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Direct observation of dual-step twinning nucleation
in hexagonal close-packed crystals
Yang He1, Bin Li2, Chongmin Wang 3✉ & Scott X. Mao 1✉

Design and processing of advanced lightweight structural alloys based on magnesium and

titanium rely critically on a control over twinning that remains elusive to date and is

dependent on an explicit understanding on the twinning nucleation mechanism in hexagonal

close-packed (HCP) crystals. Here, by using in-situ high resolution transmission electron

microscopy, we directly show a dual-step twinning nucleation mechanism in HCP rhenium

nanocrystals. We find that nucleation of the predominant {1 0 −1 2} twinning is initiated by

disconnections on the Prismatic│Basal interfaces which establish the lattice correspondence

of the twin with a minor deviation from the ideal orientation. Subsequently, the minor

deviation is corrected by the formation of coherent twin boundaries through rearrangement

of the disconnections on the Prismatic│Basal interface; thereafter, the coherent twin

boundaries propagate by twinning dislocations. The findings provide high-resolution direct

evidence of the twinning nucleation mechanism in HCP crystals.
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Twinning, on par with dislocation, is an essential carrier of
crystal deformation1,2. Particularly, in hexagonal close-
packed crystals (e.g., magnesium, titanium, and rhenium), it

is required to mediate deformation along the <c > axis of the crystal
structure3–5. By creating coherent twin boundaries (CTB) within a
crystal, twinning can significantly affect the physical properties of
the crystal. For instances, twin architectures can confine dislocation
activities and effectively increase the strength of metals without
sacrificing their ductility6–9. As such, the atomic mechanism of
twinning nucleation—the key to control twinning—has drawn
extensive research interest4,10–16. Unfortunately, owing to a lack of
direct experimental evidence, current knowledge on twinning
nucleation in HCP crystals remains at the level of debatable theories.

Given that the reliability of simulations and topological analysis
critically depends on a correct description of interatomic
potentials17,18, and that ex situ static characterization may be
misleading owing to the high tendency of detwinning upon
unloading19,20, it is generally believed that in situ atomic scale
investigations are indispensable for unraveling the mystery of
twinning nucleation. As more than one atom exists in the motif of
the HCP crystal, shear alone cannot move all atoms to their correct
positions in the twin; additional atomic adjustments (called shuf-
fles) are always required in the twinning process17, which not only
significantly affects the dynamic process of twinning13,18,21,22 but
also poses tremendous challenges on direct atomic interrogation.

Here, by using advanced crystal manipulation techniques and
in situ high-resolution transmission electron microscopy
(HRTEM), twinning nucleation processes in HCP rhenium
nanocrystals are directly captured at atomic resolution. It is
revealed that the {1 0 −1 2} <1 0 −1 −1> twinning nucleates
through a dual-step mechanism lead by transformations of parent
prismatic (P) planes into the twin basal (B) planes; this process
establishes the lattice correspondences of the twin plus a minor

rotational deviation from the ideal parent–twin mutual-orienta-
tion; subsequently, ideal twin forms by the rearrangement of
interfacial defects on the P│B interfaces and ensuing formation of
CTB. The findings provide direct evidences to the twinning
nucleation mechanism in HCP crystals.

Results
Prismatic-to-basal transformation. Fig. 1a (and Supplementary
Movie 1) shows a {1 0 −1 2} twinning nucleation process from
the grain boundary of a rhenium (Re) bi-crystal under com-
pression. Incipient plastic deformation started with the nucleation
of a {1 0 −1 2} twin embryo at a local region of the grain
boundary (where stress concentration might be present). The
twin embryo was ~1 nm in dimension upon nucleation, i.e.,
containing only a few unit-cells, and grew by formation and
lateral expansion of new basal layers on the twin/matrix interface
(Fig. 1a–c). As it grew through the sample thickness direction,
atomic-resolution image of the twin embryo was captured (see
Fig. 1c), demonstrating that the laterally expanding layers were
indeed basal planes. During this process, the {1 0 −1 2} twinning
planes in the parent and twin crystals were not parallel (Fig. 1d),
implying that the observed process in Fig. 1a–c was not domi-
nated by twinning dislocations1,23. As the twin embryo grew in
subsequent compression, CTB on the {1 0 −1 2} plane were
formed (Fig. 1e), demonstrating that the prior transformation was
indeed an incipient stage of the twinning nucleation. Same
mechanism of twinning nucleation was also identified fre-
quently on the side surfaces of different samples (see Supple-
mentary Fig. 1).

