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Constructing chiral bicyclo[3.2.1]octanes via
palladium-catalyzed asymmetric tandem Heck/
carbonylation desymmetrization of cyclopentenes
Zhenbo Yuan 1, Yuye Zeng1, Ziwen Feng1, Zhe Guan 1, Aijun Lin 1✉ & Hequan Yao 1✉

Transition-metal-catalyzed tandem Heck/carbonylation reaction has emerged as a powerful

tool for the synthesis of structurally diverse carbonyl molecules, as well as natural products

and pharmaceuticals. However, the asymmetric version was rarely reported, and remains a

challenging topic. Herein, we describe a palladium-catalyzed asymmetric tandem Heck/

carbonylation desymmetrization of cyclopentenes. Alcohols, phenols and amines are

employed as versatile coupling reagents for the construction of multifunctional chiral bicyclo

[3.2.1]octanes with one all-carbon quaternary and two tertiary carbon stereogenic centers in

high diastereo- and enantioselectivities. This study represents an important progress in both

the asymmetric tandem Heck/carbonylation reactions and enantioselective difunctionaliza-

tion of internal alkenes.
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Transition-metal (TM)-catalyzed carbonylation reaction1–16,
especially palladium-catalyzed tandem Heck/carbonylation
reaction, presents an efficient method to construct a variety

of synthetically versatile carbonyl compounds from readily
accessible organic halides and alkenes17–21. Moreover, these
methods have been applied as key steps in the total synthesis of
natural products and bioactive molecules22–28. Very recently,
Reisman and co-workers realized the total synthesis of (+)-Per-
seanol employing palladium-catalyzed tandem Heck/carbonyla-
tion to assemble the vital tetracyclic core (Fig. 1a)29. However, the
asymmetric version of tandem Heck/carbonylation reactions was
rare, and remains a challenging topic. Some inherent issues, such
as the strong π-acidity and coordination ability of CO, would
hamper the oxidative addition of organohalides towards
low-valent metal species30. In addition, the harsh reaction con-
ditions (high temperature and high CO pressure), the incidental
racemization31, the β-hydrogen elimination of alkylpalladium
intermediates, the direct carbonylation of organohalides, and
other competitive side-reactions make the asymmetric progress
more difficult and complicated. Recently, three representative
works on palladium-catalyzed asymmetric tandem Heck/carbo-
nylation reaction of 1,1-disubstitueted alkenes to synthesize
dihydrobenzofurans, oxindole derivatives, and 3,4-dihy-
droisoquinolines have been realized by Correia’s group32, Zhu
and Luo’s group33, and Zhang’s group34, respectively. In contrast
to the success of 1,1-disubstituted alkenes (the alkylpalladium

intermediates lack eliminable β-hydrogen), the TM-catalyzed
asymmetric tandem Heck/carbonylation reaction of unactivated
internal alkenes has not been developed until now.

On the other hand, bicyclo[3.2.1]octanes are found in several
natural products with antibacterial, antioxidant, antithrombosis,
and antitumor activities35,36. However, constructing such intri-
cate polycyclic bridge ring compounds with multiple chiral cen-
ters simultaneous implementation remains a challenging
project37–46. Based on our research interest in Heck reactions47–50,
herein, we describe a palladium-catalyzed asymmetric tandem
Heck/carbonylation desymmetrization of cyclopentenes to con-
struct multifunctional chiral bicyclo[3.2.1]octanes bearing one all-
carbon quaternary and two tertiary carbon stereogenic centers in
excellent diastereoselectivities and enantioselectivities (Fig. 1b).
Suppressing the foreseeable side reactions, such as β-hydrogen
elimination of alkylpalladium intermediates, and the direct CO
insertion or nucleophiles insertion reaction (Fig. 1c), is the key to
the success of this reaction.

