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Vibrational hierarchy leads to dual-phonon
transport in low thermal conductivity crystals
Yixiu Luo 1,2, Xiaolong Yang1,3, Tianli Feng4, Jingyang Wang 2 & Xiulin Ruan 1✉

Many low-thermal-conductivity (κL) crystals show intriguing temperature (T) dependence of

κL: κL∝ T−1 (crystal-like) at intermediate temperatures whereas weak T-dependence (glass-

like) at high temperatures. It has been in debate whether thermal transport can still be

described by phonons at the Ioffe-Regel limit. In this work, we propose that most phonons are

still well defined for thermal transport, whereas they carry heat via dual channels: normal

phonons described by the Boltzmann transport equation theory, and diffuson-like phonons

described by the diffusion theory. Three physics-based criteria are incorporated into first-

principles calculations to judge mode-by-mode between the two phonon channels. Case

studies on La2Zr2O7 and Tl3VSe4 show that normal phonons dominate low temperatures

while diffuson-like phonons dominate high temperatures. Our present dual-phonon theory

enlightens the physics of hierarchical phonon transport as approaching the Ioffe-Regel limit

and provides a numerical method that should be practically applicable to many materials with

vibrational hierarchy.
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Low-thermal conductivity (κL) crystals are of great interest in
a variety of applications including thermal barrier coatings
(TBC), thermoelectrics and nuclear reactors. They often

show intriguing thermal-transport properties: κL decreases
inversely with temperature (T) at intermediate temperatures as
expected for crystals; but shows weak or even no distinct
dependence on T at high temperatures, which is an anomalous,
glass-like behavior1–7. While the former can be explained within
the scheme of standard phonon Boltzmann transport equation
(BTE) by primarily considering three-phonon scattering8, the
latter is still an open question. Advance in developing unified
theories and numerical methods is just looming over the horizon
to improve understanding the disparate κL ~ T relationship in
these crystals.

Recent studies have identified that in low-κL crystals, some
phonon modes have mean free path (l) shorter than the
Ioffe–Regel limit9, casting questions whether these modes can still
be defined as phonons and how they contribute to thermal
transport. Theoretical models of various sophistication have been
developed to resolve this challenge10–16. Agne et al.10 proposed
that heat transfer in low-κL complex crystals could be reasonably
described by assuming a media of diffusons according to the
random-walk-based diffusion theory, as opposed to phonons, and
a model of diffuson-mediated κL was proposed to better explain
the experimental results particularly at high temperatures. The
diffuson model by itself, however, does not fit to pure crystals
where phonons are still well-defined as ensured by the periodicity
of the lattice. On the other hand, other models have considered
the hierarchy of vibrational modes based on the Ioffe–Regel limit.
Chen et al.11 proposed that for weakly disordered crystals with
complex unit cell (e.g., higher manganese silicides), κL could be
explained by a hybrid phonon and diffuson model. The model
employed a few fitting parameters and used the inelastic neutron
scattering spectra to obtain an Ioffe–Regel crossover-frequency of
20 meV, below which the vibrational modes were treated as
phonons and above which were diffusons. Mukhopadhyay et al.12

used the scale of interatomic spacing as Ioffe–Regel criterion and
proposed that for Tl3VSe4 crystals, the phonon modes with mean
free path l smaller than the Ioffe–Regel limit no longer behave as
phonons, but should be replaced by hopping modes whose fre-
quencies or eigenvectors cannot be meaningfully defined. They
hence proposed a two-channel model that combines the phonon
channel treated with BTE and the hopping channel calculated
using Einstein’s model or Cahill’s model, yielding κL and its
temperature dependence in better agreement with experimental
data. However, some open questions still remain. Particularly,
how do the well-defined phonons interact with the hopping
modes? How to subtract the well-defined modes from the hop-
ping channel in κL calculation? On the other hand, we note that
infrared and Raman spectroscopies of some semiconductors have
shown that, the zone-center optical phonons, many of which
would have extremely short or nearly zero l, still have well-
defined frequencies and linewidths (scattering rates) that can be
accurately predicted by first-principles calculations17,18. This may
suggest that the phonon concept for these modes is still valid,
while the failure is with BTE which does not recognize the phy-
sical lower-limit of l. We can also note that this is not the first
time BTE fails for phonons; in fact, BTE was known to fail for
coherent phonons in superlattices or phononic crystals; therein, it
does not capture the wave effects19,20.

Most recently, attempt has also been made to unify the
thermal-transport theory in crystals and glasses. Simoncelli
et al.13 have transmuted the BTE formulism into a κL equation
written in terms of the phonon velocity operator with diagonal
and off-diagonal elements describing the particle-like propagation
of phonons and the wave-like tunneling of coherence,

respectively. Applying this model in perovskite CsPbBr3 arrives at
reasonable simulation of its glass-like κL. Meanwhile, Isaeva
et al.14 developed a quasi-harmonic Green–Kubo method, as if to
generalize the Allen–Feldman model21–24 for amorphous systems
into relaxation-time-approximation-based BTE for crystals by
expressing energy transport in a quantum mechanical fashion,
and gives reasonable κL predictions for amorphous and crystalline
Si. Nevertheless, further physical insights are expected to improve
understanding the nature of hierarchical vibrations in the context
of physically based theories.

