the 2-week
blocks preceding the onset of the earliest epidemic of the season.

Bayesian hierarchical regression. To estimate reasonable bounds on the possible
effects of climate and antigenicity on epidemic size, we used a Bayesian hierarchical
model that partially pooled effect-size estimates across subtypes, increasing the
capacity to detect any potential effects without assuming a priori that effects should
be the same across different subtypes. We fit the model using Markov Chain Monte
Carlo (MCMC) with Stan54 and its R interface rstan55; Stan implements a no-u-
turn sampler (NUTS)54. All data and code needed to reproduce the analysis and
figures are provided in the project Github repository, along with directions in a
README file.

In the model notation that follows, the symbol “~” is a “sampling statement”; it
denotes that a random variable is distributed according to the given distribution.
Normal distributions are parameterised as Normal(mean, standard deviation),
generalised Student-T distributions are parameterised as Student-T(degrees of
freedom, location and scale). Positive-constrained normal distributions (Half-
Normal) are parameterised as Half-Normal(mode, standard deviation).

We predicted log incidence minus city- and subtype-specific mean log incidence
as a function of the following predictor variables:

X1: whether the epidemic was the first epidemic for an antigenic variant in the
city (binary, yes or no)
X2: cumulative prior incidence of the antigenic variant (measured as log(total
prior cases/city- and subtype-specific mean cases per epidemic))
X3: mean absolute humidity during the epidemic, from the start to end date of
the epidemic (measured as fortnight of the year)
X4: start date of the epidemic (measured as fortnight of the year)
X5: whether the epidemic was the earliest epidemic (of any subtype) in the city
that year (binary, yes or no)
X6: the cumulative amount of influenza activity (of any subtype) in the city that
year prior to the epidemic
X7: mean rainfall during the epidemic, from the start to end date of the
epidemic (measured as fortnight of the year).

We omitted mean epidemic temperature as a predictor as it was highly collinear
with absolute humidity. Any observed large effect of absolute humidity could
therefore theoretically have been attributable to temperature, though in practice we
estimated an effect near zero for absolute humidity.

We made a linear prediction of an epidemic’s normalised size given its values
for X = (X1,…,X7). Effect sizes bi for each predictor Xi were subtype-specific, with
bij denoting the effect of variable i for subtype j. We also estimated subtype-specific
intercepts aj.

We included cumulative antigenic variant activity and prior activity in the year
only for old antigenic variants and epidemics that were not first of the year,
respectively, that is, as interaction terms with one minus the corresponding binary
variables. So the predicted mean- centred log size <yk > of an epidemic of subtype j
is given by Eq. (7), where Xik denotes the value of Xi for epidemic k. Following
Gelman51, we mean-centred and scaled continuous predictors so that effect sizes b
would be directly comparable between binary and continuous predictors.

hyki ¼ aj þ b1jX1k þ b2jX2k 1� X1kð Þ þ b3jX3k þ b4jX4k þ b5jX5k

þ b6jX6k 1� X5kð Þ þ b7jX7k

ð7Þ

We assumed that observed normalized log epidemic sizes yk were normally
distributed about their predicted log sizes <yk> with an unknown, estimated
standard deviation σy (Eq. (8)):

yk � Normalðhyki; σyÞ ð8Þ

We assumed that subtype effect sizes bij for each predictor i and subtype j were
normally distributed about a general mean effect size <bi > , with an unknown,
estimated predictor-specific standard deviation σbi (Eq. (9)):

bij � Normalðhbii; σbiÞ ð9Þ
Likewise, we assumed that intercepts ai were normally distributed about a mean

intercept <a > with an unknown, estimated standard deviation σa (Eq. (10)).

ai � Normalðhai; σaÞ ð10Þ
We assumed that predictor-specific effect-size standard deviations σbi were half-

normally distributed with mode 0 and an unknown, estimated standard deviation
σb (Eq. (11)).

σbi � Half � Normalð0; σbÞ ð11Þ
We placed weakly informative56 positive-constrained half-normal priors on the

intercept, effect size and error-term standard deviations σa, σb and σy (Eqs. (12–
14)). Weakly informative priors rule out biologically or mathematically implausible
parameter values while allowing data rather than assumptions to inform inferences
regarding plausible values.

σa � Half � Normal 0; 0:5ð Þ ð12Þ

σb � Half � Normal 0; 1ð Þ ð13Þ

σy � Half � Normal 0; 1ð Þ ð14Þ
We placed a weakly informative Gaussian prior on the mean intercept <a>

(Eq. (15)) and a weakly informative Student-T prior on the mean effect sizes <bi>
(Eq. (16)):

hai � Normal 0; 1ð Þ ð15Þ

hbji � Student � T 3; 0; 2:5ð Þ ð16Þ
The intercept prior was based on the degree of variation in the normed outcome

variable to cover it while ruling out intercepts much larger or smaller than the
largest and smallest observations. The effect-size prior was based on a
recommendation for weakly informative regression effect-size priors (for scaled
predictors) from the Stan prior recommendation wiki (https://github.com/stan-
dev/stan/wiki/Prior-Choice-Recommendations).

We ran four MCMC chains, each with a 1000-step sample warmup period
followed by 1000 saved posterior samples, for a total of 4000 posterior draws.
We verified convergence by inspecting trace plots, and confirming that all
parameters had sufficiently low Rhat values (all Rhat < 1.005) and
sufficiently large effective sample sizes (all neff >16% of total sample size). We
visualised posteriors as quantile dotplots57 to aid in visual estimation of
distributions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All of the data for these statistical analyses and models are available at the following
Github repository: https://github.com/edwardkslam/australian_seasonal_flu.

Code availability
Code developed for these statistical analyses and models is available at the following
Github repository: https://github.com/edwardkslam/australian_seasonal_flu.
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