Results
Reaction optimization. After systematic evaluation of the reac-
tion conditions, the desired chiral bicyclo[3.2.1]octane product
3aa was achieved in 81% yield and 96% ee employing
Pd2dba3·CHCl3 (5 mol%) as the catalyst, (S)-Difluorphos L1 (20
mol%) as the ligand, K2CO3 (2 equiv) as the base, and mixed 1,2-
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dichloroethane (DCE)/dichloromethane (DCM) (10/1) as the
solvent at 100 °C (Table 1, entry 1). Other catalysts, such as Pd
(OAc)2 and Pd2(dba)3 were less effective (entries 2 and 3). BINAP
L2, SEGPHOS L3, DM-SEGPHOS L4 offered 3aa in 52–80% ee
(entries 4–6), while BOX-type ligand L5, PHOX-type ligand L6,
bis(phosphine-amide) ligand L7 and phosphoramidite ligand L8
caused the reaction inactivation (entries 7–10). Decreasing the
amount of ligand resulted 3aa in diminished yield, diastereo- and
enantioselectivity (entry 11). Screening the additives revealed that
K2CO3 was optimal, and AgOAc delivered racemic 3a′ in 83%
yield, which was formed via β-hydrogen elimination (entries 1
and 12–14). The choice of solvent, also the ratio of the mixed
solvent, was crucial to the reaction efficiency (entries 15–20).
Adjusting the reaction temperature was inconducive to improve
the outcome of the reaction (entries 21–22). The structure and
absolute configuration of 3aa were confirmed by single-crystal X-
ray diffraction analysis (see the Supplementary Note 3 for details).

Substrate scope. With the optimized reaction conditions in hand,
we then tested the substrate scope of alcohols in this asymmetric
Heck/carbonylation reaction, and the results were summarized in
Fig. 2. Simple primary alcohols, such as ethanol, n-propanol and
benzyl alcohol afforded the products 3aa–ad in moderate to good

yields with high enantioselectivities. It is noted that aryl bromine
derivative was also a good candidate, delivering 3ab in 50% yield
with 94% ee after prolonging the time to 48 h. Besides, other
primary alcohols with various functional groups, such as alkenyl,
trifluoromethyl, halogen, trimethylsilyl, even highly sterically
hindered adamantly group, all performed well, offering 3ae–ai in
88–96% ee. Cyclic and acyclic secondary alcohols delivered the
corresponding products 3aj–ao in good efficiency. Products 3ba–da
with different substituents on the benzene ring were produced in
good yields with high enantioselectivities. Product 3eb with
two ester groups was achieved in 68% yield with 95% ee.

Phenol esters are important skeletons in pharmaceuticals and
bioactive compounds. Although phenols as nucleophilic reagents
have been employed in some carbonylation reactions51,52, they
have not met with the success in asymmetric tandem Heck/
carbonylation reactions, because the two potential nucleophilic
sites at O and C of phenols would increase the complexity of the
reaction. Herein, phenols as versatile components were per-
formed in our asymmetric Heck/carbonylation reactions with
KHCO3 as the base and toluene as the solvent (Fig. 3). Electron
donating groups (−Me, −tBu, and −OMe), a halogen group
(−Cl), an electron withdrawing group (−COMe), as well as a
phenyl group at the para-position of phenols offered the
corresponding products 5aa–ag in 91–95% ee. meta-Chlorine
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Fig. 2 Substrate scope. a Substrate scope of primary alcohols. b Substrate scope of secondary alcohols. c Substrate scope of the benzoylcyclopentenes.
Reaction conditions: X= I, 1 (0.1 mmol), 2 (1 mmol), Pd2dba3•CHCl3 (5 mol%), L1 (20mol%), K2CO3 (0.2 mmol) in 1 mL solvent, 100 °C, 36 h, under CO
(1 atm). Yields of isolated products are given. The dr values were determined by 1H NMR analysis. The ee values were determined by HPLC analysis on a
chiral stationary phase. aX= Br. b48 h.
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substituted phenol 4h and 3,5-dimethylphenol 4i could also fulfill
the reaction well, and no significant steric hindrance effect was
observed. 1-Naphthol delivered 5aj in 95% ee. Moreover,
monobenzone, as a potent skin lightener drug, could give the
adduct 5ak in 91% ee.

To further exhibit the robustness and generality of this
reaction, scope of nitrogen nucleophiles was investigated with
Pddba2 (10 mol%) as the catalyst, L1 (20 mol%) as the ligand,
K2HPO4 (0.2 mmol) as the base in CH3CN (1 mL) at 100 °C
(Fig. 4). Acyclic secondary alkylamines, such as diethylamine and
dibenzylamine delivered products 7aa (see the Supplementary
Note 4 for details on the X-ray crystal structure) and 7ab in 93
and 94% ee. Cyclic secondary alkylamines furnished products
7ac–ag in 92–94% ee. Alkylarylamines, such as N-methylaniline
and indoline, provided 7ah and 7ai in 92 and 91% ee. Primary
alkylamines, such as n-propylamine, benzylamines, and thiophe-
nylmethanamine offered products 7aj–am in 92–94% ee. Primary
arylamines were also qualified to work in this reaction, delivering
products 7an–ap in good enantioselectivities with KHCO3 as the
base after prolonging the reaction time to 48 h. 5-OMe-
substituted cyclopentene 1f performed smoothly to give 7fb in
97% ee. Finally, pharmaceuticals including Vortioxetine, Trime-
tazidine and Riluzole were all well late-stage functionalized with
bicyclo[3.2.1]octanes to offer 7aq–as in 88–95% ee.