Inspired by the idea of vibrational hierarchy from previous
models, while attempting to resolve the open questions, in this
work we sparkle a different concept that the vibrational modes
with very short l could still be treated as phonons with well-
defined frequencies, eigenvectors, and scattering rates, but their
heat conduction should be described by the diffusion theory
instead of BTE. We hence propose a dual-phonon theory, by
treating the short-l phonons with the diffusion theory, and other
normal phonons with BTE. Our theory does not introduce a
different type of heat-carrying modes other than phonons, and
eliminates the theoretical challenge of how they would interact
with phonons and alter their scattering events. Also, for a
sophisticated model, we introduce three different criteria, based
on phonon mean free path, wavelength, and thermal diffusivity,
to judge mode-by-mode between the normal phonon channel and
diffuson-like phonon channel, and hence avoid the double-
counting issue. The three criteria all yield consistent results that
agree quantitatively with experiments, demonstrating the
robustness and predictive capability of our theory. Our theory is
demonstrated on La2Zr2O7, a thermal-barrier-coating (TBC)
candidate material for gas turbine technologies25, and Tl3VSe4, a
potential thermoelectric material12. More background of
La2Zr2O7 could be found in Supplementary Note 1. Our approach
is able to explain the thermal conductivity and the intriguing κL ~
T dependence over the entire temperature range, and is expected
to help understand the thermal transport of such low-κL crystals.
Also, our model may provide physical insights toward unifying
the theories of thermal conductivity in crystals and amorphous
materials.

Results
Normal phonons and diffuson-like phonons. We first calculate
the phonon properties of La2Zr2O7 using the standard anhar-
monic lattice dynamics based on density functional theory.
Immediately we find that a large percentage of vibrational modes
have very small l even at room temperature, and more so at high
temperatures, as shown in Fig. 1a. Similar features have been
identified for Tl3VSe4 (see Supplementary Fig. 5). Apparently,
these modes cannot be treated as normal phonons, which by
definition, are expected to propagate far enough to sample the
periodicity of the transport media, i.e., comparable to the scale of
phonon wavelength or several lattice spacing21–23. In developing
our theory, these modes are treated as diffuson-like phonons.

In order to sophisticatedly judge whether a phonon mode
should be treated as normal phonon or diffuson-like phonon, we
propose three criteria, as conceptually shown in Fig. 2. The first
two criteria are derived from the Ioffe–Regel limit of phonons9,
arguing that the value of l for normal phonons should not be
smaller than their wavelength (λ) (I. l–λ criterion), or the
minimum interatomic spacing (amin) of the lattice (II. l–amin

criterion), respectively. The third criterion argues that a
vibrational mode should be characterized as diffuson-like if its
phonon thermal diffusivity (DPhon) becomes smaller than its
diffuson thermal diffusivity (DDiff) (III. DPhon–DDiff criterion).
Here we note that, another reasonable criterion to define a
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Fig. 1 Hierarchy of lattice vibrations in La2Zr2O7. The vibrational modes are assigned as normal phonons or diffuson-like phonons according to a Criterion
I, whether their mean free path (l) is above or below the vibrational wavelength (λ); c Criterion II, whether their l is above or below the minimum
interatomic spacing (amin= 2.1 Å for La2Zr2O7, drawn in dashed line); e Criterion III, whether the phonon thermal diffusivity (DPhon) is above or below the
diffuson thermal diffusivity (DDiff), in which DDiff is calculated based on the random-walk theory (DRW

Diff ) and plotted as a function of the vibrational
frequency in black marks; and g Criterion III, with DDiff calculated based on the Allen–Feldman formula (DAF

Diff ); herein, the value of max DPhon;D
AF
Diff

� �
for

each vibrational mode is plotted. The calculated hierarchical phonon density of states (DOS) for normal phonons and diffuson-like phonons according to b
Criterion I; d Criterion II; f Criterion III coupled with the random-walk (RW) theory; and h Criterion III coupled with the Allen–Feldman (AF) theory. Note:
the ordinary frequency (ν=ω/2π) in units of THz is used for illustration. Source data are provided as a Source data file.
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normal phonon mode is based on its long-enough relaxation time
(τ) as τ >> 1/ν (ν is the vibrational frequency). For acoustic
phonons approaching the long-wavelength-limit, this criterion is
the same with the l–λ criterion, whereas for some phonons whose
phase velocity (vp) is considerably higher than group velocity (vg),
it is less restrictive23. Therefore, the τ-criterion is not considered
in developing our theory.