Zoom-in view of another {1 0 −1 2} twinning nucleation
process demonstrates that expansion of the twin basal layers is
actually mediated by disconnections on the P│B interfaces24
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Fig. 1 Direct observation of a twinning nucleation process. a–c Sequential HRTEM images showing twinning nucleation in a HCP rhenium nanocrystal
under < 1 −1 0 0 > -oriented compression. Arrows indicate the expansion of basal layers in the twin embryo. Turquoise lines indicate the Prismatic│Basal
(P│B) interfaces between the twin embryo and matrix. White lines indicate the grain boundary (GB). Block arrow in a indicates the loading direction. d Fast
Fourier transformation of the twin embryo in c. TBN, MPN, TPN, MBN, TTPN, and MTPN mean the plane normal directions of twin basal, matrix prismatic,
twin prismatic, matrix basal, twin twinning plane and matrix twinning plane, respectively. e Morphology of the twin as it grew. Yellow lines indicate the
coherent twin boundaries (CTB). Scale bars in a–c, e, 2 nm.
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(Fig. 2a–d). Most of these disconnections showed a step height of
two atomic layers (Fig. 2b–c); during their migration, the parent
prismatic planes transformed into twin basal planes (P→ B
transformation) following a one-to-one planar correspondence
(as evidenced by the atomic-resolution images in Fig. 2e–f).

The deviation from an ideal {1 0 −1 2} twin. Though the P→ B
transformation does not establish ideal parent–twin mutual-
orientation (Fig. 1d), it establishes exactly the same lattice cor-
respondence as that of an ideal {1 0 −1 2} twin25 (as schemati-
cally depicted by unit-cell level analysis in Fig. 3). To track the
lattice correspondences, the prismatic plane, basal plane, twin-
ning plane, and conjugate twinning plane are color-coded
(Fig. 3a–b). In the observed mechanism, the parent P plane
transforms into twin B plane, and the parent B plane transforms
into twin P plane (Fig. 3c). As such, the twinning plane is rotated
by ~4o during the transformation. By contrast, position of the
twinning plane is invariant in the ideal {1 0 −1 2} twinning
(Fig. 3d). Clearly, the lattice correspondences generated by the
two mechanisms are exactly the same (Fig. 3e–f), except for a
minor rotation depending on the magnitude of twinning shear
(Supplementary Fig. 2). In other words, the P→ B transformation
completes the twinning process in the sense that it moves all
atoms in parent structure to their correct positions in the twin.

Correction of the deviation. Interestingly, the minor rotational
deviation from the ideal twin–parent mutual-orientation can be
corrected by subsequent transformations. As shown in Fig. 4a–c,
the disconnections on the P│B interfaces rearranged to align on the
twinning plane upon unloading, forming CTB. Same transforma-
tion of twin boundaries can also happen during the twin embryo
growth (Fig. 1e). This is essentially a twin boundary faceting pro-
cess driven by twin boundary energy minimization14,24,26,27. More
importantly, the orientation relation between the twin and matrix
became ideal at very local regions thereafter (see Supplementary
Fig. 3). Subsequent movement of the CTB was mediated by con-
ventional (b2, h2) twinning dislocations (see Fig. 4d–g for that in a
detwinning process and Supplementary Fig. 4 for that in a twinning
process), manifesting a long-desired direct evidence to the classical
mechanism of {1 0 −1 2} twinning14,22,28.

The dual-step mechanism of twinning nucleation. In retrospect,
above observations directly demonstrate a dual-step mechanism
of the {1 0 −1 2} twinning nucleation: (I) establishment of the
lattice correspondence through P→ B transformation, and then
(II) correction of the minor rotational deviation through twin
boundaries transformation. Note that the formation process of
the incipient unit-cell-scale twin embryo (Fig. 1a) is shrouded by
the parent lattice along the TEM electron beam direction; based
on the observation that it is a P→ B transformation process, the
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Fig. 2 Twin embryo growth mediated by disconnections on the P│B interfaces. a–d Sequential HRTEM images showing the process. The zig-zag
turquoise lines indicate the P│B interfaces, wherein the step features are disconnections on the P│B interface. Arrows indicate the moving direction of the
disconnections. e Atomic-resolution HAADF-STEM image of the P│B-type twin boundaries and f corresponding inverse fast Fourier transformation
showing one-to-one correspondence between twin basal planes and matrix prismatic planes. Insets in e) show the atomic models of the two types of plane.
The zig-zag turquoise lines in e, f indicate the P│B interfaces. Scale bars in a–d, 1 nm; scale bars in e–f, 2 nm.
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unit-cell-scale embryo is likely formed by the pure-shuffle
mechanism11,14.