Further study. The enantiodivergent synthesis of (5R, 6S, 8S)-5ac′
was also realized in 70% yield and 97% ee employing (R)-
Difluorphos as the ligand (Fig. 5a). To demonstrate the
mechanism of this reaction, study on nonlinear effect of the

enantioselectivity of 5ac was carried out (Fig. 5b). The linear
correlation (R2= 0.99) between the enantioselectivities of the
product 5ac and the enantiopurities of the ligand L1 revealed the
involvement of one active catalyst species in the stereo-
determining transition states of the migratory insertion process.
On the basis of the above-mentioned results and previous
literatures31,32,47, a proposed mechanism of this reaction is fig-
ured in Fig. 5c. Firstly, oxidative addition of the active palladium
catalyst with 1a delivers the cationic Pd(II) intermediate I.
Intramolecular syn-migratory insertion of I results in the alkyl-
palladium intermediate II, which followed by the insertion of CO
delivers the intermediate III. Finally, the nucleophile insertion of
the phenol 4c to the intermediate III produces the product 5ac. It
is noted that the high diastereoselectivity was arisen from the
stereospecific syn-migratory insertion step, which has been con-
firmed in our previous work by the deuterium-labeling experi-
ments47. The observed stereochemical outcome of the reaction
with the C2-symmetric, (S)-configured ligand L1 can be ratio-
nalized based on the two diastereomeric intermediates A1 and B1
(Fig. 5d). The transition state B1 is notable for the severe steric
repulsion between the benzoyl moiety of the cyclopentene 1a and
the benzene ring of the ligand L1, a factor which is not present in
the transition state A1; this may account for the predominance of
the (5S, 6R, 8R) enantiomer of 5ac in the product.

Discussion
In summary, we have developed a Pd-catalyzed asymmetric
tandem Heck/carbonylation desymmetrization of cyclopentenes.
Various bicyclo[3.2.1]octanes bearing one chiral all-carbon
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quaternary and two tertiary carbon stereogenic centers were
obtained in moderate to good yields with excellent diastereos-
electivities and enantiomeric excess. This method provided a
general and practical route for the enantioselective difunctiona-
lization of unactivated internal alkenes and chiral bicyclo[3.2.1]
octanes.

Methods
General procedure for the catalytic reactions with alchohols. A sealed tube was
charged with the cyclopentenes 1 (0.1 mmol, 1 equiv), Pd2dba3•CHCl3 (5 mol%),
L1 (20 mol%), and K2CO3 (0.2 mmol, 2 equiv). The vial was thoroughly flushed
with CO, and alchohols 2 (1 mmol, 10 equiv), as well as DCE/DCM (10/1, 1 mL)
were added under CO atmosphere. The reaction mixture was stirred at 100 °C for
36 h. After the reaction vessel was cooled to room temperature, the solution was
concentrated in vacuo and purified by careful chromatography on silica gel
(200–300 mesh) (PE/EA= 4/1) to afford the desired products 3.

General procedure for the catalytic reactions with phenols. A sealed tube was
charged with the cyclopentenes 1 (0.1 mmol, 1 equiv), phenols 4 (0.25 mmol, 2.5
equiv), Pd2dba3•CHCl3 (5 mol%), L1 (20 mol%), and KHCO3 (0.2 mmol, 2 equiv).
The vial was thoroughly flushed with CO, and toluene (1 mL) was added under CO
atmosphere. The reaction mixture was stirred at 100 °C for 36 h. After the reaction
vessel was cooled to room temperature, the solution was concentrated in vacuo and
purified by careful chromatography on silica gel (200–300 mesh) (PE/EA= 4/1) to
afford the desired products 5.

General procedure for the catalytic reactions with amines. A sealed tube was
charged with the cyclopentenes 1 (0.1 mmol, 1 equiv), Pddba2 (10 mol%), L1 (20
mol%), and K2HPO4 (0.2 mmol, 2 equiv). The vial was thoroughly flushed with
CO, and amines 6 (0.2 mmol, 2 equiv), as well as CH3CN (1mL) were added under
CO atmosphere. The reaction mixture was stirred at 100 °C for 36 h. After the
reaction vessel was cooled to room temperature, the solution was concentrated in
vacuo and purified by careful chromatography on silica gel (200–300 mesh) (PE/
EA= 2/1) to afford the desired products 7.
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