For modeling κL in materials with such strong vibrational
hierarchy, we assume a thermal-transport media with both
normal phonons and diffuson-like phonons. All these phonon
modes are able to transfer heat (i.e., non-localized), but following
BTE theory for the former and diffusion theory for the latter,
respectively. Our dual-phonon theory combines a normal phonon
channel and a diffuson-like phonon channel:

κDual�phonon
L ¼ κPhonL þ κDiffL ð1Þ

Heat conduction from both channels are derived by following
the physical picture that heat is carried by atomic vibrations of
a solid. There are three components to be considered: (1) the
number of vibrational modes that are available to carry heat,
summed up to be the total degrees of vibrational freedom; (2) the
amount of heat that can be carried by each vibrational mode; (3)
the propagation behavior of vibrations through the dual-phonon
media. We write the contribution from each channel as:

κPhonL ¼
XNPhon

i¼1

Cs ið ÞDPhon ið Þ ð2Þ

κDiffL ¼
XNDiff

j¼1

Cs jð ÞDDiff jð Þ ð3Þ

Here, i and j denote the indices of vibrational modes, sampled
over the Brillouin zone (BZ). NPhon and NDiff are the numbers of
normal phonons and diffuson-like phonons, respectively. One of
the merits of our theory is that, we impose the conservation of
vibrational degrees of freedom by requiring NPhon+NDiff= 3N,
where N is the total number of atoms. As such, once a mode is
characterized as a normal phonon, it cannot be treated as a
diffuson-like phonon at the same time, and vice versa. Cs is the per-
mode specific heat following the Bose–Einstein statistics of
phonons. DPhon and DDiff are defined as the per-mode thermal
diffusivities for normal phonons and diffuson-like phonons,

respectively. In our present model, DPhon is calculated using the
phonon BTE theory; whereas DDiff could be calculated based on the
random-walk theory10 (denoted as DRW

Diff ) or the Allen–Feldman
theory23 (denoted as DAF

Diff ). Details are presented in the Methods
section. In the present work, we only performed limited test for our
dual-phonon theory coupled with DAF

Diff (using the III. DPhon–DDiff

criterion), mainly due to its high computational expense.

Hierarchy of lattice vibration in La2Zr2O7. The hierarchy of
lattice vibrations for La2Zr2O7 is shown in Fig. 1. We see that the
vibrational modes that are judged as diffuson-like phonons
account for 75.35%, 23.82%, 65.42%, and 69.73% of the total
number of modes at T= 300 K, respectively, according to our
proposed judging criteria I, II, and III coupled with the random-
walk theory, and III coupled with the Allen–Feldman theory. The
fractions rise to 98.00%, 80.23%, 91.25%, and 93.55% at T= 1500
K. As illustrated in Fig. 3, this behavior originates either from
small vg, especially for high-frequency vibrations, or from small τ,
indicative of intense scattering among those modes. The
increased population of diffuson-like phonons at higher tem-
peratures is presumably due to increased phonon scattering.

To better visualize the degree of the vibrational hierarchy, the
vibrational density of states (DOS) for normal phonons vs.
diffuson-like phonons are illustrated in Fig. 1b, d, f, h. There is a
crossover from normal phonon-dominated states at the low-
frequency range to diffuson-like phonon-dominated states at high-
ν range, and the crossover shifts to lower-ν at higher temperatures.
Take the case of II. l–amin Criterion as an example. At T= 300 K,
normal phonons dominate below ν ~ 13 THz; whereas for T=
1500 K, diffuson-like modes exhibit the first peak at ν ~ 2 THz, and
quickly becomes dominant at above ν ~ 5 THz. This could be
understood from increased scattering at higher temperatures,
resulting in suppressed τ and l values for all vibrational modes.
Furthermore, detailed comparisons among the three criteria show
that, the number of vibrational modes assigned as diffuson-like
phonons based on the random-walk theory increases in the order
of II. l–amin Criterion, III. DPhon–DDiff Criterion, and I. l–λ
Criterion, and the major difference comes from assignment of
the vibrational modes in the frequency range 2 < ν < 13 THz.
On the one hand, the fact that a larger number of vibrations
are assigned as diffuson-like phonons by Criterion III
than Criterion II could be understood from the interplay of low
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Fig. 2 Dual-phonon judging criteria for vibrational modes. Three different criteria are proposed for the assignment of each vibrational mode to be a
normal phonon or a diffuson-like phonon. The visual representation of the diffusive/propagative transport is drawn in analogy with Agne et al.’s work10.
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vg · l and high ν for certain modes. On the other hand,
the difference between Criterion I and Criterion II is expected to
be more pronounced for zone-center long-wavelength vibrations,
as certain modes have amin < l < λ hence they are assigned as
normal phonons by the l–amin Criterion while as diffuson-like
phonons by the l–λ Criterion. Moreover, as shown in Fig. 1f,

the ratio NDiff/NPhon appears to increase with the vibrational
frequency under Criterion III coupled with the random-walk
theory, but the trend is not so clear for the results derived from
the Allen–Feldman theory (Fig. 1h). Such difference could be
understood from the different frequency dependence of DRW