It should be noted that the side surface of the nanocrystal can
facilitate the P→ B transformation by providing accommodation
for the lateral deformation especially when the transformation
propagates to the side surface. This is evidenced by the bulge on
the left-side surface in Fig. 1c and the fact that P→ B
transformation played a major role in mediating the {1 0 −1 2}
twinning nucleation and growth in our nanosized samples and
CTB is only occasionally formed during the process. In the
confined environment of bulk samples, accommodation mechan-
isms other than the side surface are needed to facilitate the P→ B
transformation, such as elastic and plastic deformation in front of
the twin boundary29, deformation of the neighboring grains30,
intersection region of the grain boundaries31 and formation of
threading dislocations on the P│B interface27,32. Considering the
fact that the incipient nucleation is a local event at atomic scale,
one or more of these mechanisms should be able to accommodate
the limited deformation, resulting from the initial P→ B

transformation as a leading step of twinning nucleation. This is
supported by the fact that initial nucleus of the twin in our
experiment is away from (and without obviously bulging) the side
surface (Fig. 1a–b). Above all, the dual-step manner of the
twinning nucleation should persist in the interior of the bulk
samples. Though, the energy barrier for the same mechanism
happening close to the free surface or in the bulk of the aggregate
should be different. Compared with the free side surface, the
above strain accommodation mechanisms in bulk samples likely
requires a higher stress to be active; therefore, growth of the twin
nucleus by continuous P→ B transformation may be limited and
the classical shear of twinning dislocations on the CTB may
become prevalent in bulk samples.

In addition, our observation does not disprove other twinning
nucleation models (e.g., reaction and dissociation of matrix
dislocations33–36, surface/interface emission of twinning
dislocations10,30,37,38); the nanoscale dimension of the crystals
here prompts the starvation of matrix dislocations39–41, eliminat-
ing potential twinning nucleation through the pole-
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Fig. 3 Schematic illustration of the dual-step twinning nucleation mechanism. a Unit-cell of a HCP structure. Solid balls represent individual atoms. b <1
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homogeneous shear. e Twin embryo structure generated by the P→ B transformation, which shows a minor rotational deviation compared with the ideal
twin f. Angle of the minor rotation can be described by tan−1(s/2), where s is the magnitude of twinning shear (see Supplementary Fig. 2 for the derivation).
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mechanism33,34, or dislocation dissociation35,36. It may also
inhibit the nucleation of twinning dislocations from the side
surface41. Moreover, the bi-nanocrystal sample geometry has
much less grain boundaries than a bulk polycrystalline sample
and may significantly reduce the availability of favorable
nucleation sites for twinning dislocations10,42.

Discussion
Though our finding is based on Re nanocrystals, it can be rea-
sonably extended to other bulk HCP metals. First, the observa-
tions provide a direct understanding on the origin of the serrated
twin boundaries in many bulk HCP metals including Co21,43–46,
Ti47,48, Mg32,49,50, Zn29,51,52. Second, it is well known that c/a

ratio has critical influence on the deformation of HCP metals5; as
the c/a ratio of Re (1.615) is very close to those of Mg (1.624) and
Ti (1.588), it is reasonable to expect the observed twinning
nucleation mechanism in these metals (see Supplementary Fig. 2
for further discussion). Third, the dual-step twinning nucleation
mechanism offers another fundamental understanding to the fact
that the active twinning variant in HCP metals is not always
associated with the largest resolved shear stress on the twinning
plane18,42,53. As the onset of P→ B transformation depends on
the normal stresses on the prismatic/basal planes which, in most
cases, translate to both a resolved shear stress and a normal stress
on the twinning plane, twinning nucleation by the dual-step
mechanism can also be critically affected by the normal stress on
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the twinning plane. Finally, a major advantage of nanoscale
samples over bulk sample is that high-stress states can be
attained54; localized stress concentrations within bulk samples
may provide equivalent stress condition for the activation of the
dual-step mechanism.