Diff
vs. DAF

Diff . The random-walk theory assumes that heat is
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Fig. 3 Hierarchy of phonon group velocity and relaxation time. The calculated (a), (c), (e), (g) phonon group velocity (vg) and (b), (d), (f), (h) phonon
relaxation time (τ) at T= 300 K for each vibrational mode of La2Zr2O7, based on criteria I, II, and III coupled with the random-walk (RW) theory, and III
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transferred through successful random jumps of independent
oscillators within a period of oscillation to a distance related
with the number density of atoms, and thus arrives at DRW

Diff / ν

throughout the spectrum. The Allen–Feldman theory, on the
other hand, is rooted in the thermal correlation of each vibrational
mode and arrives at varied frequency dependence of DAF

Diff .
See Supplementary Note 2 and Supplementary Fig. 1 for more
details.

Lattice thermal conductivity. The κL values calculated from an
iterative solution of BTE coupled with anharmonic lattice
dynamics are shown in Fig. 4a. Both phonon–phonon scattering
and isotope scattering are considered in our calculations, but the
latter has little impact on κL values and their temperature
dependence. At room temperature, the calculated κL shows rea-
sonable agreement with experimental data26–28. At higher tem-
peratures, it yields κL ~ T−1 dependence as expected from the
dominance of phonon–phonon Umklapp scattering, whereas
experimental data goes nearly temperature-independent. The
calculated κL= 0.55W·m−1·K−1 at T = 1500 K is only one-third
of the measured value κL= 1.5W·m−1·K−1, and is even lower
than the reported high-temperature limit (κmin= 1.2W·m−1·K−1)
for La2Zr2O7 crystals29,30. Moreover, we notice that including the

state-of-the-art four-phonon scattering31–33 is expected to give
further reduction of κL at high temperature and results in stron-
ger-than-T−1 temperature dependence, and thus could not bridge
the gap between experimental and BTE-derived results in our case.
Guided by the Ioffe–Regel limit of phonons9, we recalculate κL
within the framework of phonon BTE theory, by assuming a
lower-bound of l for all modes, i.e., the l values are manually set to
amin if l < amin. This trial yields κL= 0.61W·m−1·K−1 at T= 1500
K, showing inadequate correction to the previous results. Such
significant gap between the calculated temperature-dependent κL
and experimental values indicate that the conventional BTE the-
ory becomes invalid for heat conduction in La2Zr2O7, and a dif-
ferent physical picture is needed to describe the transport behavior
of the interesting small-l or small-DPhon phonon modes.

Next, we calculate κL of La2Zr2O7 using the two-channel model
proposed by Mukhopadhyay et al.12, by combining a phonon
conduction channel (κphonon) and a hopping channel (κhop) from
modes of l < amin. In this model, κphonon is calculated from
phonon BTE theory, by excluding the contribution from small-l
vibrations; whereas κhop is calculated either via Cahill’s
formula34,35 or Einstein’s formula from which the Cahill’s model
is derived. Cahill’s formula requires vg of acoustic phonons as
input parameters, which could be extracted from phonon
dispersions of La2Zr2O7 (shown in Supplementary Fig. 2): 3837
and 3969 m·s−1 for transverse acoustic phonons (TA1 and TA2),
and 6872m·s−1 for longitudinal acoustic phonons (LA). Ein-
stein’s formula requires defining the Einstein temperature (θE) for
the oscillators, which could be estimated from the calculated low-
temperature specific heat of La2Zr2O7 (shown in Supplementary
Fig. 3): θE= 180 K, in moderate agreement with reported
values36. Using these parameters as input, the total κL (κphonon
+ κhop) are calculated to be 1.90 and 0.92W·m−1·K−1 at T=
1500 K by employing Cahill’s formula and Einstein’s formula,
respectively. The corresponding temperature dependencies are
κL ~ T−0.31 and κL ~ T−0.65 above T= 1000 K. Now the experi-
mental values of κL fall within the range provided by the two-
channel model, and the temperature dependence shows improved
agreement. As shown in Fig. 4a, the range in between might be
originated from uncertainties in defining the θE values, which has
also been pointed out in ref. 12. Besides, we note that in order to
preserve the total number of vibrational modes, the normal
phonon modes need to be subtracted from the hopping channel,
which is difficult to do when incorporating the Cahill’s formula in
the two-channel model.

The results of our dual-phonon theory for La2Zr2O7 are shown
in Fig. 4a. Our model coupled with the random-walk theory gives
weakened κL ~ T dependence as T increases: κL ~ T relationship
calculated using I. l− λ criterion (II. l–amin criterion; III. DPhon–
DDiff criterion) weakens from κL ~ T−0.69 (κL ~ T−0.72; κL ~ T−0.67)
for 300 K < T < 500 K, to κL ~ T−0.47 (κL ~ T−0.40; κL ~ T−0.47) for
500 K < T < 1000 K, and to κL ~ T-0.29 (κL ~ T−0.24; κL ~ T−0.30)
for T > 1000 K, reasonably reproducing the flattening-out beha-
viors of the experimental κL ~ T data. Partial contributions from
normal phonons (κPhonL ) and diffuson-like phonons (κDiffL ) to the
total κL are plotted in Fig. 4b. It is shown that, κDiffL starts
to dominate over κPhonL at around T= 700, 1000, and 800 K based
on Criterion I, II, and III, respectively. Clearly, the role of
diffuson-like phonons for the heat conduction of La2Zr2O7

is more significant at high-temperature ranges. Besides,
the calculated κPhonL decreases in the order of criteria II, III,
and then I, while the trend is reversed for κDiffL . This result
is consistent with the percentage of diffuson-like phonons
assigned out of all the vibrational modes (inset Fig. 4b).
Evidently, despite using three different criteria to judge normal
phonons vs. diffuson-like phonons, the calculated κL values as
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Fig. 4 Lattice thermal conductivity of La2Zr2O7. a The calculated
temperature-dependent lattice thermal conductivity (κL) for La2Zr2O7 using
our dual-phonon theory. The results from the iterative solution of BTE,
Mukhopadhyay et al.’s two-channel model12, and experiments26–28 are
presented for comparison. b The contribution to total κL from normal
phonons (κPhonL ) and diffuson-like phonons (κDiffL ). Inset: The number of
diffuson-like phonons (NDiff) divided by the number of all vibrational modes
(NTotal= NPhon+NDiff) for La2Zr2O7, calculated as a function of
temperature. Source data are provided as a Source data file.
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well as the κL ~ T dependence show quite similar features,
demonstrating the robustness of our approach. Moreover, our
dual-phonon theory is also validated on Tl3VSe4, a potential
thermoelectric material with ultra-low κL that was used as the
model materials in ref. 12. See Supplementary Note 3, Supple-
mentary Figs. 4–7, and Supplementary Table 1 for detailed results
and discussions.

Also shown in Fig. 4 are the results from our dual-phonon
theory coupled with the Allen–Feldman model. The percentage of
diffuson-like phonons assigned out of all the vibrational modes
using the III. DPhon–DDiff criterion coupled with DAF

Diff is generally
consistent with the results derived with DRW

Diff , and the calculated
values of κPhonL from the two routes show minor differences.
Moreover, the κL ~ T dependence calculated with DAF

Diff gives κL ~
T−0.61 for 300 K < T < 500 K, κL ~ T−0.42 for 500 K < T < 1000 K,
and κL ~ T−0.27 for T > 1000 K, consistent with that derived using
DRW
Diff . These results demonstrate the robustness of the dual-

phonon theory. Evidently, imposing the dual-phonon theory
coupled with Allen–Feldman model tends to yield higher κDiffL ,
and thus slightly higher values of total κL, as compared with those
derived with the random-walk picture. This is actually inherited
from the different frequency-dependent formulas of DRW

Diff vs. D
AF
Diff

as we have discussed above. Interestingly, at least for La2Zr2O7,
the random-walk-based thermal diffusivities in our dual-phonon
theory perform better than the Allen–Feldman theory. Mean-
while, this route requires far less computational expense, which is
potentially favorable for high-throughput κL predictions. Never-
theless, more works are required in the future to test this issue
using a larger material pool.

Discussion
We can see that our dual-phonon theory emphasizes the physics
of hierarchical phonon transport in low-κL materials, by treating
all vibrational modes within the phonon picture yet with different
thermal-transport behaviors, i.e., normal phonons with the BTE
theory and diffuson-like phonons with the diffusion theory.
Basically, our dual-phonon theory proposes a conceptual change
that the vibrational modes are still phonons upon approaching
the Ioffe–Regel limit, and the phonon frequency, eigenvector, and
relaxation time could be rigorously described by first principles.
Specifically, the identified diffuson-like phonons with small l or
small DPhon still fall in the physical picture of phonons with well-
defined scattering rates that can be reliably predicted from first
principles; just that their heat conduction cannot be treated using
the scheme of mean free path or BTE. In this way, the scattering
and thermal transport of diffuson-like phonons are decoupled.
The three proposed physics-based judging criteria, without rely-
ing on any fitting parameters, enable a per-mode-based judging
between normal phonon and diffuson-like phonon channels, and
give consistent κL predictions in agreement with experimental
data, demonstrating the robustness of our approach. Moreover,
while this paper was under review, we learned that progressive
efforts have been made to unify thermal transport in crystals and
amorphous materials, which involve sophisticated analytical and
mathematical derivations, yet the corresponding physical insights
are still under development13,14. In parallel with these efforts, our
dual-phonon theory provides physical insights in understanding
the vibrational hierarchy of crystals having low and glass-like κL,
and leads up to a κL-prediction method with good robustness and
favorable computational expense.
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It would be interesting to explore future opportunities to
expand and advance our proposed dual-phonon theory. First, the
current study does not include the effects of four-phonon scat-
tering or phonon renormalization, which are important effects
addressed elsewhere but are beyond the scope of the present
study, partly due to the very high computational cost for
La2Zr2O7 (with complex and large unit cell). Four-phonon scat-
tering is important at high temperature for all materials and even
at room temperature for strongly anharmonic materials and
materials with exceptionally weak three-phonon scattering31–33.
Phonon renormalization is important for strongly anharmonic
materials, especially those exhibiting dynamic instability37–40.
Indeed, consideration of four-phonon effect and the temperature-
effect might arrive at more accurate simulation of the phonon
group velocities and scattering, leading to better placement of
normal phonons vs. diffuson-like phonons, and more accurate κL
and its temperature dependence.