Moreover, our findings provide a solid fundamental basis for
the twinning-based design and processing of advanced HCP
alloys. Since the {1 0 −1 2} twinning starts at low stress-state and
has crucial role in the early stage deformation of magnesium
alloys18,55, it is critical to impede the easy nucleation or growth of
{1 0 −1 2} twins for strengthening the magnesium alloys. Based
on the findings here, an effective way to do this is through cyclic
deform-unload-anneal processing. In the deform-unload process,
{1 0 −1 2} twins nucleates and propagate; upon unloading, the
twin boundaries retreat and relocate to the CTB (as demonstrated
in Fig. 4 and Supplementary Fig. 3). In the subsequent anneal
process, the alloying elements will gradually segregate on the

CTB6 and pin these boundaries from further propagation.
Then, the future deformation would require nucleation of new
{1 0 −1 2} twins rather than propagation of existing {1 0 −1 2}
twins. As such, the easy nucleation sites for {1 0 −1 2} twinning
can be gradually depleted by cyclic deform-unload-anneal pro-
cessing. Increasing the interfacial energy of P│B-type interfaces27
(e.g., by alloying) raises the formation energy of the twin embryo
and hence makes it harder for the {1 0 −1 2} twinning nuclea-
tion through the observed mechanism. Moreover, hierarchical
twin structures may be enabled by patterning desired defects for
twinning nucleation. Per Fig. 3c, the P→ B transformation cor-
relates to a compressive strain on the prismatic plane, suggesting
that normal strain fields from the defects may be used to control
the twinning nucleation. Consistently, we captured a twinning
nucleation event at the compressive strain field of a dislocation
core (Fig. 5 and Supplementary Fig. 5). As revealed by quanti-
tative geometrical phase analysis56 (Fig. 5e), the dislocation in
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more details). f–g Inverse fast Fourier transformations of the TEM snapshots in b, c, respectively, using the (0 0 0 1) reflections of the twin (indicated by
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Fig. 5a generated compressive strains on the prismatic planes to
the right of the dislocation core; in the subsequent compression of
the crystal, a {1 0 −1 2} twinning preferentially nucleated at the
region where compressive strain of the dislocation core was the
largest, demonstrating that the strain field of matrix dislocations
could prompt the twinning nucleation. It should be noted that a
high compressive stress (~5 GPa based on a rough estimation57)
was attained at the moment of the twinning nucleation in Fig. 5b,
which is not readily available in polycrystalline Re samples
without significant stress concentrations30. Though, similar
mechanism is expected to be present in nano-grains of HCP
metals wherein high-stress-state can be attained.

Through direct atomic scale observation, we discovered that
nucleation of the predominant {1 0 −1 2} twinning is completed
in two steps: I. Establishing the lattice correspondence through an
interfacial process that directly transforms the parent prismatic
plane into a twin basal plane; II. Correction of residual mis-
orientation through rearrangement of the interfacial defects and
ensuing formation of CTBs. In addition, the role of matrix dis-
locations on the twinning nucleation and direct evidence to the
operation of the classical twinning dislocations are also revealed.
The mechanism is expected to be present in bulk HCP metals,
providing a solid fundamental basis for the twinning-based
design and processing of HCP alloys. Fundamentally, this
mechanism suggests that nucleation of twinning (or martensitic
transformation) is essentially a transformation process that con-
forms to and establishes the lattice correspondence, which can be
accomplished by many interfacial processes other than the clas-
sical twinning dislocations on the twinning (or habit) plane.

Methods
In situ TEM experimental procedures. Rhenium is widely used in structure
materials in jet engines58, with outstanding mechanical properties and excellent
oxidation resistances at high temperatures. Moreover, Re is resistant to electron
irradiation59, making it a suitable model material for in situ TEM investigations. Re
rods with 99.999% purity (ESPI metals) were cut into nanosized tips and loaded
onto both the fixed-end and the piezo-end of a Nanofactory holder. Then, the
nanotips were manipulated to touch each other inside the high vacuum (~10−8

mbar) of a TEM and welded together by using an electric pulse. Then, the crystals
were deformed by straining at a controlled rate of 10−3~10−4/s. FEI 80-300 Titan
equipped with a imaging lens spherical aberration corrector was used throughout
this work. A charge-coupled device was used to record the images and videos (at
two frames per second).

Data availability
All the data related to this manuscript have been included in the main text and
supplementary information. All the raw data are stored in Environmental Molecular
Science Laboratory at Pacific Northwest National Laboratory and is available upon
reasonable request.
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