Second, the primary scope of our dual-phonon theory is to
differentiate the thermal-transport behaviors of normal phonons
against diffuson-like phonons in crystals based on whether or not
they are ill-defined in the space scale (in terms of small l or
DPhon), given that they fall within the phonon picture in terms of
scattering. Interestingly, we find that some vibrational modes in
La2Zr2O7 and Tl3VSe4 exhibit 1/τ > ν; in other words, their life-
time is too short and thus should be considered ill-defined in the
time scale. Similar behavior has been universally observed in
crystals having certain types of perturbation or disorder12,13,41–44.
As shown in Fig. 5a, c, the number of modes that are ill-defined in
the time scale (1/τ > ν) account for 0.21% for La2Zr2O7 and
11.58% for Tl3VSe4 at T= 300 K, which are much smaller than
the percentages of the ill-defined-in-space phonons. They rise to
45.36% at T= 1500 K for La2Zr2O7 and 59.71% at T= 500 K for
Tl3VSe4, respectively, though. We then further evaluate the effects
of these modes on the scattering rates of phonons that are well-
defined in the time scale (1/τ < ν), by calculating the percentages
of scattering rates of well-defined-in-time modes contributed by
three-phonon scattering processes involving at least one ill-
defined-in-time mode. Figure 5b, d shows that the percentages are
mostly below 20% for La2Zr2O7 and below 60% for Tl3VSe4 at
T= 300 K, which rise to mostly above 70% at T= 1500 K for
La2Zr2O7, and above 90% at T= 500 K for Tl3VSe4. Therefore,
although our approach makes a step closer to a sound theory and
appears to agree with experiments, whether we can treat scat-
tering by these ill-defined-in-time phonons with standard
anharmonic lattice dynamics still remains a challenging open
question, especially at high temperatures. Future studies are
warranted on how to better understand the interactions between
the well-defined-in-time phonons and ill-defined-in-time pho-
nons in our model and other lately developed models13,14.

The present results have important implications for a wide
variety of low-κL materials, including thermal barrier coatings
(TBC), thermoelectrics, and nuclear materials. For these low-κL
materials, there might be large number of diffuson-like phonons
characterized by small l or small DPhon, and the significant con-
tribution from κDiffL to total κL manifest with increased tem-
perature, and eventually dominate over the contribution from
κPhonL when approaching the high-temperature limit. In the con-
text of our analysis on the TBC material La2Zr2O7, the diffuson-
like phonons mainly stem from low vg and/or high scattering
rates, which could be further linked with the complexity of crystal
structure and the heterogeneity of interatomic bonds. Such
structural characteristics result in folding-in of phonon disper-
sion, suppression of phonon frequencies and thus group velo-
cities, and serious tangling and scatterings among low-frequency
acoustic and optical phonons (see Supplementary Note 4 and
Supplementary Fig. 8 for details). This mechanism is expected to

be a signature for many TBC candidates, i.e., oxide ceramics with
complex crystal structure and vibrational hierarchy, probably
including other RE2Zr2O7 pyrochlores25, silicates45,46, and
acuminate-silicates47 etc. In this sense, our proposed dual-
phonon model is expected to inspire deeper understanding and
practical calculation methodology of κL for TBC materials (see
Supplementary Note 5 for details).

In summary, a dual-phonon theory is proposed for the κL of
crystals with vibrational hierarchy, by considering normal pho-
nons described by the BTE theory and diffuson-like phonons
described by the diffusion theory. Three physics-based criteria are
used to judge mode-by-mode between normal phonons and
diffuson-like phonons. Applying this theory on La2Zr2O7 and
Tl3VSe4 shows that κL is mainly contributed by normal phonons
at low temperatures, whereas by diffuson-like phonons at high
temperatures. This theory successfully predicts the flattening-out
of κL ~ T trend upon temperature increment, in much better
agreement with experiments than the conventional BTE theory.
Meanwhile, it resolves the limitations of other existing models
and leads to a computational procedure showing promising
applicability. The improvement of heat conduction theory in low-
κL crystals will provide important insights in the development of
TBC materials, thermoelectric materials, and nuclear materials.
Future studies can include a comparison of our approach with
those in refs. 13,14, a consideration of how to combine the
mathematical rigor of those approaches and the physical insights
from our approach and other heuristic models, and a better
understanding of the interactions between the well-defined-in-
time phonons and ill-defined-in-time phonons.

Methods
Calculation details of the dual-phonon theory. In this study, the per-mode
specific heat is calculated by following the Bose–Einstein statistics for phonon:

Cs i; jð Þ ¼ 1
V
kB

�hω i; jð Þ
kBT

� �2 exp �hω i; jð Þ=kBTð Þ
exp �hω i; jð Þ=kBTð Þ � 1½ �2 ð4Þ

where kB is the Boltzmann constant; ћ is the reduced Planck constant; T is the
absolute temperature; ω is the angular frequency of a vibrational mode; V is the
volume of simulated unit cell.

DPhon is calculated using the phonon BTE theory, by incorporating the phonon
group velocity (vg), mean free path (l), and relaxation time (τ) resulted from the
scattering process. DDiff could be calculated by following the random-walk scheme
proposed in Agne et al.’s model10, which assumes that heat is transferred by
discrete jumps between independent harmonic oscillators. Its linear dependence
with respect to ω could be understood from the diffusive picture, as if oscillators
jumping at more steps per time-interval contribute to higher rates of energy
transfer. Basically, the diffusion term DDiff has the units of DPhon (m2·s−1), while
avoiding independent definition of vg and l in the diffuson picture.

DPhon ið Þ ¼ 1
3
vg ið Þl ið Þ ð5Þ

l ið Þ ¼ vg ið Þτ ið Þ ð6Þ

DRW
Diff jð Þ ¼ 1

3
n�2=3ω jð Þ

π
ð7Þ

where n is the number density of atoms of the unit cell. In this study, mode-
resolved vibrational parameters (vg, l, λ, ω, τ, etc.) are gathered from outputs of
DFT-based harmonic and anharmonic lattice dynamics calculations. Scattering
information (τ and l) is gathered from iterative solution of the BTE; however, we
tested that using parameters derived under the relaxation-time approximation
(RTA) would have negligible influence on the present results.

For comparison, DDiff could also be calculated using the Allen–Feldman
formula23, which is grounded in the Green–Kubo theory and is at the reach of ab
initio simulations.

DAF
Diff jð Þ ¼ πV2

3�h2ω jð Þ2
X
p≠j

Sjp

��� ���2δ ω jð Þ � ω pð Þð Þ ð8Þ

where Sjp is the heat-current operator measuring the thermal coupling between
vibrational mode j and p based on their frequencies and spatial overlap of
eigenvectors, and could be calculated from harmonic lattice dynamics. δ is the
Dirac Delta function that could be approximated using Lorentzian broadening of
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width greater than the average mode frequency interval (Δavg).

Sjp ¼
�h
2V

vKjp ωK jð Þ þ ωK pð Þð Þ ð9Þ

vKjp ¼
1 � i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωK jð ÞωK pð Þp X

αβ

X
s;k;k0

eα k;K; jð ÞDk0k
βα 0; sð Þ

´ Rs þ Rkk0ð ÞeiK� RsþRkk0ð Þ ´ eβ k0;K; pð Þ
ð10Þ

where the wave vector K is summed over the Brillouin zone; e is the corresponding
eigenvector; α and β denote the Cartesian directions. Rs is the distance between
each unit cell (labeled s) and the basis unit cell (labeled 0) within a periodic
supercell system; and Rkk′ is the distance between atom k and atom k′ within a unit
cell. Dk0k

βα 0; sð Þ is the dynamical matrix element, derived from the second-order

interatomic force constant (Φk0k
βα 0; sð Þ).

Dk0k
βα 0; sð Þ ¼ Φk0k

βα 0; sð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkmk0

p ð11Þ
where mk and mk′ are the masses of the atom k and k′.

Computation details for first principles. Density functional theory (DFT) calcu-
lations on La2Zr2O7 are performed using the projected augmented wave (PAW)
method48 as implemented in Vienna Ab Initio Simulation Package (VASP)49 with
electronic exchange and correlations treated in the localized density approximation
(LDA)50. The wave functions are expanded in a plane-wave basis with the kinetic
energy cutoff of 600 eV, and Monkhorst–Pack51 Γ-centered k-mesh of 7 × 7 × 7 is
used to sample the Brillouin zone (BZ). Cell parameters and internal atomic positions
are fully relaxed until the total energy and maximum ionic Hellmann–Feynman forces
converge to 1 × 10−10 eV and 1 × 10−4 eV/Å, respectively. Lattice parameters of
La2Zr2O7 (in cubic symmetry, space group Fd�3m) are optimized to be 10.66 Å, in
reasonable agreement with experimental data of 10.78 Å52. Computational details for
Tl3VSe4 are presented in Supplementary Note 6.

The harmonic and anharmonic interatomic force constants (IFCs) are calculated
via the real-space finite displacement difference method, where 2 × 2 × 2 supercells
containing 88 atoms are constructed, and Monkhorst–Pack k-mesh are set as 3 ×
3 × 3. The phonon frequencies and eigenvectors are obtained using the Phonopy53

package, by diagonalizing the dynamical matrix constructed from the harmonic IFC
matrices, and sampling on a 21 × 21 × 21 q-mesh. These are typical settings for the
lattice dynamics calculations of rare-earth pyrochlore systems25. The anharmonic
IFCs are obtained using the thirdorder scripts54. Interatomic interactions up to the
twelfth nearest neighbors (12th NN) are taken into account, corresponding to a
cutoff radius (rcutoff) of 7.72 Å; whereas interactions beyond this range are taken to
be zero. In fact, increasing the rcutoff from the 5th NN (corresponding to rcutoff=
5.19 Å) to the 12th NN could sufficiently converge the room-temperature κL within
7%. It is noteworthy that La2Zr2O7 is a complex oxide ceramic with long-range
interatomic interactions55, which might lead to strong dependence of anharmonic
IFCs and κL on the number of neighbor shells. Qin et al.56 reported that for such
material systems, the extent to an adequate inclusion of long-range effect could be
estimated by looking into how the interaction strength changes with increased
distance between an atomic pair, based on analyzing the root mean square (RMS) of
the elements of the harmonic IFC tensor (Frobenius norm):

RMS ϕmn

� 	 ¼ 1
9

X
α;β

ϕαβmn

� 	2
2
4

3
5

1
2

ð12Þ

where ϕmn is the harmonic IFC between atom m and n; and ϕαβmn is the harmonic
response of the force for atom m on the α-direction resulted from the displacement
of atom n on the β-direction. Following this approach, the RMS(ϕmn) for all atomic
pairs are analyzed as a function of the interatomic distance. It shows that for
La2Zr2O7, setting the truncation at the 12th NN is expected to include most strong
interatomic interactions up to RMS(ϕmn)= 2, and beyond this range it decays below
RMS(ϕmn) < 0.15. For these reasons, we chose to include up to the 12th NN
interatomic interactions in the present calculations to pursue higher precision.

The lattice thermal conductivity (κPhonL ) is calculated by the iterative solution of the
BTE as implemented in the ShengBTE54 package, with integrations using a 16 × 16 ×
16 q-mesh. The convergence of κL with respect to the size of q-mesh is tested, and the
results show that increasing the q-mesh up to 25 × 25 × 25 yields less than 2%
difference to the room-temperature κL of La2Zr2O7. Furthermore, non-analytical
corrections are applied to the dynamical matrix to take into account long-range
electrostatic interactions, based on calculations of Born effective charges (Z*) and
dielectric constants (ε) via density functional perturbation theory (DFPT)57.

The Allen–Feldman calculations are performed with the same 2 × 2 × 2 supercell
and 16 × 16 × 16 q-mesh, to ensure a consistent comparison between DPhon vs. DAF

Diff
on a per-mode basis. The Delta function in Eq. (8) is broadened into the Lorentzian

form η=π

ω jð Þ�ω pð Þð Þ2þη2
. After convergence tests (details in Supplementary Note 7 and

Supplementary Fig. 9), the Lorentzian broadening factor η is set to be 3.3Δavg in our
study, where Δavg is the average mode frequency interval (Δavg= 0.35 THz for
La2Zr2O7). Due to the high computational expense, we use per-mode thermal
diffusivities on 1000 out of the 4096 wave vectors for our dual-phonon theory under

the Criterion III coupled with Allen–Feldman formula. A convergence test shows that
including up to 2000 wave vectors causes only marginal difference (<1%) on the
calculated fraction of diffuson-like phonons (NDiff/NTotal) and the final κL values.

Data availability
The source data of Figs. 1, 3–5, and Supplementary Figs. 1–9 are provided as a Source
data file at https://archive.materialscloud.org/2020.0036/v1, and are further available
from the corresponding author upon reasonable request.

Code availability
Vienna Ab Initio Simulation Package (VASP) is available at www.vasp.at; Phonopy
package is available at https://phonopy.github.io/phonopy; ShengBTE code is available at
https://bitbucket.org/sousaw/shengbte; thirdorder scripts are available at https://
bitbucket.org/sousaw/thirdorder. The custom codes used in this work are available from
the corresponding author upon reasonable request.
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